Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Gut Microbes ; 13(1): 1993582, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34793284

RESUMEN

Many chronic diseases are associated with decreased abundance of the gut commensal Faecalibacterium prausnitzii. This strict anaerobe can grow on dietary fibers, e.g., prebiotics, and produce high levels of butyrate, often associated to epithelial metabolism and health. However, little is known about other F. prausnitzii metabolites that may affect the colonic epithelium. Here, we analyzed prebiotic cross-feeding between F. prausnitzii and intestinal epithelial (Caco-2) cells in a "Human-oxygen Bacteria-anaerobic" coculture system. Inulin-grown F. prausnitzii enhanced Caco-2 viability and suppressed inflammation- and oxidative stress-marker expression. Inulin-grown F. prausnitzii produced excess butyrate and fructose, but only fructose efficiently promoted Caco-2 growth. Finally, fecal microbial taxonomy analysis (16S sequencing) from healthy volunteers (n = 255) showed the strongest positive correlation for F. prausnitzii abundance and stool fructose levels. We show that fructose, produced and accumulated in a fiber-rich colonic environment, supports colonic epithelium growth, while butyrate does not.


Asunto(s)
Faecalibacterium prausnitzii/metabolismo , Fructosa/metabolismo , Mucosa Intestinal/metabolismo , Inulina/metabolismo , Anaerobiosis , Butiratos/análisis , Butiratos/metabolismo , Células CACO-2 , Proliferación Celular , Supervivencia Celular , Técnicas de Cocultivo , Heces/química , Heces/microbiología , Fructosa/análisis , Microbioma Gastrointestinal , Glucosa/análisis , Glucosa/metabolismo , Transportador de Glucosa de Tipo 5/genética , Humanos , Inflamación/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Pectinas/metabolismo , Prebióticos
2.
J Photochem Photobiol B ; 211: 111995, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32836050

RESUMEN

A most crucial feature of biological adaptation is the maintenance of a close temporal relationship of behaviour and physiology with prevailing 24-h light-dark environment, which is rapidly changing with increasing nighttime illumination. This study investigated developmental effects of the loss of night on circadian behaviour, metabolism and gene expressions in diurnal zebra finches born and raised under LL, with controls on 12L:12D. Birds under LD were entrained, and showed normal body mass and a significant 24-h rhythm in both activity-rest pattern and mRNA expression of candidate genes that we measured. But, under LL, birds gained weight and accumulated lipid in the liver. Intriguingly, at the end of the experiment, the majority (4/5th) of birds under LL were rhythmic in activity despite arrhythmic expression in the hypothalamus of c-Fos (neuronal activity), Rhodopsin and Mel1-a genes (light perception), and clock genes (Bmal1, Per2 and Rev-erb ß). In peripheral tissues, LL induced variable clock gene expressions. Whereas 24-h mRNA rhythm was abolished for Bmal1 in both liver and gut, it persisted for Per2 and Rev-erb ß in liver, and for Per2 in gut. Further, we found under LL, the loss of 24-h rhythm in hepatic expression of Fasn and Cd36/Fat (biosynthesis and its uptake), and gut expression of Sglt1, Glut5, Cd36 and Pept1 (nutrient absorption) genes. As compared to LD, baseline mRNA levels of Fasn and Cd36 genes were attenuated under LL. Among major transporter genes, Sglt1 (glucose) and Cd36 (fat) genes were arrhythmic, while Glut5 (glucose) and Pept1 (protein) genes were rhythmic but with phase differences under LL, compared to LD. These results demonstrate dissociation of circadian behaviour from clock gene rhythms, and provide molecular insights into possible mechanisms at different levels (behaviour and physiology) that diurnal animals might employ in order to adapt to an emerging overly illuminated-night urban environment.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica/fisiología , Hipotálamo/fisiología , Metabolismo/fisiología , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Pinzones , Transportador de Glucosa de Tipo 5/genética , Transportador de Glucosa de Tipo 5/metabolismo , Luz , Hígado , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Fotoperiodo , ARN Mensajero/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/metabolismo , Estómago
3.
J Am Coll Nutr ; 38(8): 670-680, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31008696

RESUMEN

Objectives: Dysfunctional metabolism of carbohydrates is a fundamental component of many dietary-related disorders. It has been hypothesized that plant extracts containing high levels of antioxidants may have the ability to stabilize carbohydrate regulation. The aim of this study was to assess the effects of a polyphenol-rich sugarcane extract on cellular pathways related to carbohydrate metabolism.Methods: We evaluated the antioxidant activity of a polyphenol-rich sugarcane extract obtained by a patented hydrophobic extract process and its therapeutic potential to regulate carbohydrate metabolism and protect against metabolic disorders such as type 2 diabetes.Results: Quantitative analytical studies support that the polyphenol-rich sugarcane extract has a high concentration of polyphenols and antioxidant compounds. The follow-up cellular studies via Caco-2 cells and dysfunctional ß-cell models suggested that the polyphenol-rich sugarcane extract may help deter glucose and fructose uptake in intestinal cells and restore insulin production in dysfunctional ß-cells-key functions in managing diabetic conditions.Conclusions: These findings suggest that sugarcane polyphenols may modulate cellular mechanism in a manner that is beneficial to health.


Asunto(s)
Antioxidantes/farmacología , Hipoglucemiantes/farmacología , Extractos Vegetales/química , Polifenoles/farmacología , Saccharum/química , Animales , Antioxidantes/química , Línea Celular , Cromatografía Liquida , Cricetinae , Regulación de la Expresión Génica/efectos de los fármacos , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 5/genética , Transportador de Glucosa de Tipo 5/metabolismo , Humanos , Hipoglucemiantes/química , Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Espectrometría de Masas , Polifenoles/química
4.
Vet Med Sci ; 5(3): 451-461, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30973212

RESUMEN

The ban on the use of antibiotic in feed encouraged nutritionists to using alternatives to maintain growth performance and intestinal function of broilers. This study was conducted to evaluate the effects of Yupingfeng polysaccharides (YP) supplementation on growth performance and expression of SGLT1, GLUT2 and GLUT5 in Qingyuan partridge chicken. Experiment 1: a total of 540 chickens were randomly allocated to five groups with six replication. Dietary treatments were: (1) CON (control group), basal diet; (2) T1, CON + 0.5 g kg-1 YP; (3) T2, CON + 1 g kg-1 YP; (4) T3, CON + 2 g kg-1 YP; (5) T4, CON + 4 g kg-1 YP. Experiment 2, a total of 162 were randomly allocated to three groups with three replication. Dietary treatments were: (1) CON, basal diet; (2) T1, CON + 0.5 g kg-1 YP; (3) T2, CON + 1 g kg-1 YP. From days 1 to 14 and overall, chicken fed T1 diet had higher ADG. On day 42, there was increased villus height of jejunum in T1 group. On days 14 and 28, there was decreased villus height of duodenum and jejunum in T2 group. In duodenum, the expression of SGLT1 (days 21, 35 and 42), GLUT2 (days 7, 14, 21, 28, 35 and 42) and GLUT5 (days 7, 14, 21 and 28) was increased with YP supplementation. In jejunum, the expression of SGLT1 (days 7, 14, 21, 28 and 35), GLUT2 (days 14, 21, 28, 35 and 42) and GLUT5 (days 7, 14, 21, 28, 35 and 42) was increased with YP supplementation. In ileum, the expression of SGLT1 (days 7, 21, 35 and 42), GLUT2 (days 7, 14, 21 and 42) and GLUT5 (days 7, 14, 21, 28, 35 and 42) was increased with YP supplementation. Dietary YP supplementation improves growth performance and expression of SGLT1, GLUT2 and GLUT5 in intestine.


Asunto(s)
Pollos/crecimiento & desarrollo , Suplementos Dietéticos/análisis , Medicamentos Herbarios Chinos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Polisacáridos/farmacología , Alimentación Animal/análisis , Animales , Pollos/anatomía & histología , Pollos/genética , Dieta/veterinaria , Regulación del Desarrollo de la Expresión Génica/genética , Transportador de Glucosa de Tipo 2/efectos de los fármacos , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 5/efectos de los fármacos , Transportador de Glucosa de Tipo 5/genética , Mucosa Intestinal/anatomía & histología , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/anatomía & histología , Intestino Delgado/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Distribución Aleatoria , Transportador 1 de Sodio-Glucosa/efectos de los fármacos , Transportador 1 de Sodio-Glucosa/genética , Regulación hacia Arriba
5.
Mol Nutr Food Res ; 62(11): e1701012, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29688623

RESUMEN

SCOPE: Known pharmacological activities of guava (Psidium guajava) include modulation of blood glucose levels. However, mechanistic details remain unclear in many cases. METHODS AND RESULTS: This study investigated the effects of different guava leaf and fruit extracts on intestinal glucose transport in vitro and on postprandial glucose levels in vivo. Substantial dose- and time-dependent glucose transport inhibition (up to 80%) was observed for both guava fruit and leaf extracts, at conceivable physiological concentrations in Caco-2 cells. Using sodium-containing (both glucose transporters, sodium-dependent glucose transporter 1 [SGLT1] and glucose transporter 2 [GLUT2], are active) and sodium-free (only GLUT2 is active) conditions, we show that inhibition of GLUT2 was greater than that of SGLT1. Inhibitory properties of guava extracts also remained stable after digestive juice treatment, indicating a good chemical stability of the active substances. Furthermore, we could unequivocally show that guava extracts significantly reduced blood glucose levels (≈fourfold reduction) in a time-dependent manner in vivo (C57BL/6N mice). Extracts were characterized with respect to their main putative bioactive compounds (polyphenols) using HPLC and LC-MS. CONCLUSION: The data demonstrated that guava leaf and fruit extracts can potentially contribute to the regulation of blood glucose levels.


Asunto(s)
Glucosa/metabolismo , Mucosa Intestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Psidium/química , Animales , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Femenino , Frutas/química , Glucosa/farmacocinética , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 5/genética , Transportador de Glucosa de Tipo 5/metabolismo , Humanos , Hipoglucemiantes/farmacología , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Extractos Vegetales/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Polifenoles/análisis , Periodo Posprandial , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/metabolismo
6.
Mol Nutr Food Res ; 61(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28868668

RESUMEN

SCOPE: High glycaemic sugars result in blood-glucose spikes, while large doses of post-prandial fructose inundate the liver, causing an imbalance in energy metabolism, both leading to increased risk of metabolic malfunction and type 2 diabetes. Acarbose, used for diabetes management, reduces post-prandial hyperglycaemia by delaying carbohydrate digestion. METHODS AND RESULTS: Chamomile and green teas both inhibited digestive enzymes (α-amylase and maltase) related to intestinal sugar release, as already established for acarbose. However, acarbose had no effect on uptake of sugars using both differentiated human Caco-2 cell monolayers and Xenopus oocytes expressing human glucose transporter-2 (GLUT2) and GLUT5. Both teas effectively inhibited transport of fructose and glucose through GLUT2 inhibition, while chamomile tea also inhibited GLUT5. Long term incubation of Caco-2/TC7 cells with chamomile tea for 16 h or 4 days did not enhance the observed effects, indicating that inhibition is acute. Sucrase activity was directly inhibited by green tea and acarbose, but not chamomile. CONCLUSION: These findings show that chamomile and green teas are potential tools to manage absorption and metabolism of sugars with efficacy against high sugar bolus stress inflicted, for example, by high fructose syrups, where the drug acarbose would be ineffective.


Asunto(s)
Acarbosa/farmacología , Manzanilla/química , Glucosa/metabolismo , Té/química , Tés de Hierbas , Animales , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Diferenciación Celular/efectos de los fármacos , Fructosa/metabolismo , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 5/antagonistas & inhibidores , Transportador de Glucosa de Tipo 5/genética , Transportador de Glucosa de Tipo 5/metabolismo , Humanos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Sacarosa/metabolismo , Xenopus , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo
7.
Sci Rep ; 7(1): 6197, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740135

RESUMEN

Human GLUT5 is a fructose-specific transporter in the glucose transporter family (GLUT, SLC2 gene family). Its substrate-specificity and tissue-specific expression make it a promising target for treatment of diabetes, metabolic syndrome and cancer, but few GLUT5 inhibitors are known. To identify and characterize potential GLUT5 ligands, we developed a whole-cell system based on a yeast strain deficient in fructose uptake, in which GLUT5 transport activity is associated with cell growth in fructose-based media or assayed by fructose uptake in whole cells. The former method is convenient for high-throughput screening of potential GLUT5 inhibitors and activators, while the latter enables detailed kinetic characterization of identified GLUT5 ligands. We show that functional expression of GLUT5 in yeast requires mutations at specific positions of the transporter sequence. The mutated proteins exhibit kinetic properties similar to the wild-type transporter and are inhibited by established GLUT5 inhibitors N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodioxol-5-amine (MSNBA) and (-)-epicatechin-gallate (ECG). Thus, this system has the potential to greatly accelerate the discovery of compounds that modulate the fructose transport activity of GLUT5.


Asunto(s)
Inhibidores Enzimáticos/aislamiento & purificación , Fructosa/metabolismo , Transportador de Glucosa de Tipo 5/metabolismo , Mutación , Transporte Biológico , Catequina/análogos & derivados , Catequina/farmacología , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Transportador de Glucosa de Tipo 5/antagonistas & inhibidores , Transportador de Glucosa de Tipo 5/química , Transportador de Glucosa de Tipo 5/genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Cinética , Ligandos , Modelos Moleculares , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
8.
Sci Rep ; 6: 24240, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27074918

RESUMEN

GLUT5, a fructose-transporting member of the facilitative glucose transporter (GLUT, SLC2) family, is a therapeutic target for diabetes and cancer but has no potent inhibitors. We virtually screened a library of 6 million chemicals onto a GLUT5 model and identified N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodioxol-5-amine (MSNBA) as an inhibitor of GLUT5 fructose transport in proteoliposomes. MSNBA inhibition was specific to GLUT5; this inhibitor did not affect the fructose transport of human GLUT2 or the glucose transport of human GLUT1-4 or bacterial GlcPSe. In MCF7 cells, a human breast cancer cell line, MSNBA competitively inhibited GLUT5 fructose uptake with a KI of 3.2 ± 0.4 µM. Ligand docking, mutagenesis and functional studies indicate that MSNBA binds near the active site and inhibitor discrimination involves H387 of GLUT5. Thus, MSNBA is a selective and potent inhibitor of fructose transport via GLUT5, and the first chemical probe for this transporter. Our data indicate that active site differences in GLUT members could be exploited to further enhance ligand specificity.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/aislamiento & purificación , Transportador de Glucosa de Tipo 5/antagonistas & inhibidores , Transporte Biológico/efectos de los fármacos , Dominio Catalítico , Fructosa/metabolismo , Transportador de Glucosa de Tipo 5/genética , Transportador de Glucosa de Tipo 5/metabolismo , Humanos , Células MCF-7 , Simulación de Dinámica Molecular , Mutagénesis , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA