Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Environ Pollut ; 337: 122539, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37699452

RESUMEN

Microalgal-bacterial symbiosis (MABS) system performs synergistic effect on the reduction of nutrients and carbon emissions in the water treatment process. However, antimicrobial agents are frequently detected in water, which influence the performance of MABS system. In this study, triclosan (TCS) was selected to reveal the effects and mechanisms of antimicrobial agents on MABS system. Results showed that the removal efficiencies of chemical oxygen demand, NH4+-N and total phosphorus decreased by 3.0%, 24.0% and 14.3% under TCS stress. In contrast, there were no significant decrease on the removal effect of total nitrogen. Mechanism analysis showed that both the growth rate of microorganisms and the nutrients retention capacity of extracellular polymeric substances were decreased. The intracellular accumulation for nitrogen and phosphorus was promoted due to the increased cytomembrane permeability caused by lipid peroxidation. Moreover, microalgae were dominant in MABS system with ratio between microalgae and bacteria of more than 5.49. The main genus was Parachlorella, with abundance of more than 90%. Parachlorella was highly tolerant to TCS, which might be conductive to maintain its survival. This study revealed the nutrients pathways of MABS system under TCS stress, and helped to optimize the operation of MABS system.


Asunto(s)
Antiinfecciosos , Microalgas , Triclosán , Triclosán/análisis , Microalgas/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Simbiosis , Bacterias/metabolismo , Biomasa
2.
PLoS One ; 18(4): e0284855, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37098094

RESUMEN

Burkholderia multivorans causes opportunistic pulmonary infections and is intrinsically resistant to many antibacterial compounds including the hydrophobic biocide triclosan. Chemical permeabilization of the Pseudomonas aeruginosa outer membrane affects sensitization to hydrophobic substances. The purpose of the present study was to determine if B. multivorans is similarly susceptive suggesting that outer membrane impermeability properties underlie triclosan resistance. Antibiograms and conventional macrobroth dilution bioassays were employed to establish baseline susceptibility levels to hydrophobic antibacterial compounds. Outer membrane permeabilizers compound 48/80, polymyxin B, polymyxin B-nonapeptide, and ethylenediaminetetraacetic acid were used in attempts to sensitize disparate B. multivorans isolates to the hydrophobic agents novobiocin and triclosan, and to potentiate partitioning of the hydrophobic fluorescent probe 1-N-phenylnapthylamine (NPN). The lipophilic agent resistance profiles for all B. multivorans strains were essentially the same as that of P. aeruginosa except that they were resistant to polymyxin B. Moreover, they resisted sensitization to hydrophobic compounds and remained inaccessible to NPN when treated with outer membrane permeabilizers. These data support the notion that while both phylogenetically-related organisms exhibit general intrinsic resistance properties to hydrophobic substances, the outer membrane of B. multivorans either resists permeabilization by chemical modification or sensitization is mitigated by a supplemental mechanism not present in P. aeruginosa.


Asunto(s)
Complejo Burkholderia cepacia , Triclosán , Triclosán/farmacología , Polimixina B/farmacología , Pseudomonas aeruginosa , Novobiocina/farmacología , Antibacterianos/farmacología
3.
Sci Total Environ ; 872: 162114, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36764530

RESUMEN

Triclosan (TCS) and triclocarban (TCC) are antimicrobials that are widely applied in personal care products, textiles, and plastics. TCS and TCC exposure at low doses may disturb hormone levels and even facilitate bacterial resistance to antibiotics. In the post-coronavirus disease pandemic era, chronic health effects and the spread of antibiotic resistance genes associated with TCS and TCC exposure represent an increasing concern. This study sought to screen and review the exposure levels and sources and changes after the onset of the coronavirus disease (COVID-19) pandemic, potential health outcomes, bacterial resistance and cross-resistance, and health risk assessment tools associated with TCS and TCC exposure. Daily use of antimicrobial products accounts for most observed associations between internal exposure and diseases, while secondary exposure at trace levels mainly lead to the spread of antibiotic resistance genes. The roles of altered gut microbiota in multi-system toxicities warrant further attention. Sublethal dose of TCC selects ARGs without obviously increasing tolerance to TCC. But TCS induce persistent TCS resistance and reversibly select antibiotic resistance, which highlights the benefits of minimizing its use. To derive reference doses (RfDs) for humans, more sensitive endpoints observed in populational studies need to be confirmed using toxicological tests. Additionally, the human equivalent dose is recommended to be incorporated into the health risk assessment to reduce uncertainty of extrapolation.


Asunto(s)
Antiinfecciosos , COVID-19 , Carbanilidas , Triclosán , Humanos , Triclosán/toxicidad , Carbanilidas/toxicidad , Antibacterianos , Medición de Riesgo
4.
Sci Total Environ ; 856(Pt 2): 159187, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36202363

RESUMEN

The continuous accumulation of chlorinated organic pollutants in soil poses a potential threat to ecosystems and human health alike. Alkali-catalyzed hydrothermal oxidation (HTO) can successfully remove chlorinated organic pollutants from water, but it is rarely applied to soil remediation. In this work, we assessed this technique to degrade and detoxify triclosan (TCS) in soil and we determined the underlying mechanisms. The results showed a dechlorination efficiency of TCS (100 mg per kg soil) of 49.03 % after 120 min reaction (H2O2/soil ratio 25 mL·g-1, reaction temperature 180 °C in presence of 1 g·L-1 NaOH). It was found that soil organic constituents (humic acid, HA) and inorganic minerals (SiO2, Al2O3, and CaCO3) suppressed the dechlorination degradation of TCS, with HA having the strongest inhibitory effect. During alkali-catalyzed HTO, the TCS molecules were effectively destroyed and humic acid-like or fulvic acid-like organics with oxygen functional groups were generated. Fluorescence spectroscopy analysis showed that hydroxyl radicals (OH) were the dominant reactive species of TCS degradation in soil. On the basis of the Fukui function and the degradation intermediates, two degradation pathways were proposed. One started with cleavage of the ether bond between the benzene rings of TCS, followed by dechlorination and the opening of benzene via oxidation. The other pathway started with direct hydroxylation of the benzene rings of TCS, after which they were opened and dechlorinated through oxidation. Analysis of the soil structure before and after treatment revealed that the soil surface changed from rough to smooth without affecting soil surface elements. Finally, biotoxicity tests proved that alkali-catalyzed HTO effectively reduced the toxicity of TCS-contaminated soil. This study suggests that alkali-catalyzed hydrothermal oxidation provides an environmentally friendly approach for the treatment of soil contaminated with chlorinated organics such as TCS.


Asunto(s)
Contaminantes Ambientales , Triclosán , Contaminantes Químicos del Agua , Humanos , Triclosán/metabolismo , Sustancias Húmicas , Suelo , Peróxido de Hidrógeno , Álcalis , Benceno , Ecosistema , Dióxido de Silicio , Catálisis , Contaminantes Químicos del Agua/análisis
5.
J Environ Sci (China) ; 124: 481-490, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182156

RESUMEN

Triclosan (TCS) is a ubiquitous antimicrobial used in daily consumer products. Previous reports have shown that TCS could induce hepatotoxicity, endocrine disruption, disturbance on immune function and impaired thyroid function. Kidney is critical in the elimination of toxins, while the effects of TCS on kidney have not yet been well-characterized. The aim of the present study was to investigate the effects of TCS exposure on kidney function and the possible underlying mechanisms in mice. Male C57BL/6 mice were orally exposed to TCS with the doses of 10 and 100 mg/(kg•day) for 13 weeks. TCS was dissolved in dimethyl sulfoxide (DMSO) and diluted by corn oil for exposure. Corn oil containing DMSO was used as vehicle control. Serum and kidney tissues were collected for study. Biomarkers associated with kidney function, oxidative stress, inflammation and fibrosis were assessed. Our results showed that TCS could cause renal injury as was revealed by increased levels of renal function markers including serum creatinine, urea nitrogen and uric acid, as well as increased oxidative stress, pro-inflammatory cytokines and fibrotic markers in a dose dependent manner, which were more significantly in 100 mg/(kg•day) group. Mass spectrometry-based analysis of metabolites related with lipid metabolism demonstrated the occurrence of lipid accumulation and defective fatty acid oxidation in 100 mg/(kg•day) TCS-exposed mouse kidney. These processes might lead to lipotoxicity and energy depletion, thus resulting in kidney fibrosis and functional decline. Taken together, the present study demonstrated that TCS could induce lipid accumulation and fatty acid metabolism disturbance in mouse kidney, which might contribute to renal function impairment. The present study further widens our insights into the adverse effects of TCS.


Asunto(s)
Antiinfecciosos , Trastornos del Metabolismo de los Lípidos , Triclosán , Animales , Aceite de Maíz/metabolismo , Aceite de Maíz/farmacología , Creatinina/metabolismo , Creatinina/farmacología , Citocinas/metabolismo , Citocinas/farmacología , Dimetilsulfóxido/metabolismo , Dimetilsulfóxido/farmacología , Ácidos Grasos/metabolismo , Fibrosis , Riñón/metabolismo , Metabolismo de los Lípidos , Trastornos del Metabolismo de los Lípidos/inducido químicamente , Trastornos del Metabolismo de los Lípidos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrógeno/metabolismo , Triclosán/toxicidad , Urea , Ácido Úrico/metabolismo , Ácido Úrico/farmacología
6.
Chemosphere ; 307(Pt 3): 135964, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35970220

RESUMEN

Triclosan (TCS) is an antibacterial compound used mainly in personal care products. Its widespread use for decades has made it one of the most widely detected compounds in environmental matrices and in biological fluids. Although it has been shown to be an endocrine disruptor in rats and aquatic species, its safe use by humans is unclear. The aim of the present study was to evaluate the effects of exposure to TCS in female rats. To this end, 14 rats were divided into two groups and fed daily as follows: the control group with sesame oil and the TCS group at a dose of 50 mg/kg/day for 28 days. Any signs of toxicity in the rats were observed daily, and the weight and phase of the estrous cycle were recorded. At the end, the rats were decapitated, the serum and ovaries were collected. The levels of testosterone and progesterone in serum were determined by immunoassay and mass spectrometry. Estradiol (in serum) and kisspeptin-10 (in serum and ovary) were measured only by immunoassays. Trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The weight gain study of the rats showed a significant decrease by exposure to TCS, while the estrous cycle was not significantly affected compared to the control. The optimized methods based on mass spectrometry showed a significant decrease in the levels of progesterone and testosterone due to exposure to TCS. In addition, elements determined by ICP-MS in rat serum showed significant changes in calcium, lithium and aluminum due to TCS treatment. Finally, the kisspeptin-10 levels did not show a negative effect due to the treatment by TCS. The results suggest that medium-term exposure to TCS did not significantly alter estrous cyclicity but caused alterations in growth, sex hormone levels and some elements in the rat serum.


Asunto(s)
Disruptores Endocrinos , Oligoelementos , Triclosán , Aluminio , Animales , Antibacterianos , Calcio , Disruptores Endocrinos/toxicidad , Estradiol , Femenino , Hormonas Esteroides Gonadales , Humanos , Litio , Progesterona , Ratas , Aceite de Sésamo , Testosterona , Triclosán/toxicidad
7.
J Control Release ; 347: 379-388, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35550914

RESUMEN

Wound biofilm infections caused by multidrug-resistant (MDR) bacteria constitute a major threat to public health; acquired resistance combined with resistance associated with the biofilm phenotype makes combatting these infections challenging. Biodegradable polymeric nanoemulsions that encapsulate two hydrophobic antimicrobial agents (eugenol and triclosan) (TE-BNEs) as a strategy to combat chronic wound infections are reported here. The cationic nanoemulsions efficiently penetrate and accumulate in biofilms, synergistically eradicating MDR bacterial biofilms, including persister cells. Notably, the nanoemulsion platform displays excellent biocompatibility and delays emergence of resistance to triclosan. The TE-BNEs are active in an in vivo murine model of mature MDR wound biofilm infections, with 99% bacterial elimination. The efficacy of this system coupled with prevention of emergence of bacterial resistance highlight the potential of this combination platform to treat MDR wound biofilm infections.


Asunto(s)
Antiinfecciosos , Triclosán , Animales , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Ratones , Pruebas de Sensibilidad Microbiana , Triclosán/química , Triclosán/farmacología
8.
Sci Total Environ ; 834: 155234, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427621

RESUMEN

This study describes a new bioaugmentation alternative based on the application of aqueous aerated extracts from a biomixture acclimated with ibuprofen, diclofenac and triclosan. This bioaugmentation strategy was assayed in biopurification systems (BPS) and in contaminated aqueous solutions to accelerate the removal of these emerging contaminants. Sterilized extracts or extracts from the initial uncontaminated biomixture were used as controls. In BPS, the dissipation of 90% of diclofenac and triclosan required, respectively, 60 and 108 days less than in the controls. The metabolite methyl-triclosan was determined at levels 12 times lower than in controls. In the bioaugmented solutions, ibuprofen was almost completely eliminated (99%) in 21 days and its hydroxylated metabolites were also determined to be at lower levels than in the controls. The plasmidome of acclimated biomixtures and its extract appeared to maintain certain types of plasmids but degradation related genes became less evident. Several dominant OTUs found in the extract identified as Flavobacterium and Fluviicola of the phylum Bacteroidetes, Thermomicrobia (phylum Chloroflexi) and Nonomuraea (phylum Actinobacteria), may be responsible for the enhanced dissipation of these contaminants. This bioaugmentation strategy represents an advantageous tool to facilitate in situ bioaugmentation.


Asunto(s)
Triclosán , Biodegradación Ambiental , Diclofenaco , Ibuprofeno , Extractos Vegetales
9.
Artículo en Inglés | MEDLINE | ID: mdl-35410624

RESUMEN

Endocrine disruptors are natural or man-made chemicals that interfere with the body's endocrine system leading to hormone synthesis and production defects. These chemicals are categorized as plasticizers and cosmetic chemicals, heavy metals, phytoestrogens, pesticides, detergents, surfactants, and flame retardants. Some of the most common endocrine disruptors are dioxins, bisphenol A, phthalates, perchlorate, perfluoroalkyl, and poly-fluoroalkyl substances (PFAs), phytoestrogens, polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCB), triclosan, atrazine, lead, arsenic, mercury, organophosphate pesticides, and glycol ethers. Epigenetic alterations such as DNA methylation, histone modification, and miRNA regulation have been observed to play a major role in many diseases such as cancer, neurodegenerative diseases, PCOS, cardiovascular diseases, and various other disorders. In recent times, there has been a focus on endocrine-disrupting chemicals in epigenetic alterations. This review concentrates on estrogen and androgen disrupting effects, placental, and fetal effects, thyroid disrupting effects, and transgenerational effects of endocrine disruptors.


Asunto(s)
Arsénico , Atrazina , Dioxinas , Disruptores Endocrinos , Retardadores de Llama , Fluorocarburos , Mercurio , MicroARNs , Plaguicidas , Bifenilos Policlorados , Triclosán , Andrógenos , Detergentes , Disruptores Endocrinos/toxicidad , Epigénesis Genética , Femenino , Glicoles , Éteres Difenilos Halogenados , Humanos , Organofosfatos , Percloratos , Plaguicidas/toxicidad , Fitoestrógenos/toxicidad , Placenta , Plastificantes , Bifenilos Policlorados/farmacología , Embarazo
10.
Environ Microbiol ; 24(3): 1573-1589, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35192222

RESUMEN

Soil fertilization with wastewater treatment plant (WWTP) biosolids is associated with the introduction of resistance genes (RGs), mobile genetic elements (MGEs) and potentially selective pollutants (antibiotics, heavy metals, disinfectants) into soil. Not much data are available on the parallel analysis of biosolid pollutant contents, RG/MGE abundances and microbial community composition. In the present study, DNA extracted from biosolids taken at 12 WWTPs (two large-scale, six middle-scale and four small-scale plants) was used to determine the abundance of RGs and MGEs via quantitative real-time PCR and the bacterial and archaeal community composition was assessed by 16S rRNA gene amplicon sequencing. Concentrations of heavy metals, antibiotics, the biocides triclosan, triclocarban and quaternary ammonium compounds (QACs) were measured. Strong and significant correlations were revealed between several target genes and concentrations of Cu, Zn, triclosan, several antibiotics and QACs. Interestingly, the size of the sewage treatment plant (inhabitant equivalents) was negatively correlated with antibiotic concentrations, RGs and MGEs abundances and had little influence on the load of metals and QACs or the microbial community composition. Biosolids from WWTPs with anaerobic treatment and hospitals in their catchment area were associated with a higher abundance of potential opportunistic pathogens and higher concentrations of QACs.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Microbiota , Contaminantes del Suelo , Triclosán , Purificación del Agua , Antibacterianos/farmacología , Biosólidos , Secuencias Repetitivas Esparcidas , Microbiota/genética , ARN Ribosómico 16S/genética , Aguas del Alcantarillado , Suelo , Triclosán/farmacología
11.
Eur J Clin Microbiol Infect Dis ; 40(7): 1517-1520, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33635424

RESUMEN

This study aimed to compare the antimicrobial action of three soaps for hand hygiene (HH): 2.0% Tea Tree Oil (TTO); 0.5% triclosan; 2.0% chlorhexidine, and to explore the perception of healthcare professionals about TTO. Two-step study: a quantitative, to determine the logarithmic reduction of Escherichia coli K12 colony-forming units before and after HH of 15 volunteers and quali-quantitative, through interviews with 23 health professionals. All the three products demonstrated antimicrobial action (a log10 reduction factor of 4.18 for TTO, 4.31 for triclosan, 3.89 for chlorhexidine, and 3.17 for reference soap). Professionals remarked the pleasant aroma and non-dryness of skin when using soap containing TTO.


Asunto(s)
Clorhexidina/farmacología , Higiene de las Manos , Jabones/farmacología , Aceite de Árbol de Té/química , Aceite de Árbol de Té/farmacología , Triclosán/farmacología , Adulto , Antiinfecciosos/química , Antiinfecciosos/farmacología , Clorhexidina/química , Estudios Cruzados , Humanos , Persona de Mediana Edad , Piel/efectos de los fármacos , Jabones/química , Triclosán/química , Adulto Joven
12.
Chem Res Toxicol ; 34(5): 1319-1328, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33611912

RESUMEN

Triclosan (TCS) is a ubiquitous antimicrobial used in many daily consumer products. It has been reported to induce endocrine disrupting effects at low doses in mammals, disturbing sex hormone function and thyroid function. The hypothalamus plays a crucial role in the maintenance of neuroendocrine function and energy homeostasis. We speculated that the adverse effects of TCS might be related to the disturbance of metabolic processes in hypothalamus. The present study aimed at investigating the effects of TCS exposure on the protein and metabolite profiles in hypothalamus of mice. Male C57BL/6 mice were orally exposed to TCS at the dosage of 10 mg/kg/d for 13 weeks. The hypothalamus was isolated and processed for mass spectrometry (MS)-based proteomics and metabolomics analyses. The results showed that a 10.6% decrease (P = 0.066) in body weight gain was observed in the TCS exposure group compared with vehicle control group. Differential analysis defined 52 proteins and 57 metabolites that delineated TCS exposed mice from vehicle controls. Among the differential features, multiple proteins and metabolites were found to play vital roles in neuronal signaling and function. Bioinformatics analysis revealed that these differentially expressed proteins and metabolites were involved in four major biological processes, including glucose metabolism, purine metabolism, neurotransmitter release, and neural plasticity, suggesting the disturbance of homeostasis in energy metabolism, mitochondria function, neurotransmitter system, and neuronal function. Our results may provide insights into the neurotoxicity of TCS and extend our understanding of the biological effects induced by TCS exposure.


Asunto(s)
Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Metabolómica , Proteómica , Triclosán/farmacología , Animales , Peso Corporal/efectos de los fármacos , Biología Computacional , Relación Dosis-Respuesta a Droga , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Triclosán/administración & dosificación , Triclosán/química
13.
Bioresour Technol ; 319: 124134, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32966969

RESUMEN

Triclosan (TCS) is applied in a wide range of pharmaceutical and personal care products to prevent or reduce bacterial growth. In this study, the effects of TCS on phosphate removal and bacterial community shifts of activated sludge, especially on functional bacteria variation, were investigated. Compared with the control group (R-control), the treatment group (R-TCS) with 100 µg/L TCS inhibited the microbial growth. In addition, the phosphorus removal efficiency of PO43--P and total phosphorus removal rates declined by 15.99% and 7.81%, respectively. Proteobacteria gradually dominated the microorganisms. The growths of Proteobacteria and Bacteroidetes were inhibited when 150 µg/L of TCS was added. Moreover, the differences in the microbial community structures of the R-control and R-TCS groups gradually expanded, no obvious difference was observed in the final stage, and the interrelationships of microbes in the latter weakened. The long-term addition of TCS impairs the growth of polyphosphate-accumulating organisms (PAOs).


Asunto(s)
Microbiota , Triclosán , Reactores Biológicos , Fósforo , Proteobacteria , Aguas del Alcantarillado
15.
Anat Rec (Hoboken) ; 303(8): 2213-2234, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31922341

RESUMEN

We have assessed the effects of the broad-spectrum bactericide triclosan on the liver of pregnant albino rats and their offspring, and evaluated the protective potential of bee honey, which has radical-scavenging properties. The study involved treatment of 72 pregnant rats followed by examination of the pregnant rats and their offspring. The pregnant rats were divided equally into six groups (I-VI), each of which was subdivided equally into two Subgroups (A and B). Rats in the A subgroups were gavaged with a daily dose of 1.26 ml distilled water (IA), 1 ml corn oil (IIA), 1.68 ml aqueous solution of Clover Blossom honey (IIIA), 0.3 mg triclosan (IVA), 13 mg triclosan (VA), or 1.68 ml aqueous solution of honey with 13 mg triclosan (VIA), throughout pregnancy. Rats in the B subgroups received the same treatments throughout pregnancy and for 14 days after delivery. At the end of the experiments, the offspring's numbers were recorded and blood samples were taken from the pregnant rats for analysis. The livers of the studied groups were subjected for; histological study, morphometric analysis, and biochemical estimation of markers of oxidative stress. The results showed that the acceptable daily intake of triclosan did not induce significant pathological changes in the liver while high dose of triclosan induced pathological changes in the livers and reduced the numbers of offspring. Co-administration of honey with triclosan ameliorated most pathological change. Therefore, decrease the exposure of the pregnant women to triclosan is encouraged or co-supplementation with bee honey if exposure could not be avoided.


Asunto(s)
Miel , Tamaño de la Camada/efectos de los fármacos , Hígado/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/patología , Triclosán/farmacología , Animales , Femenino , Hígado/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Embarazo , Ratas
16.
Environ Pollut ; 257: 113472, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31767233

RESUMEN

Antibiotic resistance is a major public health concern. Triclosan is an antimicrobial compound with direct links to antibiotic resistance that was widely used in soaps in the U.S. until its ban by the U.S. Food and Drug Administration. Benzalkonium chloride (BAC), a quaternary ammonium compound, has widely replaced triclosan in soaps marketed as an antibacterial. BAC has been detected in surface waters and its presence will likely increase following increased use in soap products. The objective of this study was to determine the effect of BAC on relative abundance of antibiotic resistance in a bacterial community from a surface water used as a source for drinking water treatment. Bench-scale microcosm experiments were conducted with microbial communities amended with BAC at concentrations ranging from 0.1 µg L-1 to 500 µg L-1. Phenotypic antibiotic resistance was quantified by culturing bacteria in the presence of different antibiotics, and genotypic resistance was determined using qPCR to quantify antibiotic resistance genes (ARGs). BAC at concentrations ranging from 0.1 µg L-1 to 500 µg L-1 was found to positively select for bacteria resistant to ciprofloxacin and sulfamethoxazole, and negatively select against bacteria with resistance to six other antibiotics. Exposure to BAC for 14 days increased the relative abundance of sul1 and blaTEM. This study re-highlights the importance of employing both culture and non-culture-based techniques to identify selection for antibiotic resistance. The widespread use of BAC will likely impact antibiotic resistance profiles of bacteria in the environment, including in source waters used for drinking water, wastewater treatment plants, and natural waterways.


Asunto(s)
Compuestos de Benzalconio/análisis , Agua Potable/microbiología , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Antibacterianos/análisis , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Genes Bacterianos/efectos de los fármacos , Sulfametoxazol/farmacología , Triclosán , Aguas Residuales/microbiología , Microbiología del Agua
17.
ChemMedChem ; 14(23): 1995-2004, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31670463

RESUMEN

Enoyl-acyl carrier protein reductase (FabI) is the limiting step to complete the elongation cycle in type II fatty acid synthase (FAS) systems and is a relevant target for antibacterial drugs. E. coli FabI has been employed as a model to develop new inhibitors against FAS, especially triclosan and diphenyl ether derivatives. Chemical similarity models (CSM) were used to understand which features were relevant for FabI inhibition. Exhaustive screening of different CSM parameter combinations featured chemical groups, such as the hydroxy group, as relevant to distinguish between active/decoy compounds. Those chemical features can interact with the catalytic Tyr156. Further molecular dynamics simulation of FabI revealed the ionization state as a relevant for ligand stability. Also, our models point the balance between potency and the occupancy of the hydrophobic pocket. This work discusses the strengths and weak points of each technique, highlighting the importance of complementarity among approaches to elucidate EcFabI inhibitor's binding mode and offers insights for future drug discovery.


Asunto(s)
Antibacterianos/síntesis química , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Proteínas de Escherichia coli/antagonistas & inhibidores , Triclosán/análogos & derivados , Triclosán/síntesis química , Secuencia de Aminoácidos , Antibacterianos/farmacología , Sitios de Unión , Evaluación Preclínica de Medicamentos , Enoil-ACP Reductasa (NADH)/metabolismo , Inhibidores Enzimáticos/farmacología , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Acido Graso Sintasa Tipo II/metabolismo , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Triclosán/farmacología
18.
BMJ Open ; 9(9): e029727, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481559

RESUMEN

INTRODUCTION AND OBJECTIVES: Surgical site infections (SSIs) represent a common and serious complication of all surgical interventions. Microorganisms are able to colonise sutures that are implanted in the skin, which is a causative factor of SSIs. Triclosan-coated sutures are antibacterial sutures aimed at reducing SSIs. Our objective is to update the existing literature by systematically reviewing available evidence to assess the effectiveness of triclosan-coated sutures in the prevention of SSIs. METHODS: A systematic review of EMBASE, MEDLINE, AMED (Allied and complementary medicine database) and CENTRAL was performed to identify full text randomised controlled trials (RCTs) on 31 May 2019. INTERVENTION: Triclosan-coated sutures versus non-triclosan-coated sutures. PRIMARY OUTCOME: Our primary outcome was the development of SSIs at 30 days postoperatively. A meta-analysis was performed using a fixed-effects model. RESULTS: Twenty-five RCTs were included involving 11 957 participants. Triclosan-coated sutures were used in 6008 participants and non triclosan-coated sutures were used in 5949. Triclosan-coated sutures significantly reduced the risk of SSIs at 30 days (relative risk 0.73, 95% CI 0.65 to 0.82). Further sensitivity analysis demonstrated that triclosan-coated sutures significantly reduced the risk of SSIs in both clean and contaminated surgery. CONCLUSION: Triclosan-coated sutures have been shown to significantly reduced the risk of SSIs when compared with standard sutures. This is in agreement with previous work in this area. This study represented the largest review to date in this area. This moderate quality evidence recommends the use of triclosan-coated sutures in order to reduce the risk of SSIs particularly in clean and contaminated surgical procedures. PROSPERO REGISTRATION NUMBER: CRD42014014856.


Asunto(s)
Materiales Biocompatibles Revestidos , Infección de la Herida Quirúrgica/prevención & control , Técnicas de Sutura/instrumentación , Suturas , Triclosán/farmacología , Antiinfecciosos Locales/farmacología , Humanos
19.
Mol Biotechnol ; 61(9): 674-680, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31218651

RESUMEN

The use of triclosan (TCS), an antimicrobial agent in consumer product, results in adverse effects on the environment due to its wide usage all over the world. The present study focused on TCS detection and attempted for degradation by biosurfactant produced by Bacillus licheniformis from domestic wastewater in Surathkal region, Karnataka, India. The experimental investigation includes biosurfactant production using crude sunflower oil and detection and degradation of TCS from wastewater by High-Performance Liquid Chromatography (HPLC). Results exhibited that maximum biosurfactant yield (7.8 g/L) was achieved using 1 g/L of glycerol as carbon and 5.5 g/L of ammonium bicarbonate as a nitrogen source. Detection of TCS from domestic wastewater (0.36 mg/L) and degradation was carried out by HPLC. The result discloses that 47.2% and 100% removal of TCS was achieved in 2 h and 16 h for 1:1(v/v) ratio of wastewater and biosurfactant.


Asunto(s)
Bacillus licheniformis/química , Tensoactivos/química , Triclosán/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Bacillus licheniformis/metabolismo , Bicarbonatos/metabolismo , Biodegradación Ambiental , Cromatografía Líquida de Alta Presión , Glicerol/metabolismo , Humanos , Aceite de Girasol/metabolismo , Tensoactivos/aislamiento & purificación , Tensoactivos/metabolismo , Triclosán/química , Contaminantes Químicos del Agua/química
20.
Sci Total Environ ; 662: 978-989, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30795484

RESUMEN

Triclosan (TCS), an antimicrobial agent added in many pharmaceutical and personal care products, can cause some environmental problems due to its bioaccumulation, toxicity and potential antibiotic cross-resistance. In this study, Ginkgo biloba L. leaf extract was used as the green stabilizing agent to synthesize Fe/Co bimetallic nanoparticles (G-Fe/Co NPs), which were applied to remove TCS from aqueous solution. G-Fe/Co NPs were characterized by TEM, EDS, SEM, BET, FTIR, XRD and XPS. G. biloba L. leaf extract improved the dispersion and reduced the passivation of NPs. The TCS removal efficiency followed the order of G-Fe/Co NPs > G-Fe NPs > Co NPs > Fe/Co NPs > Fe NPs. G-Fe/Co NPs can be reused at least eight times. The Co leaching under different initial pH values was negligible. The factors affecting the TCS removal were investigated. The results indicated that the removal of TCS followed pseudo-second-order kinetics, and the removal rate constant decreased with increasing the initial pH value and the initial TCS concentration, and decreasing the Co loading of G-Fe/Co NPs and NPs dosage. The mass balance of TCS removal by G-Fe/Co NPs indicated that adsorption was dominant process and TCS degradation was an accumulative process.


Asunto(s)
Cobalto/química , Ginkgo biloba/química , Hierro/química , Nanopartículas/química , Triclosán/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Restauración y Remediación Ambiental/métodos , Modelos Teóricos , Extractos Vegetales/química , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA