Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lasers Med Sci ; 34(9): 1829-1839, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30949786

RESUMEN

Satellite cells, a population of skeletal muscular stem cells, are generally recognized as the main and, possibly, the sole source of postnatal muscle regeneration. Previous studies have revealed the potential of low-level laser (LLL) irradiation in promoting satellite cell proliferation, which, thereby, boosts the recovery of skeletal muscle from atrophy. The purpose of this study is to investigate the beneficial effect of LLL on disuse-induced atrophy. The optimal irradiation condition of LLL (808 nm) enhancing the proliferation of Pax7+ve cells, isolated from tibialis anterior (TA) muscle, was examined and applied on TA muscle of disuse-induced atrophy model of the rats accordingly. Healthy rats were used as the control. On one hand, transiently, LLL was able to postpone the progression of atrophy for 1 week through a reduction of apoptosis in Pax7-veMyoD+ve (myocyte) population. Simultaneously, a significant enhancement was observed in Pax7+veMyoD+ve population; however, most of the increased cells underwent apoptosis since the second week, which suggested an impaired maturation of the population. On the other hand, in normal control rats with LLL irradiation, a significant increase in Pax7+veMyoD+ve cells and a significant decrease of apoptosis were observed. As a result, a strengthened muscle contraction was observed. Our data showed the capability of LLL in postponing the progression of disuse-induced atrophy for the first time. Furthermore, the result of normal rats with LLL irradiation showed the effectiveness of LLL to strengthen muscle contraction in healthy control.


Asunto(s)
Terapia por Luz de Baja Intensidad , Trastornos Musculares Atróficos/radioterapia , Animales , Apoptosis , Proliferación Celular/efectos de la radiación , Modelos Animales de Enfermedad , Masculino , Contracción Muscular , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Factor de Transcripción PAX7/metabolismo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA