Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Endocr J ; 67(1): 73-80, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31611477

RESUMEN

Those who smoke nicotine-based cigarettes have elevated plasma levels of ghrelin, a hormone secreted from the stomach. Ghrelin has various physiological functions and has recently been shown to be involved in regulating biological rhythms. Therefore, in this study, in order to clarify the significance of the plasma ghrelin increase in smokers, we sought to clarify how nicotine and ghrelin affect the expression dynamics of clock genes using a mouse model. A single dose of nicotine administered intraperitoneally increased plasma ghrelin concentrations transiently, whereas continuous administration of nicotine with an osmotic minipump did not induce any change in the plasma ghrelin concentration. Single administration of nicotine resulted in a transient increase in ghrelin gene expression in the pancreas but not in the stomach, which is the major producer of ghrelin. In addition, in the pancreas, the expression of clock genes was also increased temporarily. Therefore, in order to clarify the interaction between nicotine-induced ghrelin gene expression and clock gene expression in the pancreas, nicotine was administered to ghrelin gene-deficient mice. Administration of nicotine to ghrelin-gene deficient mice increased clock gene expression in the pancreas. However, upon nicotine administration to mice pretreated with octanoate to upregulate ghrelin activity, expression levels of nicotine-inducible clock genes in the pancreas were virtually the same as those in mice not administered nicotine. Thus, our findings indicate that pancreatic ghrelin may suppress nicotine-induced clock gene expression in the pancreas.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/efectos de los fármacos , Ghrelina/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Páncreas/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Estómago/efectos de los fármacos , Factores de Transcripción ARNTL/efectos de los fármacos , Factores de Transcripción ARNTL/genética , Animales , Proteínas CLOCK/efectos de los fármacos , Proteínas CLOCK/genética , Caprilatos/farmacología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Criptocromos/efectos de los fármacos , Criptocromos/genética , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Regulación de la Expresión Génica , Ghrelina/genética , Ghrelina/metabolismo , Transportador de Glucosa de Tipo 2/efectos de los fármacos , Transportador de Glucosa de Tipo 2/genética , Hipotálamo/metabolismo , Ratones , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Páncreas/metabolismo , Proteínas Circadianas Period/efectos de los fármacos , Proteínas Circadianas Period/genética
2.
Vet Med Sci ; 5(3): 451-461, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30973212

RESUMEN

The ban on the use of antibiotic in feed encouraged nutritionists to using alternatives to maintain growth performance and intestinal function of broilers. This study was conducted to evaluate the effects of Yupingfeng polysaccharides (YP) supplementation on growth performance and expression of SGLT1, GLUT2 and GLUT5 in Qingyuan partridge chicken. Experiment 1: a total of 540 chickens were randomly allocated to five groups with six replication. Dietary treatments were: (1) CON (control group), basal diet; (2) T1, CON + 0.5 g kg-1 YP; (3) T2, CON + 1 g kg-1 YP; (4) T3, CON + 2 g kg-1 YP; (5) T4, CON + 4 g kg-1 YP. Experiment 2, a total of 162 were randomly allocated to three groups with three replication. Dietary treatments were: (1) CON, basal diet; (2) T1, CON + 0.5 g kg-1 YP; (3) T2, CON + 1 g kg-1 YP. From days 1 to 14 and overall, chicken fed T1 diet had higher ADG. On day 42, there was increased villus height of jejunum in T1 group. On days 14 and 28, there was decreased villus height of duodenum and jejunum in T2 group. In duodenum, the expression of SGLT1 (days 21, 35 and 42), GLUT2 (days 7, 14, 21, 28, 35 and 42) and GLUT5 (days 7, 14, 21 and 28) was increased with YP supplementation. In jejunum, the expression of SGLT1 (days 7, 14, 21, 28 and 35), GLUT2 (days 14, 21, 28, 35 and 42) and GLUT5 (days 7, 14, 21, 28, 35 and 42) was increased with YP supplementation. In ileum, the expression of SGLT1 (days 7, 21, 35 and 42), GLUT2 (days 7, 14, 21 and 42) and GLUT5 (days 7, 14, 21, 28, 35 and 42) was increased with YP supplementation. Dietary YP supplementation improves growth performance and expression of SGLT1, GLUT2 and GLUT5 in intestine.


Asunto(s)
Pollos/crecimiento & desarrollo , Suplementos Dietéticos/análisis , Medicamentos Herbarios Chinos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Polisacáridos/farmacología , Alimentación Animal/análisis , Animales , Pollos/anatomía & histología , Pollos/genética , Dieta/veterinaria , Regulación del Desarrollo de la Expresión Génica/genética , Transportador de Glucosa de Tipo 2/efectos de los fármacos , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 5/efectos de los fármacos , Transportador de Glucosa de Tipo 5/genética , Mucosa Intestinal/anatomía & histología , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/anatomía & histología , Intestino Delgado/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Distribución Aleatoria , Transportador 1 de Sodio-Glucosa/efectos de los fármacos , Transportador 1 de Sodio-Glucosa/genética , Regulación hacia Arriba
3.
Stress ; 20(6): 562-572, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28911262

RESUMEN

High ambient temperature adversely influences poultry production. In the present study, gamma amino butyric acid (GABA) supplementation was used to alleviate the adverse changes due to heat stress (HS) in a broiler chicken strain (Ross 308). At 21 days of age, the birds were divided into four groups of 13. Two groups were housed under normal room temperature, one group was given orally 0.2 ml 0.9% physiological saline (CN) daily, the other group received 0.2 ml of 0.5% GABA solution orally (GN). A third group was exposed to environmental HS (33 ± 1 °C lasting for 2 weeks) + physiological saline (CH) and a fourth group was exposed to HS + GABA supplementation (GH). GABA supplementation during HS significantly reduced the birds' increased body temperature (p <.0001) and increased their body weight gain (p <.0001). This effect was associated with increases in the heat stress-induced reductions in jejunal villus length, crypt depth and mucous membrane thickness, and decreases in the vascular changes occurred due to HS. Additionally, GABA supplementation significantly modulated HS-induced changes in glucose facilitated transporter 2 (GLUT2), peptide transporter 1 (PEPT1) and heat shock protein 70 (HSP70) mRNA expression in the jejunal mucosa (p < .0001). GABA supplementation also significantly elevated the triiodothyronine (T3) hormone level and hemoglobin levels and decreased the heterophil-lymphocyte ratio (H/L ratio) (p <.0001). Furthermore, it induced higher hepatic glutathione peroxidase enzyme (GSH-Px) activities and decreased the malondialdehyde dehydrogenase (MDA) content. These results indicate that GABA supplementation during HS may be used to alleviate HS-related changes in broiler chickens.


Asunto(s)
GABAérgicos/farmacología , Transportador de Glucosa de Tipo 2/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/efectos de los fármacos , Calor/efectos adversos , Mucosa Intestinal/efectos de los fármacos , Yeyuno/efectos de los fármacos , Transportador de Péptidos 1/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología , Animales , Pollos , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Glutatión Peroxidasa/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Trastornos de Estrés por Calor , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Yeyuno/metabolismo , Yeyuno/patología , Hígado/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Oxidorreductasas/efectos de los fármacos , Oxidorreductasas/metabolismo , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , ARN Mensajero/metabolismo , Estrés Fisiológico/efectos de los fármacos
4.
J Agric Food Chem ; 63(51): 10903-13, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26592089

RESUMEN

Cichoric acid, a caffeic acid derivative found in Echinacea purpurea, basil, and chicory, has been reported to have bioactive effects, such as anti-inflammatory, antioxidant, and preventing insulin resistance. In this study, to explore the effects of CA on regulating insulin resistance and chronic inflammatory responses, the insulin resistance model was constructed by glucosamine in HepG2 cells. CA stimulated glucosamine-mediated glucose uptake by stimulating translocation of the glucose transporter 2. Moreover, the production of reactive oxygen, the expression of COX-2 and iNOS, and the mRNA levels of TNF-α and IL-6 were attenuated. Furthermore, CA was verified to promote glucosamine-mediated glucose uptake and inhibited inflammation through PI3K/Akt, NF-κB, and MAPK signaling pathways in HepG2 cells. These results implied that CA could increase glucose uptake, improve insulin resistance, and attenuate glucosamine-induced inflammation, suggesting that CA is a potential natural nutraceutical with antidiabetic properties and anti-inflammatory effects.


Asunto(s)
Antiinflamatorios , Ácidos Cafeicos/farmacología , Glucosamina/farmacología , Hipoglucemiantes , Inflamación/prevención & control , Resistencia a la Insulina , Succinatos/farmacología , Suplementos Dietéticos , Glucosa/metabolismo , Transportador de Glucosa de Tipo 2/efectos de los fármacos , Transportador de Glucosa de Tipo 2/metabolismo , Células Hep G2 , Humanos , Inflamación/inducido químicamente , Hígado/efectos de los fármacos , Hígado/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Int J Biol Sci ; 11(5): 508-24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25892959

RESUMEN

Diabetes mellitus (DM) is a metabolic diseases characterized by hyperglycemia due to insufficient or inefficient insulin secretory response. This chronic disease is a global problem and there is a need for greater emphasis on therapeutic strategies in the health system. Phytochemicals such as flavonoids have recently attracted attention as source materials for the development of new antidiabetic drugs or alternative therapy for the management of diabetes and its related complications. The antidiabetic potential of flavonoids are mainly through their modulatory effects on glucose transporter by enhancing GLUT-2 expression in pancreatic ß cells and increasing expression and promoting translocation of GLUT-4 via PI3K/AKT, CAP/Cb1/TC10 and AMPK pathways. This review highlights the recent findings on beneficial effects of flavonoids in the management of diabetes with particular emphasis on the investigations that explore the role of these compounds in modulating glucose transporter proteins at cellular and molecular level.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Dieta/veterinaria , Flavonoides/farmacología , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Suplementos Dietéticos , Flavonoides/química , Transportador de Glucosa de Tipo 2/efectos de los fármacos , Transportador de Glucosa de Tipo 4/efectos de los fármacos , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Fitoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA