Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2307-2315, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282859

RESUMEN

Cinnamomum camphora is an important economic tree species in China. According to the type and content of main components in the volatile oil of leaf, C. camphora were divided into five chemotypes, including borneol-type, camphor-type, linalool-type, cineole-type, and nerolidol-type. Terpene synthase(TPS) is the key enzyme for the formation of these compounds. Although several key enzyme genes have been identified, the biosynthetic pathway of(+)-borneol, which has the most economic value, has not been reported. In this study, nine terpenoid synthase genes CcTPS1-CcTPS9 were cloned through transcriptome analysis of four chemical-type leaves. After the recombinant protein was induced by Escherichia coli, geranyl pyrophosphate(GPP) and farnesyl pyrophosphate(FPP) were used as substrates for enzymatic reaction, respectively. Both CcTPS1 and CcTPS9 could catalyze GPP to produce bornyl pyrophosphate, which could be hydrolyzed by phosphohydrolase to obtain(+)-borneol, and the product of(+)-borneol accounted for 0.4% and 89.3%, respectively. Both CcTPS3 and CcTPS6 could catalyze GPP to generate a single product linalool, and CcTPS6 could also react with FPP to generate nerolidol. CcTPS8 reacted with GPP to produce 1,8-cineol(30.71%). Nine terpene synthases produced 9 monoterpene and 6 sesquiterpenes. The study has identified the key enzyme genes responsible for borneol biosynthesis in C. camphora for the first time, laying a foundation for further elucidating the molecular mechanism of chemical type formation and cultivating new varieties of borneol with high yield by using bioengineering technology.


Asunto(s)
Transferasas Alquil y Aril , Cinnamomum camphora , Cinnamomum camphora/enzimología , Transferasas Alquil y Aril/química
2.
Biochemistry ; 60(51): 3868-3878, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34898176

RESUMEN

Valerena-1,10-diene synthase (VDS) catalyzes the conversion of the universal precursor farnesyl diphosphate into the unusual sesquiterpene valerena-1,10-diene (VLD), which possesses a unique isobutenyl substituent group. In planta, one of VLD's isobutenyl terminal methyl groups becomes oxidized to a carboxylic acid forming valerenic acid (VA), an allosteric modulator of the GABAA receptor. Because a structure-activity relationship study of VA for its modulatory activity is desired, we sought to manipulate the VDS enzyme for the biosynthesis of structurally diverse scaffolds that could ultimately lead to the generation of VA analogues. Using three-dimensional structural homology models, phylogenetic sequence comparisons to well-characterized sesquiterpene synthases, and a substrate-active site contact mapping approach, the contributions of specific amino acid residues within or near the VDS active site to possible catalytic cascades for VLD and other sesquiterpene products were assessed. An essential role of Tyr535 in a germacrenyl route to VLD was demonstrated, while its contribution to a family of other sesquiterpenes derived from a humulyl route was not. No role for Cys415 or Cys452 serving as a proton donor to reaction intermediates in VLD biosynthesis was observed. However, a gatekeeper role for Asn455 in directing farnesyl carbocations down all-trans catalytic cascades (humulyl and germacrenyl routes) versus a cisoid cascade (nerolidyl route) was demonstrated. Altogether, these results have mapped residues that establish a context for the catalytic cascades operating in VDS and future manipulations for generating more structurally constrained scaffolds.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Biocatálisis , Dominio Catalítico/genética , Cinética , Redes y Vías Metabólicas , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Sesquiterpenos/química , Especificidad por Sustrato , Valeriana/enzimología , Valeriana/genética
3.
Plant Cell Physiol ; 62(9): 1423-1435, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34133748

RESUMEN

Isodon lophanthoides var. gerardiana (Lamiaceae), also named xihuangcao, is a traditional Chinese medicinal herb that exhibits a broad range of pharmacological activities. Abietane-type diterpenoids are the characteristic constituents of I. lophanthoides, yet their biosynthesis has not been elucidated. Although the aerial parts are the most commonly used organs of I. lophanthoides, metabolite profiling by gas chromatography-mass spectrometry showed the underground parts also contain large amounts of labdane diterpenoids including abietatriene, miltiradiene and ferruginol, which are distinct from the 13-hydroxy-8(14)-abietene detected in the aerial parts. Comparative transcriptome analysis of root and leaf samples identified a diverse diterpene synthase family including 6 copalyl diphosphate synthase (IlCPS1-6) and 5 kaurene synthase-like (IlKSL1-5). Here we report the functional characterization of six of these enzymes using yeast heterologous expression system. Both IlCPS1 and IlCPS3 synthesized (+)-copalyl diphosphate (CPP), in combination with IlKSL1 resulted in miltiradiene, precursor of abietane-type diterpenoids, while coupling with IlKSL5 led to the formation of hydroxylated diterpene scaffold nezukol. Expression profiling and phylogenetic analysis further support the distinct evolutionary relationship and spatial distribution of IlCPS1 and IlCPS3. IlCPS2 converted GGPP into labda-7,13E-dien-15-ol diphosphate. IlCPS6 was identified as ent-CPS, indicating a role in gibberellin metabolism. We further identified a single residue that determined the water addition of nezukol synthase IlKSL5. Substitution of alanine 513 with isoleucine completely altered the product outcome from hydroxylated nezukol to isopimara-7,15-diene. Together, these findings elucidated the early steps of bioactive abietane-type diterpenoid biosynthesis in I. lophanthoides and the catalytic mechanism of nezukol synthase.


Asunto(s)
Transferasas Alquil y Aril/genética , Diterpenos/metabolismo , Genes de Plantas , Isodon/genética , Familia de Multigenes , Proteínas de Plantas/genética , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Isodon/química , Isodon/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Medicinales/química , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Alineación de Secuencia
4.
J Agric Food Chem ; 68(37): 9930-9939, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32841021

RESUMEN

Most plant terpenoids are classified as secondary metabolites. A small portion of them are products of primary metabolism biosynthesized by relatively conserved pathways. Gibberellins (GAs), which are essential for plant growth and development, are diterpenoid phytohormones. (E,E,E)-Geranylgeranyl diphosphate (GGPP) is the precursor for both GAs and other diterpenoids of secondary metabolism. ent-Kaurene biosynthesis from GGPP is a key step of GA formation, which is catalyzed by two sequential and dedicated diterpene synthases (diTPSs): ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) of the terpene synthase gene family. Sharing a common evolutionary origin, CPS and KS belong to different TPS subfamilies. Tea plant (Camellia sinensis), the subject of this study, is a leaf-based economic crop. Budbreak mainly manipulated by GAs is a primary factor for targeted tea breeding. The key genes for gibberellin biosynthesis are known; however, they have not yet been characterized in tea plants. Here, we identified and functionally characterized three diterpene biosynthesis-related genes, including one CPS and two highly similar KSs in tea plants. These genes were initially identified through transcriptome sequencing. The functional characterization determined by enzymatic activity assay indicated that CsCPS could catalyze GGPP to form ent-copalyl diphosphate (ent-CPP), which was further used as the substrate by CsKS1 to produce ent-kaurene or by CsKS2 to produce 16α-hydroxy-ent-kaurane with ent-kaurene as a minor product, respectively. We demonstrated that the divergent evolution of diterpene biosynthesis in tea plants resulted from gene duplication of KSs, followed by functional divergence caused by single amino acid variation. This study would provide an insight into the diterpenoid metabolism and GA biosynthesis in tea plants to further understand leaf bud development or insect resistance and to provide a genetic basis for tea plant breeding.


Asunto(s)
Transferasas Alquil y Aril/genética , Camellia sinensis/enzimología , Diterpenos de Tipo Kaurano/metabolismo , Proteínas de Plantas/genética , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Vías Biosintéticas , Camellia sinensis/química , Camellia sinensis/genética , Camellia sinensis/metabolismo , Evolución Molecular , Variación Genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/clasificación , Plantas/enzimología , Plantas/genética , Alineación de Secuencia
5.
PLoS One ; 15(7): e0235416, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32614884

RESUMEN

Plectranthus amboinicus (Lour.) Spreng is an aromatic medicinal herb known for its therapeutic and nutritional properties attributed by the presence of monoterpene and sesquiterpene compounds. Up until now, research on terpenoid biosynthesis has focused on a few mint species with economic importance such as thyme and oregano, yet the terpene synthases responsible for monoterpene production in P. amboinicus have not been described. Here we report the isolation, heterologous expression and functional characterization of a terpene synthase involved in P. amboinicus terpenoid biosynthesis. A putative monoterpene synthase gene (PamTps1) from P. amboinicus was isolated with an open reading frame of 1797 bp encoding a predicted protein of 598 amino acids with molecular weight of 69.6 kDa. PamTps1 shares 60-70% amino acid sequence similarity with other known terpene synthases of Lamiaceae. The in vitro enzymatic activity of PamTps1 demonstrated the conversion of geranyl pyrophosphate and farnesyl pyrophosphate exclusively into linalool and nerolidol, respectively, and thus PamTps1 was classified as a linalool/nerolidol synthase. In vivo activity of PamTps1 in a recombinant Escherichia coli strain revealed production of linalool and nerolidol which correlated with its in vitro activity. This outcome validated the multi-substrate usage of this enzyme in producing linalool and nerolidol both in in vivo and in vitro systems. The transcript level of PamTps1 was prominent in the leaf during daytime as compared to the stem. Gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR analyses showed that maximal linalool level was released during the daytime and lower at night following a diurnal circadian pattern which correlated with the PamTps1 expression pattern. The PamTps1 cloned herein provides a molecular basis for the terpenoid biosynthesis in this local herb that could be exploited for valuable production using metabolic engineering in both microbial and plant systems.


Asunto(s)
Transferasas Alquil y Aril , Proteínas de Plantas , Plectranthus/enzimología , Monoterpenos Acíclicos/metabolismo , Transferasas Alquil y Aril/biosíntesis , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Clonación Molecular , Escherichia coli/genética , Hojas de la Planta/enzimología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo
6.
Plant Cell Rep ; 38(2): 211-220, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30506368

RESUMEN

KEY MESSAGE: We found two subunits FTase/GGTaseI-α and FTase-ß formed a heterodimer to transfer a farnesyl group from FPP to protein N-dansyl-GCVLS, confirming they are responsible for protein farnesylation in planta. Tripterygium wilfordii is a medicinal plant with a broad spectrum of anti-inflammatory, immunosuppressive and anti-cancer activities. Recently, a number of studies have focused on investigating the biosynthetic pathways of its bioactive compounds, whereas little attention has been paid to the enzymes which play important roles in regulating diverse developmental processes of T. wilfordii. In this study, we report for the first time the identification and characterization of two subunits of farnesyltransferase (FTase), farnesyltransferase/geranylgeranyltransferase I-α (TwFTase/GGTase I-α) and farnesyltransferase-ß (TwFTase-ß), in this important medicinal plant. Cell-free in vivo assays, yeast two-hybrid (Y2H) and pull-down assays showed that the two subunits interact with each other to form a heterodimer to perform the role of specifically transferring a farnesyl group from FPP to the CAAX-box protein N-dansyl-GCVLS. Furthermore, we discovered that the two subunits had the same cytoplasmic localization pattern and displayed the same tissue expression pattern. These results indicated that we identified a functional TwFTase enzyme which contains two functionally complementary subunits TwFTase/GGTase I-α and TwFTase-ß, which provides us promising genetic targets to construct transgenic plants or screen for more adaptable T. wilfordii mutants, which are able to survive in changing environments.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Tripterygium/enzimología , Transferasas Alquil y Aril/química , Secuencia de Aminoácidos , Fluorescencia , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Filogenia , Unión Proteica , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Tripterygium/genética
7.
Sci Rep ; 8(1): 17936, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30560919

RESUMEN

Volatiles are often released upon herbivory as plant defense compounds. While the formation of volatiles above-ground has been intensively studied, little is known about herbivore-induced root volatiles. Here, we show that cockchafer larvae-damaged roots of Populus trichocarpa and P. nigra release a mixture of monoterpenes, including (-)-α-pinene, (-)-camphene, (-)-ß-pinene, p-cymene, and 1,8-cineole. Three terpene synthases, PtTPS16 and PtTPS21 from P. trichocarpa and PnTPS4 from P. nigra, could be identified and characterized in vitro. PnTPS4 was found to produce 1,8-cineole as sole product. PtTPS16 and PtTPS21, although highly similar to each other, showed different product specificities and produced γ-terpinene and a mixture of (-)-camphene, (-)-α-pinene, (-)-ß-pinene, and (-)-limonene, respectively. Four active site residues were found to determine the different product specificities of the two enzymes. The expression profiles of PtTPS16, PtTPS21, and PnTPS4 in undamaged and herbivore-damaged poplar roots generally matched the emission pattern of monoterpenes, indicating that monoterpene emission in roots is mainly determined at the gene transcript level. Bioassays with Phytophtora cactorum (Oomycetes) revealed inhibitory effects of vapor-phase 1,8-cineole and (-)-ß-pinene on the growth of this important plant pathogen. Thus herbivore-induced volatile monoterpenes may have a role in defense against pathogens that cause secondary infections after root wounding.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Escarabajos/patogenicidad , Monoterpenos/análisis , Populus/parasitología , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Animales , Dominio Catalítico , Regulación de la Expresión Génica de las Plantas , Herbivoria , Monoterpenos/farmacología , Phytophthora/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Populus/química , Populus/metabolismo
8.
J Am Chem Soc ; 140(41): 13205-13208, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30282455

RESUMEN

A sophisticated intracellular trafficking pathway in humans is used to tailor vitamin B12 into its active cofactor forms, and to deliver it to two known B12-dependent enzymes. Herein, we report an unexpected strategy for cellular retention of B12, an essential and reactive cofactor. If methylmalonyl-CoA mutase is unavailable to accept the coenzyme B12 product of adenosyltransferase, the latter catalyzes homolytic scission of the cobalt-carbon bond in an unconventional reversal of the nucleophilic displacement reaction that was used to make it. The resulting homolysis product binds more tightly to adenosyltransferase than does coenzyme B12, facilitating cofactor retention. We have trapped, and characterized spectroscopically, an intermediate in which the cobalt-carbon bond is weakened prior to being broken. The physiological relevance of this sacrificial catalytic activity for cofactor retention is supported by the significantly lower coenzyme B12 concentration in patients with dysfunctional methylmalonyl-CoA mutase but normal adenosyltransferase activity.


Asunto(s)
Cobamidas/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Carbono/química , Dominio Catalítico , Cobalto/química , Cobamidas/química , Fibroblastos/metabolismo , Humanos , Metilmalonil-CoA Mutasa/metabolismo , Estructura Molecular
9.
Chembiochem ; 19(17): 1834-1838, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-29802753

RESUMEN

Terpene synthases catalyse the first step in the conversion of prenyl diphosphates to terpenoids. They act as templates for their substrates to generate a reactive conformation, from which a Mg2+ -dependent reaction creates a carbocation-PPi ion pair that undergoes a series of rearrangements and (de)protonations to give the final terpene product. This tight conformational control was exploited for the (R)-germacrene A synthase- and germacradien-4-ol synthase-catalysed formation of a medium-sized cyclic terpenoid ether from substrates containing nucleophilic functional groups. Farnesyl diphosphate analogues with a 10,11-epoxide or an allylic alcohol were efficiently converted to a 11-membered cyclic terpenoid ether that was characterised by HRMS and NMR spectroscopic analyses. Further experiments showed that other sesquiterpene synthases, including aristolochene synthase, δ-cadinene synthase and amorphadiene synthase, yielded this novel terpenoid from the same substrate analogues. This work illustrates the potential of terpene synthases for the efficient generation of structurally and functionally novel medium-sized terpene ethers.


Asunto(s)
Transferasas Alquil y Aril/química , Fosfatos de Poliisoprenilo/química , Sesquiterpenos/síntesis química , Transferasas Alquil y Aril/aislamiento & purificación , Biocatálisis , Ciclización , Escherichia coli/genética , Conformación Molecular , Sesquiterpenos/química , Solidago/enzimología , Estereoisomerismo
10.
J Biol Chem ; 292(35): 14659-14667, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701463

RESUMEN

The natural product class of iridoids, found in various species of flowering plants, harbors astonishing chemical complexity. The discovery of iridoid biosynthetic genes in the medicinal plant Catharanthus roseus has provided insight into the biosynthetic origins of this class of natural product. However, not all iridoids share the exact five- to six-bicyclic ring scaffold of the Catharanthus iridoids. For instance, iridoids in the ornamental flower snapdragon (Antirrhinum majus, Plantaginaceae family) are derived from the C7 epimer of this scaffold. Here we have cloned and characterized the iridoid synthase enzyme from A. majus (AmISY), the enzyme that is responsible for converting 8-oxogeranial into the bicyclic iridoid scaffold in a two-step reduction-cyclization sequence. Chiral analysis of the reaction products reveals that AmISY reduces C7 to generate the opposite stereoconfiguration in comparison with the Catharanthus homologue CrISY. The catalytic activity of AmISY thus explains the biosynthesis of 7-epi-iridoids in Antirrhinum and related genera. However, although the stereoselectivity of the reduction step catalyzed by AmISY is clear, in both AmISY and CrISY, the cyclization step produces a diastereomeric mixture. Although the reduction of 8-oxogeranial is clearly enzymatically catalyzed, the cyclization step appears to be subject to less stringent enzyme control.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Antirrhinum/enzimología , Iridoides/metabolismo , Modelos Moleculares , Proteínas de Plantas/metabolismo , Monoterpenos Acíclicos , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Sustitución de Aminoácidos , Biocatálisis , Dominio Catalítico , Catharanthus/enzimología , Iridoides/química , Estructura Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Mutación , NADP/química , NADP/metabolismo , Oxidación-Reducción , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Homología Estructural de Proteína , Especificidad por Sustrato , Terpenos/química , Terpenos/metabolismo
11.
PLoS One ; 12(4): e0176507, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28445526

RESUMEN

Plants produce an immense diversity of natural products (i.e. secondary or specialized metabolites) that offer a rich source of known and potentially new pharmaceuticals and other desirable bioproducts. The Traditional Chinese Medicinal plant Isodon rubescens (Lamiaceae) contains an array of bioactive labdane-related diterpenoid natural products. Of these, the ent-kauranoid oridonin is the most prominent specialized metabolite that has been extensively studied for its potent antimicrobial and anticancer efficacy. Mining of a previously established transcriptome of I. rubescens leaf tissue identified seven diterpene synthase (diTPSs) candidates. Here we report the functional characterization of four I. rubescens diTPSs. IrTPS5 and IrTPS3 were identified as an ent-copalyl diphosphate (CPP) synthase and a (+)-CPP synthase, respectively. Distinct transcript abundance of IrTPS5 and the predicted ent-CPP synthase IrTPS1 suggested a role of IrTPS5 in specialized ent-kaurene metabolism possibly en route to oridonin. Nicotiana benthamiana co-expression assays demonstrated that IrTPS4 functions sequentially with IrTPS3 to form miltiradiene. In addition, IrTPS2 converted the IrTPS3 product (+)-CPP into the hydroxylated tricyclic diterpene nezukol not previously identified in I. rubescens. Metabolite profiling verified the presence of nezukol in I. rubescens leaf tissue. The proposed IrTPS2-catalyzed reaction mechanism proceeds via the common ionization of the diphosphate group of (+)-CPP, followed by formation of an intermediary pimar-15-en-8-yl+ carbocation and neutralization of the carbocation by water capture at C-8 to yield nezukol, as confirmed by nuclear magnetic resonance (NMR) analysis. Oxygenation activity is rare for the family of class I diTPSs and offers new catalysts for developing metabolic engineering platforms to produce a broader spectrum of bioactive diterpenoid natural products.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Diterpenos/metabolismo , Isodon/metabolismo , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/clasificación , Biocatálisis , Clonación Molecular , Diterpenos/química , Diterpenos de Tipo Kaurano/biosíntesis , Diterpenos de Tipo Kaurano/química , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Isodon/química , Isodon/genética , Espectroscopía de Resonancia Magnética , Metaboloma , Filogenia , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Nicotiana/química , Nicotiana/metabolismo
12.
Mol Biosyst ; 13(5): 939-954, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28358152

RESUMEN

Fusobacterium nucleatum plays a key role in several diseases such as periodontitis, gingivitis, appendicitis, and inflammatory bowel disease (IBD). The development of antibiotic resistance by this bacterium demands novel therapeutic intervention. Our recent study has reported UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA) as one of the potential target proteins in F. nucleatum. In this study, we proposed two novel MurA inhibitors through in silico screening and evaluated their mode of inhibition by in vitro experiments. It was found that MurA structural arrangement (inside-out α/ß barrel) was stabilized by L/FXXXG(A) motif-based interactions. The protein was maintained in an open or substrate-free conformation due to repulsive forces between two parallelly arranged positively charged residues of domain I and II. In this conformation, we identified six best compounds that held key interactions with the substrate-binding pocket via a structure-based virtual screening of natural and chemical compound libraries. However, among these, only orientin and quercetin-3-O-d-glucuronide (Q3G) showed better interaction capability through consistent H-bond occupancy and lowest binding free energy during molecular dynamic simulations. In vitro inhibition studies evidenced the mixed and uncompetitive mode of inhibition by orientin and Q3G, respectively, with purified MurA protein. This explains the binding of orientin in both open and closed (substrate-bound) conformations of MurA, and Q3G binding in only closed conformation. Therefore, the Q3G binding mode was predicted on a MurA-substrate complex, which highlighted its constant H-bond with Cys118, a phosphoenolpyruvate (PEP) interacting residue. This suggests that Q3G may interrupt the PEP binding, thereby inhibiting the MurA activity. Thus, the current study discusses the structure of MurA and demonstrates the inhibitory action of two novel compounds.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Biología Computacional/métodos , Inhibidores Enzimáticos/farmacología , Fusobacterium nucleatum/enzimología , Transferasas Alquil y Aril/química , Proteínas Bacterianas/antagonistas & inhibidores , Simulación por Computador , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Flavonoides/química , Flavonoides/farmacología , Glucósidos/química , Glucósidos/farmacología , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Quercetina/análogos & derivados , Quercetina/química , Quercetina/farmacología , Relación Estructura-Actividad
13.
Phytochemistry ; 138: 52-56, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28279524

RESUMEN

The medicinal plant Tripterygium wilfordii (Celastraceae) contains a pair of class II diterpene synthases (diTPS) of specialized labdane-type metabolism that, despite remarkably close homology, form strikingly different products. TwTPS21 catalyzes bicyclization of the linear C20 precursor geranylgeranyl diphosphate to ent-copal-8-ol diphosphate, while TwTPS14 forms kolavenyl diphosphate. To determine the amino acid signature controlling the functional divergence of the homologues, we modeled their structures based on an existing crystal structure of the Arabidopsis ent-copalyl diphosphate synthase, archetypal of diTPSs in general metabolism of gibberellin phytohormones. Of the residues differing between TwTPS21 and TwTPS14 two located to the predicted active site, and we hypothesized that these are responsible for the functional differentiation of the enzymes. Using site-directed mutagenesis, we generated a panel of six variants, where one, or both positions were exchanged between the enzymes. In coupled heterologous assays with a corresponding class I diTPS, TwTPS2, complete product interchange was observed in variants with both reciprocal mutations, while substitutions of either residue gave mixed product profiles. Two mutants, TwTPS14:Y265H and TwTPS21:A325V, also produced ent-copalyl diphosphate, highlighting the evolutionary potential of enzymes of this family to drive rapid diversification of plant diterpene biosynthesis through neo-functionalization. Our study contributes to the understanding of structure-function relation in plant class II diTPSs and complements previous mutational studies of Arabidopsis ent-copalyl diphosphate synthase with additional examples from the specialized metabolism of T. wilfordii.


Asunto(s)
Transferasas Alquil y Aril/química , Proteínas de Plantas/química , Tripterygium/enzimología , Sustitución de Aminoácidos , Dominio Catalítico , Estructura Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína
14.
Adv Biochem Eng Biotechnol ; 148: 427-47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25846965

RESUMEN

Ambrox and related ambroxides are highly priced in the fragrance industry, and valued for their delicate odor and fixative properties. Historically, ambrox was obtained from ambergris, a waxy excretion produced by sperm whales, now an endangered species. Synthetic ambroxides have replaced ambergris in perfume manufacture. Plant labdane diterpenoids can serve as starting material for ambroxide synthesis. Among these, the diterpene alcohol sclareol is the major industrial precursor obtained from cultivated clary sage (Salvia sclarea). In plants, a large family of diterpene synthase (diTPS) enzymes controls key reactions in diterpenoid biosynthesis. Advanced metabolite profiling and high-throughput sequencing of fragrant and medicinal plants have accelerated discovery of novel diTPS functions, providing a resource for combinatorial synthetic biology and metabolic engineering approaches. This chapter highlights recent progress on the discovery, characterization, and engineering of plant diTPSs with potential uses in ambroxide production. It features biosynthesis of sclareol, cis-abienol, and diterpene resin acids, as sources of genes and enzymes for diterpenoid bioproducts.


Asunto(s)
Transferasas Alquil y Aril/química , Furanos/química , Naftalenos/química , Proteínas de Plantas/química , Saliva/enzimología , Biología Sintética/métodos , Ácidos/química , Biotecnología/métodos , Diterpenos/química , Naftoles/química , Óxidos/química , Extractos Vegetales/química , Biología de Sistemas , Terpenos/química
15.
Adv Biochem Eng Biotechnol ; 148: 63-106, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25583224

RESUMEN

Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.


Asunto(s)
Plantas/metabolismo , Terpenos/química , Transferasas Alquil y Aril/química , Química Farmacéutica/métodos , Dimetilaliltranstransferasa/química , Genes de Plantas , Genómica , Luz , Ingeniería Metabólica/métodos , Familia de Multigenes , Extractos Vegetales/química
16.
J Exp Bot ; 66(1): 213-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25316062

RESUMEN

Rab proteins, key players in vesicular transport in all eukaryotic cells, are post-translationally modified by lipid moieties. Two geranylgeranyl groups are attached to the Rab protein by the heterodimeric enzyme Rab geranylgeranyl transferase (RGT) αß. Partial impairment in this enzyme activity in Arabidopsis, by disruption of the AtRGTB1 gene, is known to influence plant stature and disturb gravitropic and light responses. Here it is shown that mutations in each of the RGTB genes cause a tip growth defect, visible as root hair and pollen tube deformations. Moreover, FM 1-43 styryl dye endocytosis and recycling are affected in the mutant root hairs. Finally, it is demonstrated that the double mutant, with both AtRGTB genes disrupted, is non-viable due to absolute male sterility. Doubly mutated pollen is shrunken, has an abnormal exine structure, and shows strong disorganization of internal membranes, particularly of the endoplasmic reticulum system.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Flores/genética , Mutación , Transferasas/genética , Transferasas/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Fertilidad/genética , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Datos de Secuencia Molecular , Polen/metabolismo , Tubo Polínico/crecimiento & desarrollo , Reproducción , Transferasas/química
17.
J Am Chem Soc ; 136(41): 14505-12, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25230152

RESUMEN

Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-(3)H1]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-(2)H6]-FDP support a germacrene-humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Sesquiterpenos de Germacrano/metabolismo , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Biocatálisis , Biología Computacional , Ciclización , Estructura Molecular , Fosfatos de Poliisoprenilo/química , Sesquiterpenos/química , Sesquiterpenos de Germacrano/química , Solidago/enzimología
18.
BMC Genomics ; 14: 238, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575343

RESUMEN

BACKGROUND: Nicotianamine (NA), a ubiquitous molecule in plants, is an important metal ion chelator and the main precursor for phytosiderophores biosynthesis. Considerable progress has been achieved in cloning and characterizing the functions of nicotianamine synthase (NAS) in plants including barley, Arabidopsis and rice. Maize is not only an important cereal crop, but also a model plant for genetics and evolutionary study. The genome sequencing of maize was completed, and many gene families were identified. Although three NAS genes have been characterized in maize, there is still no systematic identification of maize NAS family by genomic mining. RESULTS: In this study, nine NAS genes in maize were identified and their expression patterns in different organs including developing seeds were determined. According to the evolutionary relationship and tissue specific expression profiles of ZmNAS genes, they can be subgrouped into two classes. Moreover, the expression patterns of ZmNAS genes in response to fluctuating metal status were analysed. The class I ZmNAS genes were induced under Fe deficiency and were suppressed under Fe excessive conditions, while the expression pattern of class II genes were opposite to class I. The complementary expression patterns of class I and class II ZmNAS genes confirmed the classification of this family. Furthermore, the histochemical localization of ZmNAS1;1/1;2 and ZmNAS3 were determined using in situ hybridization. It was revealed that ZmNAS1;1/1;2, representing the class I genes, mainly expressed in cortex and stele of roots with sufficient Fe, and its expression can expanded in epidermis, as well as shoot apices under Fe deficient conditions. On the contrary, ZmNAS3, one of the class II genes, was accumulated in axillary meristems, leaf primordia and mesophyll cells. These results suggest that the two classes of ZmNAS genes may be regulated on transcriptional level when responds to various demands for iron uptake, translocation and homeostasis. CONCLUSION: These results provide significant insights into the molecular bases of ZmNAS in balancing iron uptake, translocation and homeostasis in response to fluctuating environmental Fe status.


Asunto(s)
Transferasas Alquil y Aril/genética , Perfilación de la Expresión Génica , Genómica , Zea mays/enzimología , Zea mays/genética , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Genoma de Planta/genética , Homeostasis , Espacio Intracelular/metabolismo , Hierro/metabolismo , Datos de Secuencia Molecular , Filogenia , Transporte de Proteínas , Zea mays/citología
19.
Biomed Res Int ; 2013: 285740, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23484102

RESUMEN

The objective of this study is to clone and charecterize the expression of dammarenediol synthase gene and then to determine the relationship between the expression of dammarenediol synthase gene that is involved in the ginsenoside biosynthetic pathway and the ginsenoside content. A cDNA phage library was constructed from a five-year-old ginseng root. The cDNA library was screened for the dammarenediol synthase gene by using its specific primers. It was further cloned and expressed in pET-30a vector. The recombinant plasmid pET-30a-DS was expressed in Rosetta E. coli. The recombinant DS protein was purified by affinity chromatography. The production of dammarenediol was detected by liquid chromatography-mass spectrometry (LC-MS). Results showed that dammarenediol synthase gene was cloned from the cDNA library and was expressed in Rosetta E. coli and the SDS-PAGE analysis showed the presence of purified DS protein. LS-MS showed the activity of DS protein, as the protein content increases the dammarenediol increases. Our results indicate that the recombinant dammarenediol synthase protein could increase the production of dammarenediol and the expression of DS played a vital role in the biosynthesis of ginsenosides in P. ginseng.


Asunto(s)
Transferasas Alquil y Aril , Clonación Molecular , Expresión Génica , Panax , Proteínas de Plantas , Transferasas Alquil y Aril/biosíntesis , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/aislamiento & purificación , Biblioteca de Genes , Panax/enzimología , Panax/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
20.
PLoS One ; 7(12): e51481, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23272109

RESUMEN

The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-ß-bisabolene synthase from ginger rhizome, and α-humulene synthase and ß-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (-)-caryolan-1-ol synthase and α-zingiberene/ß-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-ß-turmerone, are produced from (-)-α-zingiberene and (-)-ß-sesquiphellandrene, respectively, via α-zingiberene/ß-sesquiphellandrene oxidase and a still unidentified dehydrogenase.


Asunto(s)
Transferasas Alquil y Aril/fisiología , Curcuma/metabolismo , Extractos Vegetales/farmacología , Terpenos/química , Zingiber officinale/metabolismo , Transferasas Alquil y Aril/química , Línea Celular , Línea Celular Tumoral , Clonación Molecular , Codón , Cartilla de ADN/genética , ADN Complementario/metabolismo , Escherichia coli/metabolismo , Etiquetas de Secuencia Expresada , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Modelos Químicos , Conformación Molecular , Filogenia , Extractos Vegetales/química , Rizoma/química , Temperatura , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA