Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Thyroid ; 34(2): 243-251, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38149585

RESUMEN

Background: The importance of thyroid hormones (THs) for peripheral body temperature regulation has been long recognized, as medical conditions such as hyper- and hypothyroidism lead to alterations in body temperature and energy metabolism. In the past decade, the brain actions of THs and their respective nuclear receptors, thyroid hormone receptor α1 (TRα1) and thyroid hormone receptor beta (TRß), coordinating body temperature regulation have moved into focus. However, the exact roles of the individual TR isoforms and their precise neuroanatomical substrates remain poorly understood. Methods: Here we used mice expressing a mutant TRα1 (TRα1+m) as well as TRß knockouts to study body temperature regulation using radiotelemetry in conscious and freely moving animals at different ambient temperatures, including their response to oral 3,3',5-triiodothyronine (T3) treatment. Subsequently, we tested the effects of a dominant-negative TRα1 on body temperature after adeno-associated virus (AAV)-mediated expression in the hypothalamus, a region known to be involved in thermoregulation. Results: While TRß seems to play a negligible role in body temperature regulation, TRα1+m mice had lower body temperature, which was surprisingly not entirely normalized at 30°C, where defects in facultative thermogenesis or tail heat loss are eliminated as confounding factors. Only oral T3 treatment fully normalized the body temperature profile of TRα1+m mice, suggesting that the mutant TRα1 confers an altered central temperature set point in these mice. When we tested this hypothesis more directly by expressing the dominant-negative TRα1 selectively in the hypothalamus via AAV transfection, we observed a similarly reduced body temperature at room temperature and 30°C. Conclusion: Our data suggest that TRα1 signaling in the hypothalamus is important for maintaining body temperature. However, further studies are needed to dissect the precise neuroanatomical substrates and the downstream pathways mediating this effect.


Asunto(s)
Hipotiroidismo , Receptores de Hormona Tiroidea , Ratones , Animales , Receptores de Hormona Tiroidea/metabolismo , Temperatura Corporal , Triyodotironina/farmacología , Triyodotironina/metabolismo , Hipotiroidismo/genética , Hipotiroidismo/metabolismo , Hormonas Tiroideas , Hipotálamo , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37834351

RESUMEN

Pancreatic alterations such as inflammation and insulin resistance accompany hypothyroidism. Molecular iodine (I2) exerts antioxidant and differentiation actions in several tissues, and the pancreas is an iodine-uptake tissue. We analyzed the effect of two oral I2 doses on pancreatic disorders in a model of hypothyroidism for 30 days. Adult female rabbits were divided into the following groups: control, moderate oral dose of I2 (0.2 mg/kg, M-I2), high oral dose of I2 (2.0 mg/kg, H-I2), oral dose of methimazole (MMI; 10 mg/kg), MMI + M-I2,, and MMI + H-I2. Moderate or high I2 supplementation did not modify circulating metabolites or pancreatic morphology. The MMI group showed reductions of circulating thyroxine (T4) and triiodothyronine (T3), moderate glucose increments, and significant increases in cholesterol and low-density lipoproteins. Acinar fibrosis, high insulin content, lipoperoxidation, and overexpression of GLUT4 were observed in the pancreas of this group. M-I2 supplementation normalized the T4 and cholesterol, but T3 remained low. Pancreatic alterations were prevented, and nuclear factor erythroid-2-related factor-2 (Nrf2), antioxidant enzymes, and peroxisome proliferator-activated receptor gamma (PPARG) maintained their basal values. In MMI + H-I2, hypothyroidism was avoided, but pancreatic alterations and low PPARG expression remained. In conclusion, M-I2 supplementation reestablishes thyronine synthesis and diminishes pancreatic alterations, possibly related to Nrf2 and PPARG activation.


Asunto(s)
Hipotiroidismo , Yodo , Animales , Conejos , Femenino , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Factor 2 Relacionado con NF-E2 , PPAR gamma , Hipotiroidismo/tratamiento farmacológico , Hipotiroidismo/metabolismo , Triyodotironina/metabolismo , Tiroxina/metabolismo , Colesterol
3.
Free Radic Biol Med ; 193(Pt 1): 59-79, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36206932

RESUMEN

Iodothyronine deiodinases (DIO) are a family of selenoproteins controlling systemic and local availability of the major thyroid hormone l-thyroxine (T4), a prohormone secreted by the thyroid gland. T4 is activated to the active 3,3'-5-triiodothyronine (T3) by two 5'-deiodinases, DIO1 and DIO2. DIO3, a 5-deiodinase selenoenzyme inactivates both the prohormone T4 and its active form T3. DIOs show species-specific different patterns of temporo-spatial expression, regulation and function and exhibit different mechanisms of reaction and inhibitor sensitivities. The main regulators of DIO expression and function are the thyroid hormone status, several growth factors, cytokines and altered pathophysiological conditions. Selenium (Se) status has a modest impact on DIO expression and translation. DIOs rank high in the priority of selenium supply to various selenoproteins; thus, their function is impaired only during severe selenium deficiency. DIO variants, polymorphisms, SNPs and rare mutations have been identified. Development of DIO isozyme selective drugs is ongoing. A first X-ray structure has been reported for DIO3. This review focusses on the biochemical characteristics and reaction mechanisms, the relationships between DIO selenoproteins and their importance for local and systemic provision of the active hormone T3. Nutritional, pharmacological, and environmental factors and inhibitors, such as endocrine disruptors, impact DIO functions.


Asunto(s)
Yoduro Peroxidasa , Selenio , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/química , Yoduro Peroxidasa/metabolismo , Selenio/metabolismo , Hormonas Tiroideas/metabolismo , Selenoproteínas/metabolismo , Isoenzimas , Triyodotironina/metabolismo , Tiroxina
4.
Elife ; 112022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35894384

RESUMEN

Diurnal (i.e., 24 hr) physiological rhythms depend on transcriptional programs controlled by a set of circadian clock genes/proteins. Systemic factors like humoral and neuronal signals, oscillations in body temperature, and food intake align physiological circadian rhythms with external time. Thyroid hormones (THs) are major regulators of circadian clock target processes such as energy metabolism, but little is known about how fluctuations in TH levels affect the circadian coordination of tissue physiology. In this study, a high triiodothyronine (T3) state was induced in mice by supplementing T3 in the drinking water, which affected body temperature, and oxygen consumption in a time-of-day-dependent manner. A 24-hr transcriptome profiling of liver tissue identified 37 robustly and time independently T3-associated transcripts as potential TH state markers in the liver. Such genes participated in xenobiotic transport, lipid and xenobiotic metabolism. We also identified 10-15% of the liver transcriptome as rhythmic in control and T3 groups, but only 4% of the liver transcriptome (1033 genes) were rhythmic across both conditions - amongst these, several core clock genes. In-depth rhythm analyses showed that most changes in transcript rhythms were related to mesor (50%), followed by amplitude (10%), and phase (10%). Gene set enrichment analysis revealed TH state-dependent reorganization of metabolic processes such as lipid and glucose metabolism. At high T3 levels, we observed weakening or loss of rhythmicity for transcripts associated with glucose and fatty acid metabolism, suggesting increased hepatic energy turnover. In summary, we provide evidence that tonic changes in T3 levels restructure the diurnal liver metabolic transcriptome independent of local molecular circadian clocks.


Many environmental conditions, including light and temperature, vary with a daily rhythm that affects how animals interact with their surroundings. Indeed, most species have developed so-called circadian clocks: internal molecular timers that cycle approximately every 24 hours and regulate many bodily functions, including digestion, energy metabolism and sleep. The energy metabolism of the liver ­ the chemical reactions that occur in the organ to produce energy from nutrients ­ is controlled both by the circadian clock system, and by the hormones produced by a gland in the neck called the thyroid. However, the interaction between these two regulators is poorly understood. To address this question, de Assis, Harder et al. elevated the levels of thyroid hormones in mice by adding these hormones to their drinking water. Studying these mice showed that, although thyroid hormone levels were good indicators of how much energy mice burn in a day, they do not reflect daily fluctuations in metabolic rate faithfully. Additionally, de Assis, Harder et al. showed that elevating T3, the active form of thyroid hormone, led to a rewiring of the daily rhythms at which genes were turned on and off in the liver, affecting the daily timing of processes including fat and cholesterol metabolism. This occurred without changing the circadian clock of the liver directly. De Assis, Harder et al.'s results indicate that time-of-day critically affects the action of thyroid hormones in the liver. This suggests that patients with hypothyroidism, who produce low levels of thyroid hormones, may benefit from considering time-of-day as a factor in disease diagnosis, therapy and, potentially, prevention. Further data on the rhythmic regulation of thyroid action in humans, including in patients with hypothyroidism, are needed to further develop this approach.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Suplementos Dietéticos , Regulación de la Expresión Génica , Lípidos , Hígado/metabolismo , Ratones , Transcriptoma , Triyodotironina/genética , Triyodotironina/metabolismo , Xenobióticos/metabolismo
5.
Diabetes Metab J ; 46(5): 677-688, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35124687

RESUMEN

BACKGROUND: Neonatal porcine pancreatic cell clusters (NPCCs) have been proposed as an alternative source of ß cells for islet transplantation because of their low cost and growth potential after transplantation. However, the delayed glucose lowering effect due to the immaturity of NPCCs and immunologic rejection remain as a barrier to NPCC's clinical application. Here, we demonstrate accelerated differentiation and immune-tolerant NPCCs by in vitro chemical treatment and microencapsulation. METHODS: NPCCs isolated from 3-day-old piglets were cultured in F-10 media and then microencapsulated with alginate on day 5. Differentiation of NPCCs is facilitated by media supplemented with activin receptor-like kinase 5 inhibitor II, triiodothyronine and exendin-4 for 2 weeks. Marginal number of microencapsulated NPCCs to cure diabetes with and without differentiation were transplanted into diabetic mice and observed for 8 weeks. RESULTS: The proportion of insulin-positive cells and insulin mRNA levels of NPCCs were significantly increased in vitro in the differentiated group compared with the undifferentiated group. Blood glucose levels decreased eventually after transplantation of microencapsulated NPCCs in diabetic mice and normalized after 7 weeks in the differentiated group. In addition, the differentiated group showed nearly normal glucose tolerance at 8 weeks after transplantation. In contrast, neither blood glucose levels nor glucose tolerance were improved in the undifferentiated group. Retrieved graft in the differentiated group showed greater insulin response to high glucose compared with the undifferentiated group. CONCLUSION: in vitro differentiation of microencapsulated immature NPCCs increased the proportion of insulin-positive cells and improved transplant efficacy in diabetic mice without immune rejection.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Alginatos/metabolismo , Alginatos/farmacología , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/cirugía , Exenatida/farmacología , Insulina/metabolismo , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Porcinos , Trasplante Heterólogo , Triyodotironina/metabolismo , Triyodotironina/farmacología
6.
Thyroid ; 32(3): 326-335, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34937426

RESUMEN

Background: A recent genome-wide association study identified the SLC17A4 locus associated with circulating free thyroxine (T4) concentrations. Human SLC17A4, being widely expressed in the gastrointestinal tract, was characterized as a novel triiodothyronine (T3) and T4 transporter. However, apart from the cellular uptake of T3 and T4, transporter characteristics are currently unknown. In this study, we delineated basic transporter characteristics of this novel thyroid hormone (TH) transporter. Methods: We performed a broad range of well-established TH transport studies in COS-1 cells transiently overexpressing SLC17A4. We studied cellular TH uptake in various incubation buffers, TH efflux, and the inhibitory effects of different TH metabolites and known inhibitors of other TH transporters on SLC17A4-mediated TH transport. Finally, we determined the effect of tunicamycin, a pharmacological inhibitor of N-linked glycosylation, and targeted mutations in Asn residues on SLC17A4 function. Results: SLC17A4 induced the cellular uptake of T3 and T4 by ∼4 times, and of reverse (r)T3 by 1.5 times over control cells. The uptake of T4 by SLC17A4 was Na+ and Cl- independent, stimulated by low extracellular pH, and reduced by various iodothyronines and metabolites thereof, particularly those that contain at least three iodine moieties irrespective of the presence of modification at the alanine side chain. None of the classical TH transporter inhibitors studied attenuated SLC17A4-mediated TH transport. SLC17A4 also facilitates the efflux of T3 and T4, and to a lesser extent of 3,3'-diiodothyronine (T2). Immunoblot studies on lysates of transfected cells cultured in absence or presence of tunicamycin indicated that SLC17A4 is subject to N-linked glycosylation. Complementary mutational studies identified Asn66, Asn75, and Asn90, which are located in extracellular loop 1, as primary targets. Conclusions: Our studies show that SLC17A4 facilitates the transport of T3 and T4, and less efficiently rT3 and 3,3'-T2. Further studies should reveal the physiological role of SLC17A4 in TH regulation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Tiroxina , Humanos , Proteínas de Transporte de Membrana , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I , Hormonas Tiroideas/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Tunicamicina
7.
Anim Sci J ; 92(1): e13560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34029409

RESUMEN

This study investigated the beneficial effect of phytogenic extracts on semen quality, reproductive hormones, thyroid activity, immunity, hepatic antioxidant activity, and fertility in rabbit bucks. We divided 70 bucks into seven groups (10 in each). Group 1 was fed a basal diet (control); groups 2, 3, and 4 were fed the control diet with 30, 60, and 90 mg/kg of turmeric, respectively; and groups 5, 6, and 7 were fed the control diet with 50, 75, and 100 mg/kg of garlic extract, respectively, for 8 weeks. Rectal and skin temperatures decreased, while follicle-stimulating hormone, luteinizing hormone, triiodothyronine, thyroxine, testosterone, immunoglobulin M, tumor necrosis factor-alpha, and interleukin-6 in blood serum and glutathione peroxidase in the liver increased in all groups (p < .05). Garlic extract (100 mg/kg diet) increased adenosine triphosphate and glutathione in the liver tissues. All treatments significantly increased net semen volume, percentages of progressive motility, livability, curled tail, and intact acrosomes of spermatozoa, sperm cell concentration, and outputs of total and motile spermatozoa, while significantly decreased percentage of sperm abnormality. In conclusion, dietary supplementation of turmeric or garlic extract can be used as a suitable tool for enhancing the hepatic antioxidant activity, immunity, and semen quality in rabbit bucks.


Asunto(s)
Curcuma/química , Citocinas/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Fertilización/efectos de los fármacos , Ajo/química , Mediadores de Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Conejos/metabolismo , Conejos/fisiología , Análisis de Semen , Espermatozoides/fisiología , Glándula Tiroides/metabolismo , Animales , Inmunoglobulina M/metabolismo , Hígado/metabolismo , Masculino , Extractos Vegetales/aislamiento & purificación , Tiroxina/metabolismo , Triyodotironina/metabolismo
8.
Anim Sci J ; 91(1): e13486, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33222328

RESUMEN

Pyruvate and creatine, energetics and antioxidant substances, can promote rumen fermentation and metabolism. This study aimed to evaluate the stress resistance and rumen fermentation effects of the compound creatine pyruvate (CrPyr) in diets for beef cattle under heat stress. Four Jinjiang steers fitted with permanent rumen cannulas were used in a 4 × 4 Latin square design and fed a diet supplemented with CrPyr at 0, 20, 40, or 60 g/d. Heat stress was employed for 62 of 64 days. Supplementing with CrPyr elevated their levels of free triiodothyronine and triiodothyronine, superoxide dismutase activity, ruminal pH value, microbial crude protein concentration, crude fat digestibility, nitrogen intake, and levels of urine allantoin and total purine derivatives. It also reduced their levels of cortisol and corticosterone, malondialdehyde concentration, lactate dehydrogenase activity, and urine nitrogen excretion. In conclusion, CrPyr relieves the heat stress of beef cattle by improving antioxidant activity and rumen microbial protein synthesis.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Antioxidantes/metabolismo , Creatina , Dieta/veterinaria , Suplementos Dietéticos , Fermentación , Respuesta al Choque Térmico/fisiología , Ácido Pirúvico , Rumen/metabolismo , Animales , Bovinos , Creatina/farmacología , Fermentación/efectos de los fármacos , Concentración de Iones de Hidrógeno , Masculino , Ácido Pirúvico/farmacología , Superóxido Dismutasa/metabolismo , Triyodotironina/metabolismo
9.
Sci Rep ; 10(1): 15401, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958818

RESUMEN

Iodothyronine deiodinases (Dios) are important selenoproteins that control the concentration of the active thyroid hormone (TH) triiodothyronine through regioselective deiodination. The X-ray structure of a truncated monomer of Type III Dio (Dio3), which deiodinates TH inner rings through a selenocysteine (Sec) residue, revealed a thioredoxin-fold catalytic domain supplemented with an unstructured Ω-loop. Loop dynamics are driven by interactions of the conserved Trp207 with solvent in multi-microsecond molecular dynamics simulations of the Dio3 thioredoxin(Trx)-fold domain. Hydrogen bonding interactions of Glu200 with residues conserved across the Dio family anchor the loop's N-terminus to the active site Ser-Cys-Thr-Sec sequence. A key long-lived loop conformation coincides with the opening of a cryptic pocket that accommodates thyroxine (T4) through an I⋯Se halogen bond to Sec170 and the amino acid group with a polar cleft. The Dio3-T4 complex is stabilized by an I⋯O halogen bond between an outer ring iodine and Asp211, consistent with Dio3 selectivity for inner ring deiodination. Non-conservation of residues, such as Asp211, in other Dio types in the flexible portion of the loop sequence suggests a mechanism for regioselectivity through Dio type-specific loop conformations. Cys168 is proposed to attack the selenenyl iodide intermediate to regenerate Dio3 based upon structural comparison with related Trx-fold proteins.


Asunto(s)
Química Computacional/métodos , Yoduro Peroxidasa/metabolismo , Tiroxina/química , Tiroxina/metabolismo , Halógenos/química , Enlace de Hidrógeno , Yoduro Peroxidasa/química , Yoduro Peroxidasa/fisiología , Conformación Molecular , Selenocisteína , Selenoproteínas/metabolismo , Selenoproteínas/fisiología , Transducción de Señal , Hormonas Tiroideas , Triyodotironina/metabolismo
10.
FASEB J ; 34(9): 12072-12082, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32776612

RESUMEN

Mammals adapt to seasons using a neuroendocrine calendar defined by the photoperiodic change in the nighttime melatonin production. Under short photoperiod, melatonin inhibits the pars tuberalis production of TSHß, which, in turn, acts on tanycytes to regulate the deiodinase 2/3 balance resulting in a finely tuned seasonal control of the intra-hypothalamic thyroid hormone T3. Despite the pivotal role of this T3 signaling for synchronizing reproduction with the seasons, T3 cellular targets remain unknown. One candidate is a population of hypothalamic neurons expressing Rfrp, the gene encoding the RFRP-3 peptide, thought to be integral for modulating rodent's seasonal reproduction. Here we show that nighttime melatonin supplementation in the drinking water of melatonin-deficient C57BL/6J mice mimics photoperiodic variations in the expression of the genes Tshb, Dio2, Dio3, and Rfrp, as observed in melatonin-proficient mammals. Notably, we report that this melatonin regulation of Rfrp expression is no longer observed in mice carrying a global mutation of the T3 receptor, TRα, but is conserved in mice with a selective neuronal mutation of TRα. In line with this observation, we find that TRα is widely expressed in the tanycytes. Altogether, our data demonstrate that the melatonin-driven T3 signal regulates RFRP-3 neurons through non-neuronal, possibly tanycytic, TRα.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Melatonina/farmacología , Neuropéptidos/biosíntesis , Receptores de Hormona Tiroidea/metabolismo , Triyodotironina/metabolismo , Animales , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Ratones , Ratones Noqueados , Neuropéptidos/genética , Receptores de Hormona Tiroidea/genética , Triyodotironina/genética , Yodotironina Deyodinasa Tipo II
11.
Nutrients ; 12(6)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545596

RESUMEN

A healthy gut microbiota not only has beneficial effects on the activity of the immune system, but also on thyroid function. Thyroid and intestinal diseases prevalently coexist-Hashimoto's thyroiditis (HT) and Graves' disease (GD) are the most common autoimmune thyroid diseases (AITD) and often co-occur with Celiac Disease (CD) and Non-celiac wheat sensitivity (NCWS). This can be explained by the damaged intestinal barrier and the following increase of intestinal permeability, allowing antigens to pass more easily and activate the immune system or cross-react with extraintestinal tissues, respectively. Dysbiosis has not only been found in AITDs, but has also been reported in thyroid carcinoma, in which an increased number of carcinogenic and inflammatory bacterial strains were observed. Additionally, the composition of the gut microbiota has an influence on the availability of essential micronutrients for the thyroid gland. Iodine, iron, and copper are crucial for thyroid hormone synthesis, selenium and zinc are needed for converting T4 to T3, and vitamin D assists in regulating the immune response. Those micronutrients are often found to be deficient in AITDs, resulting in malfunctioning of the thyroid. Bariatric surgery can lead to an inadequate absorption of these nutrients and further implicates changes in thyroid stimulating hormone (TSH) and T3 levels. Supplementation of probiotics showed beneficial effects on thyroid hormones and thyroid function in general. A literature research was performed to examine the interplay between gut microbiota and thyroid disorders that should be considered when treating patients suffering from thyroid diseases. Multifactorial therapeutic and preventive management strategies could be established and more specifically adjusted to patients, depending on their gut bacteria composition. Future well-powered human studies are warranted to evaluate the impact of alterations in gut microbiota on thyroid function and diseases.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades de la Tiroides/epidemiología , Cirugía Bariátrica/efectos adversos , Enfermedad Celíaca/epidemiología , Disbiosis/epidemiología , Femenino , Enfermedad de Graves/epidemiología , Enfermedad de Hashimoto/epidemiología , Humanos , Yodo/metabolismo , Hierro/metabolismo , Masculino , Estado Nutricional , Probióticos/metabolismo , Selenio/metabolismo , Enfermedades de la Tiroides/microbiología , Glándula Tiroides/fisiopatología , Neoplasias de la Tiroides/epidemiología , Tirotropina/metabolismo , Triyodotironina/metabolismo , Vitamina D/metabolismo
12.
PLoS Biol ; 18(3): e3000688, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32218572

RESUMEN

Obesity leads to multiple health problems, including diabetes, fatty liver, and even cancer. Here, we report that urolithin A (UA), a gut-microflora-derived metabolite of pomegranate ellagitannins (ETs), prevents diet-induced obesity and metabolic dysfunctions in mice without causing adverse effects. UA treatment increases energy expenditure (EE) by enhancing thermogenesis in brown adipose tissue (BAT) and inducing browning of white adipose tissue (WAT). Mechanistically, UA-mediated increased thermogenesis is caused by an elevation of triiodothyronine (T3) levels in BAT and inguinal fat depots. This is also confirmed in UA-treated white and brown adipocytes. Consistent with this mechanism, UA loses its beneficial effects on activation of BAT, browning of white fat, body weight control, and glucose homeostasis when thyroid hormone (TH) production is blocked by its inhibitor, propylthiouracil (PTU). Conversely, administration of exogenous tetraiodothyronine (T4) to PTU-treated mice restores UA-induced activation of BAT and browning of white fat and its preventive role on high-fat diet (HFD)-induced weight gain. Together, these results suggest that UA is a potent antiobesity agent with potential for human clinical applications.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Fármacos Antiobesidad/uso terapéutico , Cumarinas/uso terapéutico , Obesidad/prevención & control , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/efectos de los fármacos , Hígado Graso/prevención & control , Intolerancia a la Glucosa/prevención & control , Resistencia a la Insulina , Reacción de Maillard , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Propiltiouracilo/toxicidad , Termogénesis , Triyodotironina/antagonistas & inhibidores , Triyodotironina/metabolismo , Aumento de Peso/efectos de los fármacos
13.
J Int Med Res ; 48(5): 300060519888401, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31774013

RESUMEN

OBJECTIVE: Variations in hormone levels are a direct effect of epileptic discharges in both animals and humans, and seizure can affect the hypothalamus-pituitary-thyroid axis. The purpose of this study was to determine which parameters could affect the alternation of thyroid hormones in children experiencing seizure. METHODS: We retrospectively reviewed the medical records of 181 pediatric patients with seizure and compared three thyroid hormones (serum thyroid-stimulating hormone [TSH], free thyroxine [fT4], and triiodothyronine [T3]) between initial (admission to hospital) and follow-up (2 weeks later) testing. RESULTS: Multivariable logistic regression models were used to determine which six parameters (gender, age, seizure accompanying with fever, seizure type, seizure duration, and anti-epileptic drug medication) could help to explain the higher initial TSH levels in pediatric seizure. Only seizure duration in patients with an increase in TSH levels was significantly longer compared with patients with normal TSH at the time of initial testing. CONCLUSION: Neuronal excitability by seizure can cause thyroid hormonal changes, which likely reflects changes in hypothalamic function.


Asunto(s)
Excitabilidad Cortical/fisiología , Epilepsia/fisiopatología , Glándula Tiroides/metabolismo , Tirotropina/sangre , Adolescente , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Epilepsia/sangre , Epilepsia/tratamiento farmacológico , Femenino , Estudios de Seguimiento , Humanos , Hipotálamo/fisiopatología , Lactante , Masculino , Estudios Retrospectivos , Pruebas de Función de la Tiroides , Glándula Tiroides/inervación , Tirotropina/metabolismo , Tiroxina/sangre , Tiroxina/metabolismo , Factores de Tiempo , Triyodotironina/sangre , Triyodotironina/metabolismo
14.
Math Biosci Eng ; 16(6): 8069-8091, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31698655

RESUMEN

Hashimoto's thyroiditis (HT) is an autoimmune disorder that drives the function of thyroid gland to the sequential clinical states:euthyroidism (normal condition), subclinical hypothyroidism (asymptomatic period) and overt hypothyroidism (symptomatic period). In this disease, serum thyroidstimulating hormone (TSH) levels increase monotonically, stimulating the thyroid follicular cells chronically and initiating benign (non-cancerous) thyroid nodules at various sites of the thyroid gland. This process can also encourage growth of papillary thyroid microcarcinoma. Due to prolonged TSH stimulation, thyroid nodules may grow and become clinically relevant without the administration of treatment by thyroid hormone replacement. Papillary thyroid cancer (80% of thyroid cancer) whose incidence is increasing worldwide, is associated with Hashimoto's thyroiditis. A stochastic model is developed here to produce the statistical distribution of thyroid nodule sizes and growth by taking serum TSH value as the continuous input to the model using TSH values from the output of the patientspecific deterministic model developed for the clinical progression of Hashimoto's thyroiditis.


Asunto(s)
Enfermedad de Hashimoto/complicaciones , Cáncer Papilar Tiroideo/complicaciones , Neoplasias de la Tiroides/complicaciones , Tiempo de Tratamiento , Biopsia con Aguja Fina , Simulación por Computador , Progresión de la Enfermedad , Enfermedad de Hashimoto/fisiopatología , Humanos , Hipotálamo/patología , Incidencia , Modelos Teóricos , Receptores de Tirotropina/metabolismo , Riesgo , Procesos Estocásticos , Tiroglobulina/metabolismo , Cáncer Papilar Tiroideo/fisiopatología , Glándula Tiroides/patología , Neoplasias de la Tiroides/fisiopatología , Nódulo Tiroideo/complicaciones , Nódulo Tiroideo/fisiopatología , Tirotropina/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo
15.
Proc Natl Acad Sci U S A ; 116(26): 13116-13121, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31189592

RESUMEN

Synthesis of triiodothyronine (T3) in the hypothalamus induces marked seasonal neuromorphology changes across taxa. How species-specific responses to T3 signaling in the CNS drive annual changes in body weight and energy balance remains uncharacterized. These experiments sequenced and annotated the Siberian hamster (Phodopus sungorus) genome, a model organism for seasonal physiology research, to facilitate the dissection of T3-dependent molecular mechanisms that govern predictable, robust, and long-term changes in body weight. Examination of the Phodopus genome, in combination with transcriptome sequencing of the hamster diencephalon under winter and summer conditions, and in vivo-targeted expression analyses confirmed that proopiomelanocortin (pomc) is a primary genomic target for the long-term T3-dependent regulation of body weight. Further in silico analyses of pomc promoter sequences revealed that thyroid hormone receptor 1ß-binding motif insertions have evolved in several genera of the Cricetidae family of rodents. Finally, experimental manipulation of food availability confirmed that hypothalamic pomc mRNA expression is dependent on longer-term photoperiod cues and is unresponsive to acute, short-term food availability. These observations suggest that species-specific responses to hypothalamic T3, driven in part by the receptor-binding motif insertions in some cricetid genomes, contribute critically to the long-term regulation of energy balance and the underlying physiological and behavioral adaptations associated with the seasonal organization of behavior.


Asunto(s)
Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Phodopus/fisiología , Fotoperiodo , Proopiomelanocortina/metabolismo , Aclimatación/fisiología , Animales , Peso Corporal/fisiología , Frío/efectos adversos , Biología Computacional , Regulación hacia Abajo , Ingestión de Alimentos/fisiología , Evolución Molecular , Femenino , Privación de Alimentos/fisiología , Perfilación de la Expresión Génica , Masculino , Anotación de Secuencia Molecular , Neuropéptidos/metabolismo , Proopiomelanocortina/genética , Regiones Promotoras Genéticas/genética , Dominios y Motivos de Interacción de Proteínas/genética , Receptores de Hormona Tiroidea/metabolismo , Estaciones del Año , Especificidad de la Especie , Triyodotironina/administración & dosificación , Triyodotironina/metabolismo , Aumento de Peso/efectos de los fármacos , Aumento de Peso/fisiología , Secuenciación Completa del Genoma
16.
Food Chem Toxicol ; 126: 1-6, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30735751

RESUMEN

Sulforaphane is a redox-active natural product present in cruciferous vegetables like broccoli. Broccoli sprout-derived products are promising agents for the prevention of oxidative stress-related diseases, but some have long been suspected of thyroidal toxicity. Recent findings also raise the possibility that long-term exposure to sulforaphane, or to other natural substances or drugs that modulate the activity of the transcription factor Nrf2 (NFE2-related factor 2) may lead to thyroid dysfunction or thyroid autoimmune disease, questioning the safety of trials with sulforaphane-containing products. Previous studies addressing possible effects of sulforaphane-related compounds from natural product extracts on the thyroid were quite short and/or inconsistent. To investigate whether long-term exposure to a beverage enriched with sulforaphane and its precursor glucoraphanin may affect thyroid function, we analyzed biochemical measures of thyroid function and thyroid autoimmunity in 45 female participants in a randomized clinical trial at baseline and after 84 days of beverage administration. Serum levels of thyroid-stimulating hormone, free thyroxine and thyroglobulin were not affected by the treatment, and neither was the thyroid autoimmunity status of participants. These results provide evidence in favor of the safety of chemoprevention strategies that target the activation of Nrf2 to protect against environmental exposures and other oxidative stress-related pathologies.


Asunto(s)
Autoinmunidad , Brassica/metabolismo , Jugos de Frutas y Vegetales/análisis , Factor 2 Relacionado con NF-E2/metabolismo , Glándula Tiroides/metabolismo , Triyodotironina/metabolismo , Adulto , Anciano , Brassica/química , Femenino , Humanos , Isotiocianatos/metabolismo , Masculino , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/genética , Preparaciones de Plantas/química , Preparaciones de Plantas/metabolismo , Estudios Retrospectivos , Sulfóxidos , Tirotropina/metabolismo , Adulto Joven
17.
JNMA J Nepal Med Assoc ; 57(220): 460-463, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32335663

RESUMEN

Thyrotoxic periodic paralysis is rare complication of hyperthyroidism characterized by the sudden onset of hypokalemia and muscle paralysis. It is typically present in young Asian males. There are very few literatures regarding the occurrence of thyrotoxic hypokalemic periodic paralysis in Nepal. We reported a case of a 35-year-old male presented with the chief complaints of weakness of all four limbs of 1 day duration. He was diagnosed as a case of hyperthyroidism in the past, received treatment for 6 months and left medications on his own 6 months ago. Evaluation during admission revealed severe hypokalemia with serum potassium level 1.3mEq/l and high serum Triiodothyronine (>20.00µg/L) and low serum Thyroid Stimulating Hormone (<0.01µg/L). Potassium supplements resolved muscle weakness and the patient was restarted with anti-thyroid drugs. Hence, hypokalemic paralysis is a reversible cause of paralysis and high index of suspicion as well as timely interventions are required to prevent potential harm. Keywords: hyperthyroidism; hypokalemia; muscle paralysis; thyrotoxic periodic paralysis.


Asunto(s)
Hipertiroidismo/fisiopatología , Hipopotasemia/fisiopatología , Parálisis/fisiopatología , Adulto , Antiarrítmicos/uso terapéutico , Antitiroideos/uso terapéutico , Carbimazol/uso terapéutico , Humanos , Hipertiroidismo/complicaciones , Hipertiroidismo/tratamiento farmacológico , Hipertiroidismo/metabolismo , Hipocalcemia/tratamiento farmacológico , Hipocalcemia/etiología , Hipocalcemia/metabolismo , Hipopotasemia/tratamiento farmacológico , Hipopotasemia/etiología , Hipopotasemia/metabolismo , Masculino , Cumplimiento de la Medicación , Parálisis/tratamiento farmacológico , Parálisis/etiología , Periodicidad , Potasio/uso terapéutico , Propranolol/uso terapéutico , Tirotropina/metabolismo , Triyodotironina/metabolismo
18.
Sci Rep ; 8(1): 13167, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177816

RESUMEN

Hibernation is an exceptional physiological response to a hostile environment, characterized by a seasonal period of torpor cycles involving dramatic reductions of body temperature and metabolism, and arousal back to normothermia. As the mechanisms regulating hibernation are still poorly understood, here we analysed the expression of genes involved in energy homeostasis, torpor regulation, and daily or seasonal timing using digital droplet PCR in various central and peripheral tissues sampled at different stages of torpor/arousal cycles in the European hamster. During torpor, the hypothalamus exhibited strongly down-regulated gene expression, suggesting that hypothalamic functions were reduced during this period of low metabolic activity. During both torpor and arousal, many structures (notably the brown adipose tissue) exhibited altered expression of deiodinases, potentially leading to reduced tissular triiodothyronine availability. During the arousal phase, all analysed tissues showed increased expression of the core clock genes Per1 and Per2. Overall, our data indicated that the hypothalamus and brown adipose tissue were the tissues most affected during the torpor/arousal cycle, and that clock genes may play critical roles in resetting the body's clocks at the beginning of the active period.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Nivel de Alerta/genética , Cricetulus/genética , Metabolismo Energético/genética , Hibernación/genética , Hipotálamo/metabolismo , Proteínas Circadianas Period/genética , Animales , Ritmo Circadiano/genética , Cricetulus/metabolismo , Europa (Continente) , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Masculino , Anotación de Secuencia Molecular , Proteínas Circadianas Period/metabolismo , Triyodotironina/metabolismo
19.
Ecotoxicol Environ Saf ; 161: 374-382, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29902617

RESUMEN

This study aimed to verify whether Olea europaea L. (olive) oil (OEO) exerted a protective effect against oxidative stress induced by deltamethrin (DM) and alterations of pituitary, thyroid and gonadal hormones in adult female rats. DM (0,00256 g/kg body weight),OEO (0,6 g/kg body weight) and DM with OEO were administered to rats orally for 28 days. Volatile compounds present in olive oil were analysed by GC-MS. Estradiol (E2), Thyroxine (T4),Thyroid Stimulating Hormone (TSH), Triiodothyronine (T3), Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Progesterone (Pg) were measured in serum using Chemiluminescent Microparticle Immunoassay (CMIA). Lipid peroxidation (LPO), protein carbonyls (PCs), reduced glutathione (GSH) levels along with superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and glutathione peroxidase (GPx) activities were determined in thyroid and ovarian tissues. Sesquiterpenes, (E,E)-α-farnesene (16.45%) and α-copaene (9,86%), were analysed as the main volatile compounds of OEO. The relative weight of ovaries and thyroid and body weight significantly decreased in rats treated with DM. DM caused significant alterations in TSH, T4, FSH, Pg and E2 levels while T3 and LH concentrations remained unchanged when compared to control. DM also increased significantly LPO and PCs levels. In addition, GSH reserves as well as CAT, GPx, SOD and GST activities were suppressed in DM-received rats. The presence of OEO with DM returned the levels of oxidative stress markers, thyroid and reproductive hormones at the control values. Our results indicate that OEO is a powerful agent able to protect against DM oxidative stress and endocrine changes.


Asunto(s)
Hormonas/sangre , Insecticidas/toxicidad , Nitrilos/toxicidad , Aceite de Oliva/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Piretrinas/toxicidad , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Estradiol/metabolismo , Femenino , Hormona Folículo Estimulante/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hormona Luteinizante/metabolismo , Olea , Aceite de Oliva/farmacología , Ovario/metabolismo , Fitoterapia , Progesterona/metabolismo , Sustancias Protectoras/farmacología , Ratas , Superóxido Dismutasa/metabolismo , Glándula Tiroides/metabolismo , Tirotropina/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Vitamina E/farmacología
20.
Nat Commun ; 9(1): 1943, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769518

RESUMEN

Complementing enzymes in their native environment with either homogeneous or heterogeneous catalysts is challenging due to the sea of functionalities present within a cell. To supplement these efforts, artificial metalloenzymes are drawing attention as they combine attractive features of both homogeneous catalysts and enzymes. Herein we show that such hybrid catalysts consisting of a metal cofactor, a cell-penetrating module, and a protein scaffold are taken up into HEK-293T cells where they catalyze the uncaging of a hormone. This bioorthogonal reaction causes the upregulation of a gene circuit, which in turn leads to the expression of a nanoluc-luciferase. Relying on the biotin-streptavidin technology, variation of the biotinylated ruthenium complex: the biotinylated cell-penetrating poly(disulfide) ratio can be combined with point mutations on streptavidin to optimize the catalytic uncaging of an allyl-carbamate-protected thyroid hormone triiodothyronine. These results demonstrate that artificial metalloenzymes offer highly modular tools to perform bioorthogonal catalysis in live HEK cells.


Asunto(s)
Metaloendopeptidasas/metabolismo , Rutenio/metabolismo , Triyodotironina/metabolismo , Biotina/química , Biotina/metabolismo , Biotinilación , Catálisis , Células HEK293 , Humanos , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Estructura Molecular , Mutación Puntual , Rutenio/química , Estereoisomerismo , Estreptavidina/química , Estreptavidina/metabolismo , Triyodotironina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA