RESUMEN
Microwave hyperthermia (MH) is an emerging treatment for solid tumors, such as breast cancer, due to its advantages of minimally invasive and deep tissue penetration. However, MH induced tumor hypoxia is still an obstacle to breast tumor treatment failure. Therefore, an original nanoengineering strategy was proposed to exacerbate hypoxia in two stages, thereby amplifying the efficiency of activating tirapazamine (TPZ). And a novel microwave-sensitized nanomaterial (GdEuMOF@TPZ, GEMT) is designed. GdEuMOF (GEM) nanoparticles are certified excellent microwave (MW) sensitization performance, thus improving tumor selectivity to achieve MH. Meanwhile MW can aggravate the generation of thrombus and caused local circulatory disturbance of tumor, resulting in the Stage I exacerbated hypoxia environment passively. Due to tumor heterogeneity and uneven hypoxia, GEMT nanoparticles under microwave could actively deplete residual oxygen through the chemical reaction, exacerbating hypoxia level more evenly, thus forming the Stage II of exacerbated hypoxia environment. Consequently, a two-stage exacerbated hypoxia GEMT nanoparticles realize amplifying activation of TPZ, significantly enhance the efficacy of microwave hyperthermia and chemotherapy, and effectively inhibit breast cancer. This research provides insights into the development of progressive nanoengineering strategies for effective breast tumor therapy.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Hipertermia Inducida , Neoplasias , Humanos , Femenino , Tirapazamina/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Microondas , Neoplasias/terapia , Hipoxia/terapia , Línea Celular TumoralRESUMEN
Activated M1-type macrophages, which produce inflammatory factors that exacerbate rheumatoid arthritis (RA), represent crucial target cells for inhibiting the disease process. In this study, we developed a novel photoresponsive targeted drug delivery system (TPNPs-HA) that can effectively deliver the hypoxia-activated prodrug tirapazamine (TPZ) specifically to activated macrophages. After administration, this metal-organic framework, PCN-224, constructed uing the photosensitizer porphyrin, exhibits the ability to generate excessive toxic reactive oxygen species (ROS) when exposed to near-infrared light. Additionally, the oxygen-consumed hypoxic environment further activates the chemotherapeutic effect of TPZ, thus creating a synergistic combination of photodynamic therapy (PDT) and hypoxia-activated chemotherapy (HaCT) to promote the elimination of activated M1-type macrophages. The results highlight the significantly potential of this photoresponsive nano-delivery system in providing substantial relief for RA. Furthermore, these findings support its effectiveness in inhibiting the disease process of RA, thereby offering new possibilities for the development of precise and accurate strategies for RA.
Asunto(s)
Artritis Reumatoide , Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Tirapazamina/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Hipoxia , Artritis Reumatoide/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias/tratamiento farmacológicoRESUMEN
Pseudomonas aeruginosa is the most common pathogen infecting cystic fibrosis (CF) lungs, causing acute and chronic infections. Intrinsic and acquired antibiotic resistance allow P. aeruginosa to colonize and persist despite antibiotic treatment, making new therapeutic approaches necessary. Combining high-throughput screening and drug repurposing is an effective way to develop new therapeutic uses for drugs. This study screened a drug library of 3,386 drugs, mostly FDA approved, to identify antimicrobials against P. aeruginosa under physicochemical conditions relevant to CF-infected lungs. Based on the antibacterial activity, assessed spectrophotometrically against the prototype RP73 strain and 10 other CF virulent strains, and the toxic potential evaluated toward CF IB3-1 bronchial epithelial cells, five potential hits were selected for further analysis: the anti-inflammatory and antioxidant ebselen, the anticancer drugs tirapazamine, carmofur, and 5-fluorouracil, and the antifungal tavaborole. A time-kill assay showed that ebselen has the potential to cause rapid and dose-dependent bactericidal activity. The antibiofilm activity was evaluated by viable cell count and crystal violet assays, revealing carmofur and 5-fluorouracil as the most active drugs in preventing biofilm formation regardless of the concentration. In contrast, tirapazamine and tavaborole were the only drugs actively dispersing preformed biofilms. Tavaborole was the most active drug against CF pathogens other than P. aeruginosa, especially against Burkholderia cepacia and Acinetobacter baumannii, while carmofur, ebselen, and tirapazamine were particularly active against Staphylococcus aureus and B. cepacia. Electron microscopy and propidium iodide uptake assay revealed that ebselen, carmofur, and tirapazamine significantly damage cell membranes, with leakage and cytoplasm loss, by increasing membrane permeability. IMPORTANCE Antibiotic resistance makes it urgent to design new strategies for treating pulmonary infections in CF patients. The repurposing approach accelerates drug discovery and development, as the drugs' general pharmacological, pharmacokinetic, and toxicological properties are already well known. In the present study, for the first time, a high-throughput compound library screening was performed under experimental conditions relevant to CF-infected lungs. Among 3,386 drugs screened, the clinically used drugs from outside infection treatment ebselen, tirapazamine, carmofur, 5-fluorouracil, and tavaborole showed, although to different extents, anti-P. aeruginosa activity against planktonic and biofilm cells and broad-spectrum activity against other CF pathogens at concentrations not toxic to bronchial epithelial cells. The mode-of-action studies revealed ebselen, carmofur, and tirapazamine targeted the cell membrane, increasing its permeability with subsequent cell lysis. These drugs are strong candidates for repurposing for treating CF lung P. aeruginosa infections.
Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa , Fibrosis Quística/microbiología , Ensayos Analíticos de Alto Rendimiento , Reposicionamiento de Medicamentos , Tirapazamina/farmacología , Tirapazamina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fluorouracilo , Biopelículas , Infecciones por Pseudomonas/microbiologíaRESUMEN
As a currently common strategy to treat cancer, surgical resection may cause tumor recurrence and metastasis due to residual postoperative tumors. Herein, an implantable sandwich-structured dual-drug depot is developed to trigger a self-intensified starvation therapy and hypoxia-induced chemotherapy sequentially. The two outer layers are 3D-printed using a calcium-crosslinked mixture ink containing soy protein isolate, polyvinyl alcohol, sodium alginate, and combretastatin A4 phosphate (CA4P). The inner layer is one patch of poly (lactic-co-glycolic acid)-based electrospun fibers loaded with tirapazamine (TPZ). The preferentially released CA4P destroys the preexisting blood vessels and prevents neovascularization, which obstructs the external energy supply to cancer cells but aggravates hypoxic condition. The subsequently released TPZ is bioreduced to cytotoxic benzotriazinyl under hypoxia, further damaging DNA, generating reactive oxygen species, disrupting mitochondria, and downregulating hypoxia-inducible factor 1α, vascular endothelial growth factor, and matrix metalloproteinase 9. Together these processes induce apoptosis, block the intracellular energy supply, counteract the disadvantage of CA4P in favoring intratumor angiogenesis, and suppress tumor metastasis. The in vivo and in vitro results and the transcriptome analysis demonstrate that the postsurgical adjuvant treatment with the dual-drug-loaded sandwich-like implants efficiently inhibits tumor recurrence and metastasis, showing great potential for clinical translation.
Asunto(s)
Antineoplásicos , Recurrencia Local de Neoplasia , Humanos , Recurrencia Local de Neoplasia/prevención & control , Factor A de Crecimiento Endotelial Vascular , Línea Celular Tumoral , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Tirapazamina/farmacología , HipoxiaRESUMEN
Purpose: Effective therapy for rheumatoid arthritis (RA) keeps a challenge due to the complex pathogenesis of RA. It is not enough to completely inhibit the process of RA with any single therapy method. The purpose of the research is to compensate for the insufficiency of monotherapy using multiple treatment regimens with different mechanisms. Material and Methods: In this study, we developed a new method to synthesize mesoporous silica nanoparticles hybridized with photosensitizer PCPDTBT (HNs). Branched polyethyleneimine-folic acid (PEI-FA) could be coated on the surface of HNs through electrostatic interactions. It simultaneously blocked the hypoxia-activated prodrug tirapazamine loaded into the mesopores and binded with Mcl-1 siRNA (siMcl-1) that interfered with the expression of the anti-apoptotic protein Mcl-1. Released from the co-delivery nanoparticles (PFHNs/TM) Tirapazamine and siMcl-1 upon exposure to acidic conditions of endosomes/lysosomes in activated macrophages. Under NIR irradiation, photothermal therapy and photodynamic therapy derived from PCPDTBT, hypoxia-activated chemotherapy derived from tirapazamine, and RNAi derived from siMcl-1 were used for the combined treatment for RA by killing activated macrophages. PEI-FA-coated PFHNs/TM exhibited activated macrophage-targeting characteristics, thereby enhancing the in vitro and in vivo NIR-induced combined treatment of RA. Results: The prepared PFHNs/TM have high blood compatibility (far below 5% of hemolysis) and ideal in vitro phototherapy effect while controlling the TPZ release and binding siMcl-1. We prove that PEI-FA-coated PFHNs/TM not only protect the bound siRNA but also are selectively uptaked by activated macrophages through FA receptor-ligand-mediated endocytosis, and effectively silence the target anti-apoptotic protein by siMcl-1 transfection. In vivo, PFHNs/TM have also been revealed to be selectively enriched at the inflammatory site of RA, exhibiting NIR-induced anti-RA efficacy. Conclusion: Overall, these FA-functionalized, pH-responsive PFHNs/TM represent a promising platform for the co-delivery of chemical drugs and nucleic acids for the treatment of RA cooperating with NIR-induced phototherapy.
Asunto(s)
Artritis Reumatoide , Nanopartículas , Humanos , Tirapazamina/farmacología , Interferencia de ARN , Sistema de Administración de Fármacos con Nanopartículas , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Fototerapia/métodos , Artritis Reumatoide/tratamiento farmacológico , ARN Interferente Pequeño , Ácido Fólico , HipoxiaRESUMEN
The treatment efficacy of anticancer drugs in complex physiological environments is still restricted by multi-drug resistance. To overcome this issue, a nanodrug system of HA-SS@CuS@ZIF-8@TPZ&TBMACN (HSCZTT) that breaks through the detoxification barrier for tirapazamine (TPZ) delivery was developed in this manuscript. In addition to the photothermal effect aroused by CuS in HSCZTT, which can damage tumour cells, TBMACN with photostable fluorescence in the aggregate state can also generate sufficient reactive oxygen species (ROS) to destroy tumour cells. The continuous consumption of oxygen in PDT aggravates the hypoxic environment of tumours, which further activates the TPZ released in the acidic microenvironment of the tumour to achieve apoptosis of the tumour cells. The HSCZTT can not only target the CD44 receptor overexpressed on the surface of the cancer cell, but can also effectively consume a large amount of glutathione (GSH) through the disulphide bond-modified hyaluronic acid, which serves as a targeted disulphide bond, interfering with the detoxification barrier. Our finding presents a rational strategy to overcome multidrug resistance for the improved efficacy of anticancer drugs by the targeting of Hyaluronic acid (HA), release of the drug by the acid response of ZIF-8, breakthrough of the detoxification barrier, precise positioning of the drug release and combined treatment with phototherapy and hypoxia-activated chemotherapy.
Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Fotoquimioterapia , Antineoplásicos/química , Línea Celular Tumoral , Disulfuros , Humanos , Ácido Hialurónico/química , Hipoxia , Nanopartículas/química , Neoplasias/patología , Fármacos Fotosensibilizantes/química , Tirapazamina/química , Tirapazamina/metabolismo , Tirapazamina/farmacología , Microambiente TumoralRESUMEN
Nanosheet carriers loaded with drugs and phototherapeutics are used for effective cancer therapy, but the process remains challenging. Here, we prepared sulfur nanosheets (S-NSs) and then loaded tirapazamine (TPZ) and indocyanine green (ICG) with a loading efficiency of 6.3% and 94%, respectively. The obtained S-NSs-TPZ-ICG exhibits near-infrared (NIR) fluorescence, high 1O2 generation and photothermal conversion capabilities, good biocompatibility, and tumor microenvironment responsiveness. In vivo and in vitro experiments reveal that S-NSs-TPZ-ICG can be selectively decomposed under acidic and H2O2 conditions to release TPZ and ICG, and significantly inhibit tumor growth under laser irradiation without obvious toxic side effects.
Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/farmacología , Verde de Indocianina/farmacología , Neoplasias/tratamiento farmacológico , Fototerapia , Azufre , Tirapazamina/farmacología , Tirapazamina/uso terapéutico , Microambiente TumoralRESUMEN
Photodynamic therapy (PDT) has been applied in cancer treatment by utilizing reactive oxygen species (ROS) to kill cancer cells. However, the effectiveness of PDT is greatly reduced due to local hypoxia. Hypoxic activated chemotherapy combined with PDT is expected to be a novel strategy to enhance anti-cancer therapy. Herein, a novel liposome (LCT) incorporated with photosensitizer (PS) and bioreductive prodrugs was developed for PDT-activated chemotherapy. In the design, CyI, an iodinated cyanine dye, which could simultaneously generate enhanced ROS and heat than other commonly used cyanine dyes, was loaded into the lipid bilayer; while tirapazamine (TPZ), a hypoxia-activated prodrug was encapsulated in the hydrophilic nucleus. Upon appropriate near-infrared (NIR) irradiation, CyI could simultaneously produce ROS and heat for synergistic PDT and photothermal therapy (PTT), as well as provide fluorescence signals for precise real-time imaging. Meanwhile, the continuous consumption of oxygen would result in a hypoxia microenvironment, further activating TPZ free radicals for chemotherapy, which could induce DNA double-strand breakage and chromosome aberration. Moreover, the prepared LCT could stimulate acute immune response through PDT activation, leading to synergistic PDT/PTT/chemo/immunotherapy to kill cancer cells and reduce tumor metastasis. Both in vitro and in vivo results demonstrated improved anticancer efficacy of LCT compared with traditional PDT or chemotherapy. It is expected that these iodinated cyanine dyes-based liposomes will provide a powerful and versatile theranostic strategy for tumor target phototherapy and PDT-induced chemotherapy.
Asunto(s)
Antineoplásicos/farmacología , Hipoxia/patología , Sistema de Administración de Fármacos con Nanopartículas/química , Fármacos Fotosensibilizantes/farmacología , Fototerapia/métodos , Tirapazamina/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Aberraciones Cromosómicas/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Portadores de Fármacos/química , Liberación de Fármacos , Liposomas/química , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacocinética , Especies Reactivas de Oxígeno/metabolismo , Propiedades de Superficie , Tirapazamina/administración & dosificación , Tirapazamina/farmacocinética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
For cancer treatment, the traditional monotherapy has the problems of low drug utilization rate, poor efficacy and easy recurrence of the cancer. Herein, nanoparticles (NPs) based on a novel semiconducting molecule (ITTC) are developed with excellent photostability, high photothermal conversion efficiency and good 1O2 generation ability. The chemotherapy of the hypoxia-activated prodrug tirapazamine (TPZ) was improved accordingly after oxygen consumption by the photodynamic therapy of ITTC NPs. Additionally, the metabolic process of ITTC NPs in vivo could be monitored in real time for fluorescence imaging guided phototherapy, which presented great passive targeting ability to the tumor site. Remarkably, both in vitro and in vivo experiments demonstrated that the combination of ITTC NPs and TPZ presented excellent synergistic tumor ablation through photothermal therapy, photodynamic therapy and hypoxia-activated chemotherapy with great potential for clinical applications in the future.
Asunto(s)
Antineoplásicos/farmacología , Hipoxia/diagnóstico por imagen , Hipoxia/tratamiento farmacológico , Nanopartículas/química , Imagen Óptica , Fármacos Fotosensibilizantes/farmacología , Tirapazamina/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Nanopartículas/administración & dosificación , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/tratamiento farmacológico , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Semiconductores , Tirapazamina/administración & dosificación , Tirapazamina/químicaRESUMEN
A tumor redox-activatable micellar nanoplatform based on the naturally occurring biomacromolecule hyaluronic acid (HA) was developed for complementary photodynamic/chemotherapy against CD44-positive tumors. Here HA was first conjugated with l-carnitine (Lc)-modified zinc phthalocyanine (ZnPc) via disulfide linkage and then co-assembled with tirapazamine (TPZ) to afford the physiologically stable micellar nanostructure. The mitochondria-targeted photodynamic activity of ZnPc-Lc could efficiently activate the mitochondrial apoptosis cascade and deplete the oxygen in the tumor intracellular environment to amplify the hypoxia-dependent cytotoxic effect of TPZ.
Asunto(s)
Biopolímeros/química , Micelas , Mitocondrias/metabolismo , Nanoestructuras/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carnitina/química , Línea Celular Tumoral , Humanos , Ácido Hialurónico/química , Indoles/química , Rayos Infrarrojos , Isoindoles , Ratones , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Compuestos Organometálicos/química , Oxidación-Reducción , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Tirapazamina/química , Tirapazamina/farmacología , Tirapazamina/uso terapéutico , Trasplante Heterólogo , Compuestos de ZincRESUMEN
Radiation dosage constraints and hypoxia-associated resistance lead to the failure of radiotherapy (RT), especially in hypoxic liver cancer. Therefore, the intricate use of combined strategies for potentiating and complementing RT is especially important. In this work, we fabricated multifunctional Janus-structured gold triangle-mesoporous silica nanoparticles (NPs) as multifunctional platforms to deliver the hypoxia-activated prodrug tirapazamine (TPZ) for extrinsic radiosensitization, local photothermal therapy, and hypoxia-specific chemotherapy. The subsequent conjugation of folic acid-linked poly(ethylene glycol) provided the Janus nanoplatforms with liver cancer targeting and minimized opsonization properties. In vitro and in vivo experiments revealed the combined radiosensitive and photothermal antitumor effects of the Janus nanoplatforms. Importantly, the TPZ-loaded Janus nanoplatforms exhibited pH-responsive release behavior, which effectively improved the cellular internalization and therapeutic efficiency in hypoxic rather than normoxic liver cancer cells. Hypoxia-specific chemotherapy supplemented the ineffectiveness of radio-photothermal therapy in hypoxic tumor tissues, resulting in remarkable tumor growth inhibition without systematic toxicity. Therefore, our Janus nanoplatforms integrated radio-chemo-photothermal therapy in a hypoxia-activated manner, providing an efficient and safe strategy for treating liver cancer.
Asunto(s)
Quimioradioterapia , Sistemas de Liberación de Medicamentos , Oro , Hipertermia Inducida , Neoplasias Hepáticas Experimentales , Fototerapia , Profármacos , Dióxido de Silicio , Tirapazamina , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Oro/química , Oro/farmacología , Humanos , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Neoplasias Hepáticas Experimentales/terapia , Ratones , Ratones Desnudos , Nanopartículas/química , Nanopartículas/uso terapéutico , Porosidad , Profármacos/química , Profármacos/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Tirapazamina/química , Tirapazamina/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Purpose: To evaluate the usefulness of combined treatment with both continuous administration of a hypoxic cytotoxin, tirapazamine (TPZ) and mild temperature hyperthermia (MTH) in boron neutron capture therapy (BNCT) in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells.Materials and methods: B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumors received reactor thermal neutron beam irradiation following the administration of a 10B-carrier (L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)) after single intraperitoneal injection of an acute hypoxia-releasing agent (nicotinamide), MTH (40 °C for 60 min), and 24-h continuous subcutaneous infusion of TPZ or combined treatment with both TPZ and MTH. Immediately after irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (=P + Q) tumor cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated.Results: BPA-BNCT increased the sensitivity of the total tumor cell population more than BSH-BNCT. However, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. With or without a 10B-carrier, combination with continuously administered TPZ with or without MTH enhanced the sensitivity of the both total and Q cells, especially Q cells. Even without irradiation, nicotinamide treatment decreased the number of lung metastases. With irradiation, BPA-BNCT, especially in combination with combined treatment with both TPZ and MTH as well as nicotinamide treatment, showed the potential to reduce the number more than BSH-BNCT.Conclusion: BSH-BNCT combined with TPZ with or without MTH improved local tumor control, while BPA-BNCT in combination with both TPZ and MTH as well as nicotinamide is thought to reduce the number of lung metastases. It was elucidated that control of the chronic hypoxia-rich Q cell population in the primary solid tumor has the potential to impact the control of local tumors as a whole and that control of the acute hypoxia-rich total tumor cell population in the primary solid tumor has the potential to impact the control of lung metastases.
Asunto(s)
Terapia por Captura de Neutrón de Boro , Hipertermia Inducida , Neoplasias Pulmonares/secundario , Melanoma/patología , Tirapazamina/farmacología , Hipoxia Tumoral/efectos de los fármacos , Hipoxia Tumoral/efectos de la radiación , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Terapia Combinada , Melanoma/tratamiento farmacológico , Melanoma/radioterapia , Ratones , Tirapazamina/administración & dosificación , Tirapazamina/uso terapéutico , Resultado del TratamientoRESUMEN
Background: Tumor metastasis is responsible for most cancer death worldwide, which lacks curative treatment. Purpose: The objective of this study was to eliminate tumor and control the development of tumor metastasis. Methods: Herein, we demonstrated a smart nano-enabled platform, in which 2-[2-[2-chloro-3-[(1,3-dihydro-3,3-dimethyl-1-propyl-2h-indol-2-ylidene)ethylidene]-1-cyclohexen-1-yl]ethenyl]-3,3-dimethyl-1-propylindolium iodide (IR780) and tirapazamine (TPZ) were co-loaded in poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL) to form versatile nanoparticles (PEG-PCL-IR780-TPZ NPs). Results: The intelligence of the system was reflected in the triggered and controlled engineering. Specially, PEG-PCL not only prolonged the circulation time of IR780 and TPZ but also promoted tumor accumulation of nanodrugs through enhanced permeability and retention (EPR) effect. Moreover, reactive oxygen species (ROS) generated by IR780 armed by an 808 nm laser irradiation evoked a cargo release. Meanwhile, IR780, as a mitochondria-targeting phototherapy agent exacerbated tumor hypoxic microenvironment and activated TPZ for accomplishing hypoxia-activated chemotherapy. Most significantly, IR780 was capable of triggering immunogenic cell death (ICD) during the synergic treatment. ICD biomarkers as a "danger signal" accelerated dendritic cells (DCs) maturation, and subsequently activated toxic T lymphocytes. Conclusion: Eventually, antitumor immune responses stimulated by combinational phototherapy and hypoxia-activated chemotherapy revolutionized the current landscape of cancer treatment, strikingly inhibiting tumor metastasis and providing a promising prospect in the clinical application.