Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Amino Acids ; 47(3): 435-47, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25552397

RESUMEN

Reduced availability of nitric oxide (NO) in the vasculature is a major factor contributing to the impaired action of insulin on blood flow and, therefore, insulin resistance in obese and diabetic subjects. Available evidence shows that vascular insulin resistance plays an important role in the pathogenesis of cardiovascular disease, the leading cause of death in developed nations. Interestingly, increased concentrations of L-leucine in the plasma occur in obese humans and other animals with vascular dysfunction. Among branched-chain amino acids, L-leucine is unique in inhibiting NO synthesis from L-arginine in endothelial cells and may modulate cardiovascular homeostasis in insulin resistance. Results of recent studies indicate that L-leucine is an activator of glutamine:fructose-6-phosphate aminotransferase (GFAT), which is the first and a rate-controlling enzyme in the synthesis of glucosamine (an inhibitor of endothelial NO synthesis). Through stimulating the mammalian target of rapamycin signaling pathway and thus protein synthesis, L-leucine may enhance GFAT protein expression, thereby inhibiting NO synthesis in endothelial cells. We propose that reducing circulating levels of L-leucine or endothelial GFAT activity may provide a potentially novel strategy for preventing and/or treating cardiovascular disease in obese and diabetic subjects. Such means may include dietary supplementation with either α-ketoglutarate to enhance the catabolism of L-leucine in the small intestine and other tissues or with N-ethyl-L-glutamine to inhibit GFAT activity in endothelial cells. Preventing leucine-induced activation of GFAT by nutritional supplements or pharmaceutical drugs may contribute to improved cardiovascular function by enhancing vascular NO synthesis.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Diabetes Mellitus/sangre , Resistencia a la Insulina , Leucina/sangre , Óxido Nítrico/sangre , Obesidad/sangre , Animales , Endotelio Vascular/metabolismo , Humanos , Insulina/sangre , Transferasas de Grupos Nitrogenados/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
2.
J Biol Chem ; 286(38): 33632-40, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21795679

RESUMEN

Hyaluronan, a high molecular mass polysaccharide on the vertebrate cell surface and extracellular matrix, is produced at the plasma membrane by hyaluronan synthases using UDP-GlcNAc and UDP-GlcUA as substrates. The availability of these UDP-sugar substrates can limit the synthesis rate of hyaluronan. In this study, we show that the cellular level of UDP-HexNAc also controls hyaluronan synthesis by modulating the expression of HAS2 (hyaluronan synthase 2). Increasing UDP-HexNAc in HaCaT keratinocytes by adding glucosamine down-regulated HAS2 gene expression, whereas a decrease in UDP-HexNAc, realized by mannose treatment or siRNA for GFAT1 (glutamine:fructose-6-phosphate amidotransferase 1), enhanced expression of the gene. Tracing the UDP-HexNAc-initiated signal to the HAS2 promoter revealed no change in the binding of STAT3, NF-κB, and cAMP response element-binding protein, shown previously to mediate growth factor and cytokine signals on HAS2 expression. Instead, altered binding of SP1 and YY1 to the promoter correlated with cellular UDP-HexNAc content and inhibition of HAS2 expression. siRNA silencing of YY1 and SP1 confirmed their inhibitory effects on HAS2 expression. Reduced and increased levels of O-GlcNAc-modified SP1 and YY1 proteins were associated with stimulation or inhibition of HAS2 expression, respectively. Our data are consistent with the hypothesis that, by regulating the level of protein O-GlcNAc modifications, cellular UDP-HexNAc content controls HAS2 transcription and decreases the effects on hyaluronan synthesis that would result from cellular fluctuations of this substrate.


Asunto(s)
Acetilglucosamina/metabolismo , Glucuronosiltransferasa/metabolismo , Factor de Transcripción Sp1/metabolismo , Uridina Difosfato/metabolismo , Factor de Transcripción YY1/metabolismo , Acetilglucosamina/farmacología , Biología Computacional , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Glucuronosiltransferasa/genética , Humanos , Hialuronano Sintasas , Ácido Hialurónico/biosíntesis , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Manosa/metabolismo , Manosa/farmacología , Transferasas de Grupos Nitrogenados/metabolismo , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Elementos de Respuesta/genética , Factores de Tiempo
3.
Biochem J ; 418(2): 421-9, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19014349

RESUMEN

PS (phosphatidylserine) in mammalian cells is synthesized by two distinct base-exchange enzymes, PSS1 (PS synthase 1) and PSS2, which are responsible for the conversion of PC (phosphatidylcholine) and PE (phosphatidylethanolamine) respectively into PS in intact cells. The PS synthesis in cultured mammalian cells is inhibited by exogenous PS, and this feedback control occurs through inhibition of PSSs by PS. In the present study, we purified epitope-tagged forms of human PSS1 and PSS2. The purified PSS2 was shown to catalyse the conversion of PE, but not PC, into PS, this being consistent with the substrate specificity observed in intact cells. On the other hand, the purified PSS1 was shown to catalyse the conversion of both PC and PE into PS, although PSS1 in intact cells had been shown not to contribute to the conversion of PE into PS to a significant extent. Furthermore, we found that the purified PSS2, but not the purified PSS1, was inhibited on the addition of PS to the enzyme assay mixture, raising the possibility that there was some difference between the mechanisms of the inhibitory actions of PS towards PSS1 and PSS2.


Asunto(s)
Transferasas de Grupos Nitrogenados/genética , Transferasas de Grupos Nitrogenados/aislamiento & purificación , Clonación Molecular , ADN Complementario/aislamiento & purificación , Activación Enzimática/efectos de los fármacos , Células HeLa , Hemaglutininas/química , Humanos , Transferasas de Grupos Nitrogenados/química , Transferasas de Grupos Nitrogenados/metabolismo , Oligopéptidos , Péptidos/química , Fosfatidiletanolaminas/farmacología , Fosfatidilserinas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
4.
Proc Natl Acad Sci U S A ; 105(17): 6481-5, 2008 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-18441100

RESUMEN

Aminoacyl-tRNAs are generally formed by direct attachment of an amino acid to tRNAs by aminoacyl-tRNA synthetases, but Gln-tRNA is an exception to this rule. Gln-tRNA(Gln) is formed by this direct pathway in the eukaryotic cytosol and in protists or fungi mitochondria but is formed by an indirect transamidation pathway in most of bacteria, archaea, and chloroplasts. We show here that the formation of Gln-tRNA(Gln) is also achieved by the indirect pathway in plant mitochondria. The mitochondrial-encoded tRNA(Gln), which is the only tRNA(Gln) present in mitochondria, is first charged with glutamate by a nondiscriminating GluRS, then is converted into Gln-tRNA(Gln) by a tRNA-dependent amidotransferase (AdT). The three subunits GatA, GatB, and GatC are imported into mitochondria and assemble into a functional GatCAB AdT. Moreover, the mitochondrial pathway of Gln-tRNA(Gln) formation is shared with chloroplasts as both the GluRS, and the three AdT subunits are dual-imported into mitochondria and chloroplasts.


Asunto(s)
Arabidopsis/enzimología , Cloroplastos/enzimología , Glutamina/biosíntesis , Mitocondrias/enzimología , Transferasas de Grupos Nitrogenados/metabolismo , Aminoacil-ARN de Transferencia/biosíntesis , Solanum tuberosum/enzimología , Extractos Celulares , Citosol/enzimología , Glutamato-ARNt Ligasa/metabolismo , Subunidades de Proteína/metabolismo , Transporte de Proteínas
5.
Plant Cell ; 18(7): 1722-35, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16766694

RESUMEN

Vitamin B6 represents a highly important group of compounds ubiquitous in all living organisms. It has been demonstrated to alleviate oxidative stress and in its phosphorylated form participates as a cofactor in >100 biochemical reactions. By means of a genetic approach, we have identified a novel mutant, rsr4-1 (for reduced sugar response), with aberrant root and leaf growth that requires supplementation of vitamin B6 for normal development. Cloning of the mutated gene revealed that rsr4-1 carries a point mutation in a member of the PDX1/SOR1/SNZ (for Pyridoxine biosynthesis protein 1/Singlet oxygen resistant 1/Snooze) family that leads to reduced vitamin B6 content. Consequently, metabolism is broadly altered, mainly affecting amino acid, raffinose, and shikimate contents and trichloroacetic acid cycle constituents. Yeast two-hybrid and pull-down analyses showed that Arabidopsis thaliana PDX1 proteins can form oligomers. Interestingly, the mutant form of PDX1 has severely reduced capability to oligomerize, potentially suggesting that oligomerization is important for function. In summary, our results demonstrate the critical function of the PDX1 protein family for metabolism, whole-plant development, and vitamin B6 biosynthesis in higher plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transferasas de Grupos Nitrogenados/metabolismo , Vitamina B 6/biosíntesis , Complejo Vitamínico B/biosíntesis , Secuencia de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Liasas de Carbono-Nitrógeno , Cromosomas de las Plantas , Metabolismo Energético , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Transferasas de Grupos Nitrogenados/química , Transferasas de Grupos Nitrogenados/genética , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Mutación Puntual , Estructura Cuaternaria de Proteína , Piridoxina/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
Plant J ; 44(3): 396-408, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16236150

RESUMEN

Pyridoxine (vitamin B6) is a cofactor required by numerous enzymes in all cellular organisms. Plants are the major source of vitamin B6 for animals, yet the biosynthesis pathway and the function of vitamin B6 in plants are not well elucidated. In this study, an Arabidopsis pyridoxine synthase gene PDX1 was characterized and its in vivo functions were investigated. The PDX1 gene was expressed in all plant parts examined and its expression level was not significantly regulated by abiotic stress or the phytohormone abscisic acid. In roots, PDX1 was highly expressed in a defined region behind the root tips that undergoes rapid cell division. The PDX1 protein was mainly associated with the plasma membrane and endomembranes, implying a potential involvement of vitamin B6 in membrane function. To reveal the in vivo role of PDX1, Arabidopsis insertional mutants were isolated. Strikingly, the pdx1 knockout mutants were impaired in root growth and early seedling development. The stunted roots resulted from both reduced cell division and elongation. Supplementation of the growth media with pyridoxine or reintroduction of the wild-type PDX1 gene into the mutants completely restored the mutant growth, demonstrating that PDX1 is required for pyridoxine biosynthesis in planta. In addition to the developmental defects, pdx1 mutants are hypersensitive to osmotic stress and oxidative stress. These mutant seedlings had increased peroxidation of membrane lipids following UV treatment. Our study establishes a critical role of vitamin B6 in plant development and stress tolerance and suggests that vitamin B6 may represent a new class of antioxidant in plants.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Estrés Oxidativo , Piridoxina/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Liasas de Carbono-Nitrógeno , Membrana Celular/enzimología , Clorofila/metabolismo , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Peroxidación de Lípido , Datos de Secuencia Molecular , Mutación , Transferasas de Grupos Nitrogenados/química , Transferasas de Grupos Nitrogenados/genética , Transferasas de Grupos Nitrogenados/metabolismo , Presión Osmótica/efectos de los fármacos , Filogenia , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Homología de Secuencia de Aminoácido , Cloruro de Sodio/farmacología
7.
J Biol Chem ; 279(29): 29988-93, 2004 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-15133036

RESUMEN

A protein encoded by a new gene with approximately 75% homology to glutamine-fructose-6-phosphate amidotransferase (GFAT) was termed GFAT2 on the basis of this similarity. The mouse GFAT2 cDNA was cloned, and the protein was expressed with either an N-terminal glutathione S-transferase or His tag. The purified protein expressed in mammalian cells had GFAT activity. The Km values for the two substrates of reaction, fructose 6-phosphate and glutamine, were determined to be 0.8 mm for fructose 6-phosphate and 1.2 mm for glutamine, which are within the ranges determined for GFAT1. The protein sequence around the serine 202 of GFAT2 was conserved to the serine 205 of GFAT1, whereas the serine at 235 in GFAT1 was not present in GFAT2. Previously we showed that phosphorylation of serine 205 in GFAT1 by the catalytic subunit of cAMP-dependent protein kinase (PKA) inhibits its activity. Like GFAT1, GFAT2 was phosphorylated by PKA, but GFAT2 activity increased approximately 2.2-fold by this modification. When serine 202 of GFAT2 was mutated to an alanine, the enzyme not only became resistant to phosphorylation, but also the increase in activity in response to PKA also was blocked. These results indicated that the phosphorylation of serine 202 was necessary and sufficient for these alterations by PKA. GFAT2 was modestly inhibited (15%) by UDP-GlcNAc but not through detectable O-glycosylation. GFAT2 is, therefore, an isoenzyme of GFAT1, but its regulation by cAMP is the opposite, allowing differential regulation of the hexosamine pathway in specialized tissues.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Transferasas de Grupos Nitrogenados/metabolismo , Acetilglucosamina/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/metabolismo , Dominio Catalítico , Línea Celular , Clonación Molecular , AMP Cíclico/metabolismo , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Fructosadifosfatos/metabolismo , Regulación de la Expresión Génica , Glutamina/metabolismo , Glutatión Transferasa/metabolismo , Glicosilación , Haplorrinos , Cinética , Ratones , Datos de Secuencia Molecular , Mutagénesis , Mutación , Transferasas de Grupos Nitrogenados/química , Fosforilación , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Serina/química , Distribución Tisular , Virus Vaccinia/metabolismo
8.
J Bacteriol ; 183(11): 3353-64, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11344143

RESUMEN

Acivicin, a modified amino acid natural product, is a glutamine analog. Thus, it might interfere with metabolism by hindering glutamine transport, formation, or usage in processes such as transamidation and translation. This molecule prevented the growth of Escherichia coli in minimal medium unless the medium was supplemented with a purine or histidine, suggesting that the HisHF enzyme, a glutamine amidotransferase, was the target of acivicin action. This enzyme, purified from E. coli, was inhibited by low concentrations of acivicin. Acivicin inhibition was overcome by the presence of three distinct genetic regions when harbored on multicopy plasmids. Comprehensive transcript profiling using DNA microarrays indicated that histidine biosynthesis was the predominant process blocked by acivicin. The response to acivicin, however, was quite complex, suggesting that acivicin inhibition resonated through more than a single cellular process.


Asunto(s)
Antranilato Sintasa , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Isoxazoles/farmacología , Transferasas de Grupos Nitrogenados/antagonistas & inhibidores , Transferasas de Grupos Nitrogenados/genética , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Unión Competitiva , Medios de Cultivo , Inhibidores Enzimáticos/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Glutamina/metabolismo , Imidazoles/metabolismo , Isoxazoles/metabolismo , Transferasas de Grupos Nitrogenados/metabolismo , Ribonucleótidos/metabolismo , Transaminasas/genética , Transaminasas/metabolismo
9.
J Biol Chem ; 273(27): 17199-205, 1998 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-9642289

RESUMEN

Phosphatidylserine (PS) in mammalian cells is synthesized through the exchange of free L-serine with the base moiety of phosphatidylcholine or phosphatidylethanolamine (PE). The serine base exchange in Chinese hamster ovary (CHO) cells is catalyzed by at least two enzymes, PS synthase (PSS) I and II. A PSS I-lacking mutant of CHO-K1 cells, PSA-3, which exhibits approximately 2-fold lower serine base exchange activity than CHO-K1, is defective in the conversion of phosphatidylcholine to PS but has the ability to convert PE to PS. The PSA-3 mutant requires exogenous PS or PE for cell growth. In the present study, from PSA-3 mutant cells, we isolated a mutant, named PSB-2, with a further decrease in the serine base exchange activity. The activity in the homogenate of PSB-2 mutant cells was approximately 10% that of PSA-3 mutant cells and approximately 5% that of CHO-K1 cells. The PSB-2 mutant exhibited an approximately 80% reduction in the PSS II mRNA level relative to that in PSA-3 mutant and CHO-K1 cells. These results showed that the PSB-2 mutant is defective in PSS II. Like the PSA-3 mutant, the PSB-2 mutant grew well in medium supplemented with PS. However, in the medium supplemented with PE, the PSB-2 mutant was incapable of growth, in contrast to the PSA-3 mutant. In the medium with exogenous PE, the PSB-2 mutant was defective in PS biosynthesis, whereas the PSA-3 mutant synthesized a normal amount of PS. A metabolic labeling experiment with exogenous [32P]PE revealed that the PSB-2 mutant was defective in the conversion of exogenous PE to PS. This defect and the growth and PS biosynthetic defects of the PSB-2 mutant cultivated with exogenous PE were complemented by the PSS II cDNA. In addition, the cDNA of the other PS synthase, PSS I, was shown not to complement the defect in the conversion of exogenous PE to PS of the PSB-2 mutant, implying that PSS I negligibly contributes to the conversion of PE to PS in CHO-K1 cells. These results indicated that PSS II is critical for the growth and PS biosynthesis of PSA-3 mutant cells cultivated with exogenous PE and suggested that most of the PS formation from PE in CHO-K1 cells is catalyzed by PSS II.


Asunto(s)
Transferasas de Grupos Nitrogenados/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/biosíntesis , Animales , Células CHO , Cricetinae , Cricetulus , ADN Complementario , Mutación , Transferasas de Grupos Nitrogenados/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA