Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
FASEB J ; 34(8): 9995-10010, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32564472

RESUMEN

Tea polyphenolics have been suggested to possess blood glucose lowering properties by inhibiting sugar transporters in the small intestine and improving insulin sensitivity. In this report, we studied the effects of teas and tea catechins on the small intestinal sugar transporters, SGLT1 and GLUTs (GLUT1, 2 and 5). Green tea extract (GT), oolong tea extract (OT), and black tea extract (BT) inhibited glucose uptake into the intestinal Caco-2 cells with GT being the most potent inhibitor (IC50 : 0.077 mg/mL), followed by OT (IC50 : 0.136 mg/mL) and BT (IC50 : 0.56 mg/mL). GT and OT inhibition of glucose uptake was partial non-competitive, with an inhibitor constant (Ki ) = 0.0317 and 0.0571 mg/mL, respectively, whereas BT was pure non-competitive, Ki  = 0.36 mg/mL. Oocytes injected to express small intestinal GLUTs were inhibited by teas, but SGLT1 was not. Furthermore, catechins present in teas were the predominant inhibitor of glucose uptake into Caco-2 cells, and gallated catechins the most potent: CG > ECG > EGCG ≥ GCG when compared to the non-gallated catechins (C, EC, GC, and EGC). In Caco-2 cells, individual tea catechins reduced the SGLT1 gene, but not protein expression levels. In contrast, GLUT2 gene and protein expression levels were reduced after 2 hours exposure to catechins but increased after 24 hours. These in vitro studies suggest teas containing catechins may be useful dietary supplements capable of blunting postprandial glycaemia in humans, including those with or at risk to Type 2 diabetes mellitus.


Asunto(s)
Antioxidantes/farmacología , Catequina/farmacología , Neoplasias del Colon/tratamiento farmacológico , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Extractos Vegetales/farmacología , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Té/química , Animales , Células CACO-2 , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Glucosa/metabolismo , Humanos , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Xenopus laevis
2.
J Pharm Pharmacol ; 72(2): 294-304, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31737917

RESUMEN

OBJECTIVE: To isolate and identify the bioactive component from Cymbopogon martinii having GLUT2 transporter inhibitory activity - towards development of a novel strategy for treatment of diabetes mellitus. METHOD: Isolation of bioactive component was carried out using differential solvent extraction, HPTLC and HPLC, and identification was done by GC-MS. In-vitro studies on intestine, liver, kidney and in-vivo assessment by OGTT and long-term treatment on diabetic rats were carried out. KEY FINDINGS: Geraniol was isolated and identified as bioactive component. Intestinal glucose absorption demonstrated 60.28% inhibition of transport at 648.34 µm of geraniol. It was found to inhibit glucose release from liver on adrenaline challenge by 89.82% at 324.17 µm/ml. Kidney glycogen content doubled using 648.34 µm of geraniol as compared to control. Geraniol demonstrated 2.14 times higher renal glucose output than diabetic control. OGTT demonstrated prevention of postprandial spikes. Prolonged treatment for 60 days with 29.37 mm/kg B.W. twice a day of geraniol improved the lipid profile, HbA1C levels and renal parameters. In mRNA studies for 10 days, over expression of GLUT2 was prevented by geraniol. CONCLUSIONS: Inhibition of GLUT2 by geraniol has the potential to reduce hyperglycaemia and prevent secondary complications in diabetes.


Asunto(s)
Monoterpenos Acíclicos/farmacología , Cymbopogon/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Monoterpenos Acíclicos/aislamiento & purificación , Animales , Diabetes Mellitus Experimental/fisiopatología , Hemoglobina Glucada/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/fisiopatología , Masculino , Ratas , Ratas Wistar , Estreptozocina
3.
J Agric Food Chem ; 66(12): 3137-3145, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29533635

RESUMEN

Foods of high carbohydrate content such as sucrose or starch increase postprandial blood glucose concentrations. The glucose absorption system in the intestine comprises two components: sodium-dependent glucose transporter-1 (SGLT1) and glucose transporter 2 (GLUT2). Here five sappanin-type (SAP) homoisoflavonoids were identified as novel potent GLUT2 inhibitors, with three of them isolated from the fibrous roots of Polygonatum odoratum (Mill.) Druce. SAP homoisolflavonoids had a stronger inhibitory effect on 25 mM glucose transport (41.6 ± 2.5, 50.5 ± 7.6, 47.5 ± 1.9, 42.6 ± 2.4, and 45.7 ± 4.1% for EA-1, EA-2, EA-3, MOA, and MOB) than flavonoids (19.3 ± 2.2, 11.5 ± 3.7, 16.4 ± 2.4, 5.3 ± 1.0, 3.7 ± 2.2, and 18.1 ± 2.4% for apigenin, luteolin, quercetin, naringenin, hesperetin, and genistein) and phloretin (28.1 ± 1.6%) at 15 µM. SAP homoisoflavonoids and SGLT1 inhibitors were found to synergistically inhibit the uptake of glucose using an in vitro model comprising Caco-2 cells. This observed new mechanism of the glucose-lowering action of P. odoratum suggests that SAP homoisoflavonoids and their combination with flavonoid monoglucosides show promise as naturally functional ingredients for inclusion in foods and drinks designed to control postprandial glucose levels.


Asunto(s)
Flavonoides/farmacología , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Polygonatum/química , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Flavonoides/química , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Humanos , Hipoglucemiantes/química , Extractos Vegetales/química , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/metabolismo
4.
Mol Nutr Food Res ; 62(9): e1700729, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29396908

RESUMEN

SCOPE: Hepatic LDL receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) regulate the clearance of plasma LDL-cholesterol (LDL-C): LDLR promotes it, and PCSK9 opposes it. These proteins also express in pancreatic ß cells. Using cultured hepatocytes, we previously showed that the plant flavonoid quercetin-3-glucoside (Q3G) inhibits PCSK9 secretion, stimulated LDLR expression, and enhanced LDL-C uptake. Here, we examine whether Q3G supplementation could reverse the hyperlipidemia and hyperinsulinemia of mice fed a high-cholesterol diet, and how it affects hepatic and pancreatic LDLR and PCSK9 expression. METHODS AND RESULTS: For 12 weeks, mice are fed a low- (0%) or high- (1%) cholesterol diet (LCD or HCD), supplemented or not with Q3G at 0.05 or 0.1% (w/w). Tissue LDLR and PCSK9 is analyzed by immunoblotting, plasma PCSK9 and insulin by ELISA, and plasma cholesterol and glucose by colorimetry. In LCD-fed mice, Q3G has no effect. In HCD-fed mice, it attenuates the increase in plasma cholesterol and insulin, accentuates the decrease in plasma PCSK9, and increases hepatic and pancreatic LDLR and PCSK9. In cultured pancreatic ß cells, however, it stimulates PCSK9 secretion. CONCLUSION: In mice, dietary Q3G could counter HCD-induced hyperlipidemia and hyperinsulinemia, in part by oppositely modulating hepatic and pancreatic PCSK9 secretion.


Asunto(s)
Hiperlipidemias/prevención & control , Hipolipemiantes/uso terapéutico , Hígado/metabolismo , Páncreas/metabolismo , Proproteína Convertasa 9/metabolismo , Quercetina/análogos & derivados , Receptores de LDL/metabolismo , Animales , Línea Celular Tumoral , Colesterol en la Dieta/efectos adversos , Suplementos Dietéticos/efectos adversos , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 2/agonistas , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Hiperinsulinismo/sangre , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Hiperinsulinismo/prevención & control , Hiperlipidemias/sangre , Hiperlipidemias/metabolismo , Hiperlipidemias/patología , Hipolipemiantes/administración & dosificación , Hipolipemiantes/efectos adversos , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Especificidad de Órganos , Páncreas/patología , Proproteína Convertasa 9/sangre , Proproteína Convertasa 9/genética , Quercetina/administración & dosificación , Quercetina/efectos adversos , Quercetina/uso terapéutico , Receptores de LDL/genética
5.
Mol Nutr Food Res ; 61(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28868668

RESUMEN

SCOPE: High glycaemic sugars result in blood-glucose spikes, while large doses of post-prandial fructose inundate the liver, causing an imbalance in energy metabolism, both leading to increased risk of metabolic malfunction and type 2 diabetes. Acarbose, used for diabetes management, reduces post-prandial hyperglycaemia by delaying carbohydrate digestion. METHODS AND RESULTS: Chamomile and green teas both inhibited digestive enzymes (α-amylase and maltase) related to intestinal sugar release, as already established for acarbose. However, acarbose had no effect on uptake of sugars using both differentiated human Caco-2 cell monolayers and Xenopus oocytes expressing human glucose transporter-2 (GLUT2) and GLUT5. Both teas effectively inhibited transport of fructose and glucose through GLUT2 inhibition, while chamomile tea also inhibited GLUT5. Long term incubation of Caco-2/TC7 cells with chamomile tea for 16 h or 4 days did not enhance the observed effects, indicating that inhibition is acute. Sucrase activity was directly inhibited by green tea and acarbose, but not chamomile. CONCLUSION: These findings show that chamomile and green teas are potential tools to manage absorption and metabolism of sugars with efficacy against high sugar bolus stress inflicted, for example, by high fructose syrups, where the drug acarbose would be ineffective.


Asunto(s)
Acarbosa/farmacología , Manzanilla/química , Glucosa/metabolismo , Té/química , Tés de Hierbas , Animales , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Diferenciación Celular/efectos de los fármacos , Fructosa/metabolismo , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 5/antagonistas & inhibidores , Transportador de Glucosa de Tipo 5/genética , Transportador de Glucosa de Tipo 5/metabolismo , Humanos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Sacarosa/metabolismo , Xenopus , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo
6.
Planta Med ; 83(12-13): 985-993, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28395363

RESUMEN

Glucose homeostasis is maintained by antagonistic hormones such as insulin and glucagon as well as by regulation of glucose absorption, gluconeogenesis, biosynthesis and mobilization of glycogen, glucose consumption in all tissues and glomerular filtration, and reabsorption of glucose in the kidneys. Glucose enters or leaves cells mainly with the help of two membrane integrated transporters belonging either to the family of facilitative glucose transporters (GLUTs) or to the family of sodium glucose cotransporters (SGLTs). The intestinal glucose absorption by endothelial cells is managed by SGLT1, the transfer from them to the blood by GLUT2. In the kidney SGLT2 and SGLT1 are responsible for reabsorption of filtered glucose from the primary urine, and GLUT2 and GLUT1 enable the transport of glucose from epithelial cells back into the blood stream.The flavonoid phlorizin was isolated from the bark of apple trees and shown to cause glucosuria. Phlorizin is an inhibitor of SGLT1 and SGLT2. With phlorizin as lead compound, specific inhibitors of SGLT2 were developed in the last decade and some of them have been approved for treatment mainly of type 2 diabetes. Inhibition of SGLT2 eliminates excess glucose via the urine. In recent times, the dual SGLT1/SGLT2 inhibitory activity of phlorizin has served as a model for the development and testing of new drugs exhibiting both activities.Besides phlorizin, also some other flavonoids and especially flavonoid enriched plant extracts have been investigated for their potency to reduce postprandial blood glucose levels which can be helpful in the prevention and supplementary treatment especially of type 2 diabetes.


Asunto(s)
Productos Biológicos/farmacología , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas de Transporte de Sodio-Glucosa/antagonistas & inhibidores , Productos Biológicos/química , Gluconeogénesis/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Transportador de Glucosa de Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Riñón/metabolismo , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2
7.
J Nutr Biochem ; 32: 128-41, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27142746

RESUMEN

The present study has been designed and carried out to explore the role of grape seed proanthocyanidins (GSP) in the pancreas of cadmium (Cd)-induced cellular oxidative stress-mediated toxicity in rats. Four groups of healthy rats were given oral doses of Cd (5-mg/kg BW) and to identify the possible mechanism of action of GSP 100-mg/kg BW was selected and was given 90 min before Cd intoxication. The causative molecular and cellular mechanism of Cd was determined using various biochemical assays, histology, western blotting and ELISA. Cd intoxication revealed increased levels of proinflammatory cytokines (TNF-α, IL1ß and IFN-γ), reduced levels of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2 and GLUT-4) along with the enhanced levels of signaling molecules of apoptosis (cleaved Caspase-12/9/8/3) in the pancreas of Cd-intoxicated rats. Results suggested that the treatment with GSP reduced blood glucose level, increased plasma insulin and mitigated oxidative stress-related markers. GSP protects pancreatic tissue by attenuated inflammatory responses and inhibited apoptosis. This uniqueness and absence of any detectable adverse effect of GSP proposes the possibility of using it as an effective protector in the oxidative stress-mediated pancreatic dysfunction in rats.


Asunto(s)
Antioxidantes/uso terapéutico , Intoxicación por Cadmio/dietoterapia , Suplementos Dietéticos , Extracto de Semillas de Uva/uso terapéutico , Estrés Oxidativo , Páncreas/metabolismo , Pancreatitis/prevención & control , Proantocianidinas/uso terapéutico , Animales , Antioxidantes/administración & dosificación , Antioxidantes/efectos adversos , Apoptosis/efectos de los fármacos , Biomarcadores/sangre , Biomarcadores/metabolismo , Cloruro de Cadmio/administración & dosificación , Intoxicación por Cadmio/metabolismo , Intoxicación por Cadmio/patología , Intoxicación por Cadmio/fisiopatología , Citocinas/agonistas , Citocinas/antagonistas & inhibidores , Citocinas/sangre , Citocinas/metabolismo , Suplementos Dietéticos/efectos adversos , Transportador de Glucosa de Tipo 2/agonistas , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4/agonistas , Transportador de Glucosa de Tipo 4/antagonistas & inhibidores , Transportador de Glucosa de Tipo 4/metabolismo , Extracto de Semillas de Uva/administración & dosificación , Extracto de Semillas de Uva/efectos adversos , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/metabolismo , Hiperglucemia/etiología , Hiperglucemia/prevención & control , Masculino , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Páncreas/efectos de los fármacos , Páncreas/inmunología , Páncreas/patología , Pancreatitis/etiología , Pancreatitis/inmunología , Proantocianidinas/administración & dosificación , Proantocianidinas/efectos adversos , Distribución Aleatoria , Ratas Wistar , Transducción de Señal/efectos de los fármacos
8.
Can J Physiol Pharmacol ; 94(5): 488-97, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26871756

RESUMEN

This study investigates the effect of the ergogenic supplement ß-hydroxy-ß-methylbutyrate (HMB) on insulin resistance induced by high-fructose diet (HFD) in rats. Male Sprague Dawley rats were fed 60% HFD for 12 weeks and HMB (320 mg·kg(-1)·day(-1), orally) for 4 weeks. HFD significantly increased fasting insulin, fasting glucose, glycosylated hemoglobin (HBA1C), liver glycogen content, and homeostasis model assessment of insulin resistance (HOMA-IR) index, while it decreased glucose and insulin tolerance. Furthermore, HFD significantly increased serum triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and very low density lipoprotein cholesterol (VLDL-C) levels, while it significantly decreased high density lipoprotein cholesterol (HDL-C). Moreover, HFD significantly increased mRNA expression of glucose transporter type-2 (GLUT-2), the mammalian target of rapamycin (mTOR), and sterol regulatory element-binding protein-1c (SREBP-1c) but decreased peroxisome proliferator-activated receptor-alpha (PPAR-α) in liver. Aortic relaxation to acetylcholine (ACh) was impaired and histopathology showed severe hepatic steatosis. HMB significantly increased insulin tolerance and decreased fasting insulin, HOMA-IR, HBA1C, hepatic glycogen content, serum TG, LDL-C, and VLDL-C. Additionally, HMB enhanced ACh-induced relaxation, ameliorated hepatic steatosis, and decreased mRNA expression of GLUT-2. In conclusion, HMB may attenuate insulin resistance and hepatic steatosis through inhibiting GLUT-2 in liver.


Asunto(s)
Suplementos Dietéticos , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Resistencia a la Insulina , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Sustancias para Mejorar el Rendimiento/uso terapéutico , Valeratos/uso terapéutico , Animales , Carbohidratos de la Dieta/efectos adversos , Endotelio Vascular/fisiopatología , Fructosa/efectos adversos , Regulación de la Expresión Génica , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Intolerancia a la Glucosa/fisiopatología , Intolerancia a la Glucosa/prevención & control , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patología , Hiperinsulinismo/fisiopatología , Hiperinsulinismo/prevención & control , Hiperlipidemias/metabolismo , Hiperlipidemias/patología , Hiperlipidemias/fisiopatología , Hiperlipidemias/prevención & control , Hígado/patología , Masculino , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , PPAR alfa/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Resistencia Vascular
9.
Biofactors ; 39(4): 448-56, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23361943

RESUMEN

Previous studies have indicated that secondary plant metabolites may modulate glucose absorption in the small intestine. We have characterized a polyphenol-rich herbal extract and its potential intestinal metabolites by LC-MS(2) and investigated the inhibition of glucose transporters SGLT1 and GLUT2 using the well-characterized Caco-2 intestinal model. Differentiated Caco-2 monolayers were incubated with an extract of a mixture of herbs and spices. Glucose transport under sodium-dependent and sodium-free conditions was determined by radiochemical detection of D-[U-(14) C]-glucose. A 54% decrease in transport was observed compared to control. Using sodium-dependent and sodium-free conditions, we demonstrate that the inhibition of GLUT2 was greater than SGLT1. Glycosidase and esterase enzymatic hydrolysis was used to assess the impact of metabolism on the efficacy of inhibition. Glucose transport across the membrane was reduced by 70% compared to the control and was associated with significant increases in flavonoid aglycones, caffeic acid, and p-coumaric acid. These results suggest that intact and hydrolyzed polyphenols, likely to be found in the lumen after ingestion of the supplement, play an important role in the attenuation of glucose absorption and may have potentially beneficial antiglycemic effects in the body.


Asunto(s)
Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Esterasas/química , Glucosa/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Glicósido Hidrolasas/química , Humanos , Hidrólisis , Hipoglucemiantes/química , Extractos Vegetales/química , Polifenoles/química , Transportador 1 de Sodio-Glucosa/metabolismo
10.
Mol Nutr Food Res ; 56(3): 435-45, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22173993

RESUMEN

SCOPE: Recent studies have reported that tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. In the present study, we investigated the effects of tiliroside on carbohydrate digestion and absorption in the gastrointestinal tract. METHODS AND RESULTS: This study showed that tiliroside inhibits pancreatic α-amylase (IC50 = 0.28 mM) in vitro. Tiliroside was found as a noncompetitive inhibitor of α-amylase with K(i) values of 84.2 µM. In male ICR mice, the increase in postprandial plasma glucose levels was significantly suppressed in the tiliroside-administered group. Tiliroside treatment also suppressed hyperinsulinemia after starch administration. Tiliroside administration inhibited the increase of plasma glucose levels in an oral glucose tolerance test, but not in an intraperitoneal glucose tolerance test. In human intestinal Caco-2 cells, the addition of tiliroside caused a significant dose-dependent inhibition of glucose uptake. The inhibitory effects of both sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) inhibitors (phlorizin and phloretin, respectively) on glucose uptake were significantly inhibited in the presence of tiliroside, suggesting that tiliroside inhibited glucose uptake mediated by both SGLT1 and GLUT2. CONCLUSION: These findings indicate that the anti-diabetic effects of tiliroside are at least partially mediated through inhibitory effects on carbohydrate digestion and glucose uptake in the gastrointestinal tract.


Asunto(s)
Digestión/efectos de los fármacos , Flavonoides/farmacología , Tracto Gastrointestinal/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Absorción , Animales , Células CACO-2 , Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Transportador de Glucosa de Tipo 2/metabolismo , Humanos , Hiperinsulinismo/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos ICR , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/metabolismo , Floretina/metabolismo , Florizina/metabolismo , Periodo Posprandial/efectos de los fármacos , Rosa/química , Semillas/química , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Transportador 1 de Sodio-Glucosa/metabolismo , Almidón/administración & dosificación
11.
Dig Dis Sci ; 57(5): 1203-12, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22116644

RESUMEN

AIM: In this study, we transfected the full length cDNA of glucose transporter 2 (GLUT2) into IEC-6 cells (which lack GLUT2 expression) to investigate GLUT2 translocation in enterocytes. The purpose of this study was to investigate cellular mechanisms of GLUT2 translocation and its signaling pathway. METHODS: Rat GLUT2 cDNA was transfected into IEC-6 cells. Glucose uptake was measured by incubating cell monolayers with glucose (0.5-50 mM), containing (14)C-D-glucose and (3)H-L-glucose, to measure stereospecific, carrier-mediated and passive uptake. We imaged GLUT2 immunoreactivity by confocal fluorescence microscopy. We evaluated the GLUT2 inhibitor (1 mM phloretin), SGLT1 inhibitor (0.5 mM phlorizin), disrupting microtubular integrity (2 µM nocodazole and 0.5 µM cytochalasin B), protein kinase C (PKC) inhibitors (50 nM calphostin C and 10 µM chelerythrine), and PKC activator (50 nM phorbol 12-myristate 13-acetate: PMA). RESULTS: In GLUT2-IEC cells, the K(m) (54.5 mM) increased compared with non-transfected IEC-6 cells (7.8 mM); phloretin (GLUT2 inhibitor) inhibited glucose uptake to that of non-transfected IEC-6 cells (P < 0.05). Nocodazole and cytochalasin B (microtubule disrupters) inhibited uptake by 43-58% only at glucose concentrations ≥25 and 50 mM and the 10-min incubations. Calphostin C (PKC inhibitor) reproduced the inhibition of nocodazole; PMA (a PKC activator) enhanced glucose uptake by 69%. Exposure to glucose increased the GFP signal at the apical membrane of GLUT-1EC cells. CONCLUSION: IEC-6 cells lacking GLUT2 translocate GLUT2 apically when transfected to express GLUT2. Translocation of GLUT2 occurs through glucose stimulation via a PKC-dependent signaling pathway and requires integrity of the microtubular skeletal structure.


Asunto(s)
Membrana Celular , Enterocitos/metabolismo , Transportador de Glucosa de Tipo 2 , Glucosa , Transfección/métodos , Animales , Transporte Biológico , Membrana Celular/genética , Membrana Celular/metabolismo , ADN Complementario , Glucosa/metabolismo , Glucosa/farmacocinética , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Absorción Intestinal , Microtúbulos/metabolismo , Floretina/farmacocinética , Florizina/farmacocinética , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacocinética , Moduladores de Tubulina/farmacocinética
12.
Nutrition ; 27(6): 707-12, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20869203

RESUMEN

OBJECTIVE: Pine bark extract (PBE) has been reported to have hypoglycemic effects but its mode of action is still unclear. This work studied the effect of PBE on glucose uptake by Caco-2 cells in isolation of its effect on insulin, which may appear if ingested by the animal. METHODS: Caco-2 cells were incubated in the presence of PBE and [(14)C] 3-O-methyl-D-glucose as a tracer and the change in radioactivity of the incubation medium was taken as a measurement of glucose uptake. To determine the mechanism of action of the extract and type of transporters involved, Na(+)-coupled glucose transporter-1 (SGLT1) and glucose transporter-2 (GLUT2) and different signaling mediators known to be involved in glucose transport were inactivated by specific inhibitors. Changes in the protein expression of glucose transporters were studied by western blotting. RESULTS: The extract significantly decreased glucose transport but did not affect the activity or expression of Na(+)/K(+) adenosine triphosphatase. It was concluded that PBE affects the number of glucose transporters in the brush-border membrane. This conclusion was confirmed by western blot analysis. The results showed that the extract acts by activating p38 mitogen-activated kinase, which in turn activates SGLT1 transporters and two different pathways that target GLUT2: an inhibitory pathway involving phosphoinositol 3-kinase and a stimulatory pathway involving mitogen activated protein kinase/extracellular signal-regulated kinase kinase. The activity of the two pathways is orchestrated by SGLT1. CONCLUSION: Pine bark extract inhibits glucose absorption by p38 mitogen-activated kinase and constitutes a potential complementary therapeutic or prophylactic agent for diabetes and its complications.


Asunto(s)
Enterocitos/efectos de los fármacos , Glucosa/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Pinus/química , Corteza de la Planta/química , Extractos Vegetales/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Diabetes Mellitus/tratamiento farmacológico , Enterocitos/metabolismo , Inhibidores Enzimáticos/farmacología , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Transportador de Glucosa de Tipo 2/metabolismo , Humanos , Hipoglucemiantes/farmacología , Absorción Intestinal/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fitoterapia , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Transportador 1 de Sodio-Glucosa/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA