Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
Más filtros

Medicinas Tradicionales
Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 23(1): 346, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770899

RESUMEN

BACKGROUND: Vitellaria paradoxa is used in traditional medicine for the treatment of various diseases in tropical countries; however, nothing is known about its anti-trypanosomal activity. Human African trypanosomiasis is a neglected tropical disease of Sub-Saharan Africa's poorest rural regions, and the efficacy of its treatment remains a challenge. This study investigates the as-yet-unknown trypanocidal activity of this plant. METHODS: V. paradoxa, commonly known as shea tree, was selected for study based on an ethnobotanical investigation. Ultrasonicated extracts from bark and seeds were successively treated with ethyl acetate and water. Column chromatography, NMR spectroscopy and mass spectrometry were used to identify isolated compounds. Purified trypanosomes (Trypanosoma brucei brucei) were incubated with serial dilutions of the extracts and isolated compounds at 37 °C in 5% CO2 for 24 h. Parasite viability was evaluated under a microscope. RESULTS: The ethyl acetate extracts of the bark showed the higher in vitro trypanocidal activity against T. brucei brucei with median inhibitory concentration (IC50) of 3.25 µg/mL. However, the triterpene 1α,2ß,3ß,19α-tretrahydroxyurs-12-en-28-oic acid and the pentadecanoic acid isolated from the ethyl acetate extract of the seeds showed in vitro trypanocidal activity with IC50 of 11.30 and 70.1 µM, respectively. CONCLUSION: The results obtained contribute to the validation of the traditional medicinal use of V. paradoxa. Our results encourage further investigations of this plant, mainly with respect to its in vivo efficacy and toxicity.


Asunto(s)
Plantas Medicinales , Tripanocidas , Trypanosoma brucei brucei , Humanos , Extractos Vegetales/farmacología , Tripanocidas/farmacología
2.
Curr Drug Targets ; 24(10): 838-855, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469154

RESUMEN

BACKGROUND: Human African trypanosomiasis (HAT) is a parasitic infection that may lead to death if left untreated. This disease is caused by a protozoan parasite of the genus Trypanosoma and is transmitted to humans through tsetse fly bites. The disease is widespread across Sub-Saharan Africa, with 70% of cases in recent reports in the Democratic Republic of the Congo and an average of less than 1000 cases are declared annually. Since there is no appropriate treatment for HAT, steroidal and triterpenoid saponins have been reported to be effective in in vitro studies and might serve as scaffolds for the discovery of new treatments against this disease. AIM OF THE STUDY: The present study aimed to summarize up-to-date information on the anti-Trypanosoma brucei activity of steroidal and triterpenoid saponins. The mechanisms of action of in vitro bioactive compounds were also discussed. METHODS: Information on the anti-Trypanosoma brucei activity of plant saponins was obtained from published articles, dissertations, theses, and textbooks through a variety of libraries and electronic databases. RESULTS: There has been incredible progress in the identification of steroidal and triterpenoid saponins with pronounced in vitro activity against Trypanosoma brucei. Indeed, more than forty saponins were identified as having anti-T. brucei effect with activity ranging from moderate to highly active. The mechanisms of action of most of these saponins included DNA damage, cell cycle arrest, induction of apoptosis through downregulation of bcl-2 and MDM2, and upregulation of Bax and Bak, among others. CONCLUSION: Referring to in vitro studies, plant saponins have shown anti-Trypanosoma brucei activity; however, more cytotoxic and in vivo studies and detailed mechanisms of action of the bioactive saponins should be further considered.


Asunto(s)
Antineoplásicos , Triterpenos , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Humanos , Tripanosomiasis Africana/tratamiento farmacológico , Extractos Vegetales/farmacología , Antineoplásicos/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico
3.
Parasitol Int ; 96: 102775, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37390918

RESUMEN

Infection with Trypanosoma brucei rhodesiense (T.b.r) causes acute Human African Trypanosomiasis (HAT) in Africa. This study determined the effect of vitamin B12 on T.b.r -driven pathological events in a mouse model. Mice were randomly assigned into four groups; group one was the control. Group two was infected with T.b.r; group three was supplemented with 8 mg/kg vitamin B12 for two weeks; before infection with T.b.r. For group four, administration of vitamin B12 was started from the 4th days post-infection with T.b.r. At 40 days post-infection, the mice were sacrificed to obtain blood, tissues, and organs for various analyses. The results showed that vitamin B12 administration enhanced the survival rate of T.b.r infected mice, and prevented T.b.r-induced disruption of the blood-brain barrier and decline in neurological performance. Notably, T.b.r-induced hematological alteration leading to anaemia, leukocytosis and dyslipidemia was alleviated by vitamin B12. T.b.r-induced elevation of the liver alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin as well as the kidney damage markers urea, uric acid and creatinine were attenuated by vitamin B12. Vitamin B12 blocked T.b.r-driven rise in TNF-α and IFN-γ, nitric oxide and malondialdehyde. T.b.r-induced depletion of GSH levels were attenuated in the presence of vitamin B12 in the brain, spleen and liver tissues; a clear indication of the antioxidant activity of vitamin B12. In conclusion, treatment with vitamin B12 potentially protects against various pathological events associated with severe late-stage HAT and presents a great opportunity for further scrutiny to develop an adjunct therapy for severe late-stage HAT.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Ratones , Barrera Hematoencefálica/patología , Modelos Animales de Enfermedad , Óxido Nítrico , Trypanosoma brucei rhodesiense , Tripanosomiasis Africana/tratamiento farmacológico , Vitamina B 12/efectos adversos
4.
Nucleic Acids Res ; 51(11): 5678-5698, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37207337

RESUMEN

Universal Minicircle Sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind the single-stranded G-rich UMS sequence, conserved at the replication origins of minicircles in the kinetoplast DNA, the mitochondrial genome of kinetoplastids. Trypanosoma brucei UMSBP2 has been recently shown to colocalize with telomeres and to play an essential role in chromosome end protection. Here we report that TbUMSBP2 decondenses in vitro DNA molecules, which were condensed by core histones H2B, H4 or linker histone H1. DNA decondensation is mediated via protein-protein interactions between TbUMSBP2 and these histones, independently of its previously described DNA binding activity. Silencing of the TbUMSBP2 gene resulted in a significant decrease in the disassembly of nucleosomes in T. brucei chromatin, a phenotype that could be reverted, by supplementing the knockdown cells with TbUMSBP2. Transcriptome analysis revealed that silencing of TbUMSBP2 affects the expression of multiple genes in T. brucei, with a most significant effect on the upregulation of the subtelomeric variant surface glycoproteins (VSG) genes, which mediate the antigenic variation in African trypanosomes. These observations suggest that UMSBP2 is a chromatin remodeling protein that functions in the regulation of gene expression and plays a role in the control of antigenic variation in T. brucei.


Asunto(s)
Proteínas Protozoarias , Trypanosoma brucei brucei , Variación Antigénica/genética , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Telómero/genética , Telómero/metabolismo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Proteínas Protozoarias/metabolismo , Ensamble y Desensamble de Cromatina
5.
J Enzyme Inhib Med Chem ; 38(1): 2199950, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37080775

RESUMEN

Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves. The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS) revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of 1.90 µg/mL within 72 h. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse docking, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and farnesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both compounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of T. grandifolia leaves.


Asunto(s)
Acanthaceae , Lignanos , Trypanosoma brucei brucei , Simulación del Acoplamiento Molecular , Lignanos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química
6.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677674

RESUMEN

Volatiles metabolites from the liverwort Plagiochila porelloides harvested in Corsica were investigated by chromatographic and spectroscopic methods. In addition to already reported constituents, three new compounds were isolated by preparative chromatography and their structures were elucidated by mass spectrometry (MS) and NMR experiments. Hence, an atypic aliphatic compound, named 1,2-dihydro-4,5-dehydronerolidol and two isomers, (E) and (Z), possessing an unusual humbertiane skeleton (called p-menth-1-en-3-[2-methylbut-1-enyl]-8-ol) are newly reported and fully characterized in this work. The in vitro antiprotozoal activity of essential oil and extract of P. porelloides against Trypanosoma brucei brucei and Leishmania mexicana mexicana and cytotoxicity were determined. Essential oil and Et2O extract showed a moderate activity against T. brucei with IC50 values: 2.03 and 5.18 µg/mL, respectively. It is noteworthy that only the essential oil showed a high selectivity (SI = 11.7). Diethyl oxide extract exhibited moderate anticancer (cancerous macrophage-like murine cells) activity and also cytotoxicity (human normal fibroblast) with IC50 values: 1.25 and 2.96 µg/mL, respectively.


Asunto(s)
Antiprotozoarios , Hepatophyta , Aceites Volátiles , Trypanosoma brucei brucei , Animales , Ratones , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antiprotozoarios/farmacología , Antiprotozoarios/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Plasmodium falciparum
7.
Nucleic Acids Res ; 50(17): 10123-10139, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36095119

RESUMEN

Each of the three similar RNA Editing Catalytic Complexes (RECCs) that perform gRNA-directed uridine insertion and deletion during Trypanosoma brucei mitochondrial (mt) mRNA editing has a distinct endonuclease activity that requires two related RNase III proteins, with only one competent for catalysis. We identified multiple loss-of-function mutations in the RNase III and other motifs of the non-catalytic KREPB6, KREPB7, and KREPB8 components by random mutagenesis and screening. These mutations had various effects on growth, editing, and both the abundances and RECC associations of these RNase III protein pairs in bloodstream form (BF) and procyclic form (PF) cells. Protein structure modelling predicted that the Zinc Finger (ZnF) of each paired RNase III protein contacts RNA positioned at the heterodimeric active site which is flanked by helices of a novel RNase III-Associated Motif (RAM). The results indicate that the protein domains of the non-catalytic subunits function together in RECC integrity, substrate binding, and editing site recognition during the multistep RNA editing process. Additionally, several mutants display distinct functional consequences in different life cycle stages. These results highlight the complementary roles of protein pairs and three RECCs within the complicated T. brucei mRNA editing machinery that matures mt mRNAs differentially between developmental stages.


Asunto(s)
Proteínas Protozoarias/metabolismo , Ribonucleasa III/metabolismo , Trypanosoma brucei brucei , Endonucleasas/genética , Endonucleasas/metabolismo , ARN/metabolismo , Edición de ARN , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , Trypanosoma brucei brucei/metabolismo , Uridina/metabolismo
8.
Methods Mol Biol ; 2524: 149-162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35821469

RESUMEN

This chapter introduces a simple and robust in vitro viability assay to screen bioactive small molecules (e.g., natural, synthetic) against the monomorphic and infective (bloodstream) form of Trypanosoma brucei brucei. The assay relies on a bioluminescent transgenic parasite harboring a genetically encoded copy of a thermostable redshifted firefly luciferase from Photinus pyralis.The major advantages of the assay are simplicity and cost efficiency, along with excellent quality parameters. The bioassay allows estimating parasite numbers and viability (and metabolic state) as a function of bioluminescence (BL) signal. Parasites are grown in the presence of the molecules of interest in a 96-well microplate, and 24 h later, BL is determined with a simple protocol lacking washing steps, using cost-efficient reagents with a reasonable readout time for high-throughput applications.


Asunto(s)
Evaluación Preclínica de Medicamentos , Mediciones Luminiscentes , Trypanosoma brucei brucei , Animales , Evaluación Preclínica de Medicamentos/métodos , Luciferasas de Luciérnaga , Mediciones Luminiscentes/métodos , Trypanosoma brucei brucei/efectos de los fármacos
9.
J Complement Integr Med ; 19(3): 705-709, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35704656

RESUMEN

OBJECTIVES: This study demonstrated the enhancing actions of probiotic on the antitrypanosomal effects of diminazene aceturate in dogs experimentally infected with Trypanosoma brucei brucei. METHODS: Twenty (20) apparently healthy adult local dogs of both sexes were randomly divided into five groups each containing four dogs. Group I were uninfected and untreated while groups III, IV and V were infected. Groups II, III, IV and V were administered multispecies probiotic (MSP) and/or diminazene aceturate (DA). Parasitaemia was determined, clinical signs recorded and blood collected for haematology. RESULTS: Results revealed T. b. brucei prepatent periods of 4.75 ± 0.25, (4-5) days and significant decrease of parasitaemia, clinical signs and mortality in groups IV and V compared to group III. Mortalities of 100% (group III), 25% (group IV) and 0% (group V) were recorded. Mean packed cells volume, haemoglobin concentration and red blood cells count showed no significant difference in groups I, II, and V, but were significantly decreased in groups III and IV post-treatment. CONCLUSIONS: The administration of MSP to infected dogs enhanced the antitrypanosomal effects of diminazene aceturate.


Asunto(s)
Probióticos , Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Diminazeno/análogos & derivados , Perros , Femenino , Hemoglobinas , Masculino , Parasitemia/tratamiento farmacológico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/veterinaria
10.
J Phys Chem B ; 125(49): 13366-13375, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34870419

RESUMEN

Glutaredoxins are small proteins that share a common well-conserved thioredoxin-fold and participate in a wide variety of biological processes. Among them, class II Grx are redox-inactive proteins involved in iron-sulfur (Fe-S) metabolism. In the present work, we report different structural and dynamics aspects of 1CGrx1 from the pathogenic parasite Trypanosoma brucei that differentiate it from other orthologues by the presence of a parasite-specific unstructured N-terminal extension whose role has not been fully elucidated yet. Previous nuclear magnetic resonance (NMR) studies revealed significant differences with respect to the mutant lacking the disordered tail. Herein, we have performed atomistic molecular dynamics simulations that, complementary to NMR studies, confirm the intrinsically disordered nature of the N-terminal extension. Moreover, we confirm the main role of these residues in modulating the conformational dynamics of the glutathione-binding pocket. We observe that the N-terminal extension modifies the ligand cavity stiffening it by specific interactions that ultimately modulate its intrinsic flexibility, which may modify its role in the storage and/or transfer of preformed iron-sulfur clusters. These unique structural and dynamics aspects of Trypanosoma brucei 1CGrx1 differentiate it from other orthologues and could have functional relevance. In this way, our results encourage the study of other similar protein folding families with intrinsically disordered regions whose functional roles are still unrevealed and the screening of potential 1CGrx1 inhibitors as antitrypanosomal drug candidates.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Hierro-Azufre , Trypanosoma brucei brucei , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Ligandos , Unión Proteica , Pliegue de Proteína , Trypanosoma brucei brucei/metabolismo
11.
ChemistryOpen ; 10(9): 896-903, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499412

RESUMEN

Research for innovative drugs is crucial to contribute to parasitic infections control and eradication. Inspired by natural antiprotozoal triterpenes, a library of 12 hemisynthetic 3-O-arylalkyl esters was derived from ursolic and oleanolic acids through one-step synthesis. Compounds were tested on Trypanosoma, Leishmania and the WI38 cell line alongside with a set of triterpenic acids. Results showed that the triterpenic C3 esterification keeps the antitrypanosomal activity (IC50 ≈1.6-5.5 µm) while reducing the cytotoxicity compared to parent acids. Unsaturation of the ester alkyl chain leads to an activity loss interestingly kept when a sterically hindered group replaces the double bond or shields the ester group. An ursane/oleanane C3 hydroxylation was the only important feature for antileishmanial activity. Two candidates, dihydrocinnamoyl and 2-fluorophenylpropionyl ursolic acids, were tested on an acute mouse model of African trypanosomiasis with significant parasitemia reduction at day 5 post-infection for the dihydrocinnamoyl derivative. Further evaluation on other alkyl/protective groups should be investigated both in vitro and in vivo.


Asunto(s)
Ésteres/farmacología , Triterpenos/farmacología , Tripanocidas/farmacología , Animales , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Ésteres/síntesis química , Ésteres/toxicidad , Femenino , Leishmania mexicana/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Parasitaria , Triterpenos/síntesis química , Triterpenos/toxicidad , Tripanocidas/síntesis química , Tripanocidas/toxicidad , Trypanosoma brucei brucei/efectos de los fármacos
12.
J Enzyme Inhib Med Chem ; 36(1): 1952-1967, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34455887

RESUMEN

A series of 6-amidinobenzothiazoles, linked via phenoxymethylene or directly to the 1,2,3-triazole ring with a p-substituted phenyl or benzyl moiety, were synthesised and evaluated in vitro against four human tumour cell lines and the protozoan parasite Trypanosoma brucei. The influence of the type of amidino substituent and phenoxymethylene linker on antiproliferative and antitrypanosomal activities was observed, showing that the imidazoline moiety had a major impact on both activities. Benzothiazole imidazoline 14a, which was directly connected to N-1-phenyl-1,2,3-triazole, had the most potent growth-inhibitory effect (IC50 = 0.25 µM) on colorectal adenocarcinoma (SW620), while benzothiazole imidazoline 11b, containing a phenoxymethylene linker, exhibited the best antitrypanosomal potency (IC90 = 0.12 µM). DNA binding assays showed a non-covalent interaction of 6-amidinobenzothiazole ligands, indicating both minor groove binding and intercalation modes of DNA interaction. Our findings encourage further development of novel structurally related 6-amidino-2-arylbenzothiazoles to obtain more selective anticancer and anti-HAT agents.


Asunto(s)
Antiprotozoarios/síntesis química , Benzotiazoles/síntesis química , Sustancias Intercalantes/síntesis química , Trypanosoma brucei brucei/efectos de los fármacos , Amidinas/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Antiprotozoarios/farmacología , Benzotiazoles/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , ADN/química , Evaluación Preclínica de Medicamentos , Humanos , Imidazolinas/química , Sustancias Intercalantes/farmacología , Conformación de Ácido Nucleico , Relación Estructura-Actividad , Triazoles/química
13.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34081090

RESUMEN

The kinetochore is the macromolecular protein complex that assembles onto centromeric DNA and binds spindle microtubules. Evolutionarily divergent kinetoplastids have an unconventional set of kinetochore proteins. It remains unknown how kinetochores assemble at centromeres in these organisms. Here, we characterize KKT2 and KKT3 in the kinetoplastid parasite Trypanosoma brucei. In addition to the N-terminal kinase domain and C-terminal divergent polo boxes, these proteins have a central domain of unknown function. We show that KKT2 and KKT3 are important for the localization of several kinetochore proteins and that their central domains are sufficient for centromere localization. Crystal structures of the KKT2 central domain from two divergent kinetoplastids reveal a unique zinc-binding domain (termed the CL domain for centromere localization), which promotes its kinetochore localization in T. brucei. Mutations in the equivalent domain in KKT3 abolish its kinetochore localization and function. Our work shows that the unique central domains play a critical role in mediating the centromere localization of KKT2 and KKT3.


Asunto(s)
Cinetocoros/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/genética , Relación Estructura-Actividad , Trypanosoma brucei brucei/genética , Zinc/metabolismo
14.
Vet Parasitol ; 294: 109449, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33991727

RESUMEN

Trypanosomosis and helminthosis, considered as part of neglected tropical diseases, are parasitic infections of public health importance, especially in Africa. Medicinal plants have been used in most parts of Africa, to treat these parasitic infections. The study aims to determine the anti-trypanosomal and anthelminthic properties of Tetrapleura tetraptera (fruit and stembark). The aqueous extracts of T. tetraptera fruit (TTFaq) and stembark (TTSaq), as well as ethanol extracts of T. tetraptera fruit (TTFe) and stembark (TTSe), were screened for their in vitro anti-trypanosomal and anthelminthic activities against T. b. brucei and Pheretima posthuma worms, respectively. Preliminary phytochemical screening of all extracts and gas chromatography-mass spectrometry (GC-MS) analysis of most active extracts were conducted. TTFaq exhibited anti-trypanosomal activity with IC50 of 18.18 µg/mL. TTSe and TTFe had moderate anti-trypanosomal activity with IC50 of 34.76 and 34.84 µg/mL, respectively. TTSaq had relatively low activity against the parasite with IC50 of 55.03 µg/mL. The SI of T. tetraptera extracts was between the range of 0.14-2.09. TTFaq showed dose-dependent activity causing paralysis and death of the adult worms at all concentrations. At the least concentration of 0.625 mg/mL, TTFaq induced paralysis and death after 101.88 ± 0.8 and 242.64 ± 0.38 min of exposure, respectively compared with the negative control (p < 0.0001). TTFe, TTSe and TTSaq caused paralysis of worms after 318.32 ± 0.74, 422.5 ± 0.72, 422.20 ± 0.55 min of exposure at minimum concentrations of 2.5, 10 and 5 mg/mL, respectively (p < 0.0001). However, no death was observed in worms treated with TTFe, TTSe and TTSaq at all test concentrations. In the presence of sub-minimal inhibitory concentration of the extracts, TTFaq potentiated the anthelminthic activity of albendazole whiles TTFe, TTSaq and TTSe inhibited the activity of albendazole. Phytochemical screening revealed the presence of saponins, triterpenoids, reducing sugars, flavonoids (absent in TTFe), steroids (absent in TTFaq) and tannins (absent in TTSe and TTFe) in the extracts. GC-MS revealed the presence of 9-octadecenamide and betulic acid in TTFaq. Hence, there was evidence provided here that Tetrapleura tetraptera may be effective. This gives credence to their folkloric use. However, further study might be necessary to ascertain safety use in both humans and animals.


Asunto(s)
Albendazol/química , Antihelmínticos/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Tetrapleura/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Albendazol/farmacología , Antihelmínticos/química , Etanol , Frutas/química , Cromatografía de Gases y Espectrometría de Masas/veterinaria , Ácidos Oléicos/química , Triterpenos Pentacíclicos/análisis , Fitoquímicos/química , Corteza de la Planta/química , Extractos Vegetales/química , Tallos de la Planta/química , Plantas Medicinales , Tripanocidas/química , Agua , Ácido Betulínico
15.
Biomed Pharmacother ; 138: 111508, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33756157

RESUMEN

The parasite Trypanosoma brucei is the main cause of the sleeping sickness threatening millions of populations in many African countries. The parasitic infection is currently managed by some synthetic medications, most of them suffer limited activity spectrum and/or serious adverse effects. Some studies have pointed out the promising therapeutic potential of the plant extracts rich in polyphenols to curb down parasitic infections caused by T. brucei and other trypanosomes. In this work, the main components dominating Eugenia uniflora and Syzygium samarangense plant extracts were virtually screened, through docking, as inhibitors of seven T. brucei enzymes validated as potential drug targets. The in vitro and in vivo anti-T. brucei activities of the extracts in two treatment doses were evaluated. Moreover, the extract effects on the packed cell volume level, liver, and kidney functions were assessed. Five compounds showed strong docking and minimal binding energy to five target enzymes simultaneously and three other compounds were able to bind strongly to at least four of the target enzymes. These compounds represent lead hits to develop novel trypanocidal agents of natural origin. Both extracts showed moderate in vitro anti-trypanosomal activity. Infected animal groups treated over 5 days with the studied extracts showed an appreciable in vivo anti-trypanosomal activity and ameliorated in a dose dependent manner the anaemia, liver, and kidney damages induced by the infection. In conclusion, Eugenia uniflora and Syzygium samarangense could serve as appealing sources to treat trypanosomes infections.


Asunto(s)
Simulación por Computador , Eugenia , Extractos Vegetales/farmacología , Syzygium , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Células MCF-7 , Masculino , Modelos Moleculares , Simulación del Acoplamiento Molecular/métodos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Estructura Secundaria de Proteína , Ratas , Ratas Wistar , Tripanocidas/química , Tripanocidas/aislamiento & purificación , Tripanocidas/uso terapéutico , Trypanosoma brucei brucei/química , Tripanosomiasis/tratamiento farmacológico , Tripanosomiasis/patología
16.
Nat Prod Res ; 35(8): 1313-1322, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31385525

RESUMEN

Terminaliamide (1), a new ceramide was isolated from the roots of Terminalia mantaly H. Perrier (Combretaceae) along with 4 known compounds (2-5). The structures of the compounds were elucidated using 1D and 2D NMR spectroscopy analysis and mass spectrometry. Compound 1 exhibited moderated antibacterial activity towards Staphylococcus aureus with MIC value of 62.5 µg/mL. The crude MeOH extract (TMr) highly reduced Plasmodium falciparum growth with an IC50 value of 10.11 µg/mL, while hexane fraction (F1) highly reduced Trypanosoma brucei brucei growth with an IC50 value of 5.60 µg/mL. All tested samples presented little or no in vitro cytotoxicity on HeLa cell line. The present work confirms that T. mantaly is medicinally important and may be used effectively as an antimicrobial, an antiplasmodial and an antitrypanosomial with promising therapeutic index.


Asunto(s)
Ceramidas/aislamiento & purificación , Ceramidas/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Raíces de Plantas/química , Terminalia/química , Antiinfecciosos/farmacología , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Bacterias/efectos de los fármacos , Espectroscopía de Resonancia Magnética con Carbono-13 , Supervivencia Celular/efectos de los fármacos , Ceramidas/química , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Fitoquímicos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Espectroscopía de Protones por Resonancia Magnética , Trypanosoma brucei brucei/efectos de los fármacos
17.
Curr Pharm Des ; 27(15): 1807-1824, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33167829

RESUMEN

Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited, and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo is essential for the development of a novel, specific and safe derivative, minimizing adverse effects.


Asunto(s)
Enfermedad de Chagas , Leishmaniasis , Naftoquinonas , Trypanosoma brucei brucei , Trypanosoma cruzi , Animales , Naftoquinonas/farmacología
18.
FASEB J ; 35(2): e21176, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33184899

RESUMEN

The mitochondrial inner membrane glycerophospholipid cardiolipin (CL) associates with mitochondrial proteins to regulate their activities and facilitate protein complex and supercomplex formation. Loss of CL leads to destabilized respiratory complexes and mitochondrial dysfunction. The role of CL in an organism lacking a conventional electron transport chain (ETC) has not been elucidated. Trypanosoma brucei bloodstream forms use an unconventional ETC composed of glycerol-3-phosphate dehydrogenase and alternative oxidase (AOX), while the mitochondrial membrane potential (ΔΨm) is generated by the hydrolytic action of the Fo F1 -ATP synthase (aka Fo F1 -ATPase). We now report that the inducible depletion of cardiolipin synthase (TbCls) is essential for survival of T brucei bloodstream forms. Loss of CL caused a rapid drop in ATP levels and a decline in the ΔΨm. Unbiased proteomic analyses revealed a reduction in the levels of many mitochondrial proteins, most notably of Fo F1 -ATPase subunits and AOX, resulting in a strong decline of glycerol-3-phosphate-stimulated oxygen consumption. The changes in cellular respiration preceded the observed decrease in Fo F1 -ATPase stability, suggesting that the AOX-mediated ETC is the first pathway responding to the decline in CL. Select proteins and pathways involved in glucose and amino acid metabolism were upregulated to counteract the CL depletion-induced drop in cellular ATP.


Asunto(s)
Cardiolipinas/genética , Metabolismo Energético/genética , Técnicas de Inactivación de Genes , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Adenosina Trifosfato/metabolismo , Cardiolipinas/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Organismos Modificados Genéticamente , Oxidorreductasas/metabolismo , Consumo de Oxígeno/genética , Proteínas de Plantas/metabolismo , Proteoma , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Trypanosoma brucei brucei/clasificación
19.
Mar Drugs ; 18(12)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371387

RESUMEN

The discovery of new secondary metabolites from natural origins has become more challenging in natural products research. Different approaches have been applied to target the isolation of new bioactive metabolites from plant extracts. In this study, bioactive natural products were isolated from the crude organic extract of the mangrove plant Avicennia lanata collected from the east coast of Peninsular Malaysia in the Setiu Wetlands, Terengganu, using HRESI-LCMS-based metabolomics-guided isolation and fractionation. Isolation work on the crude extract A. lanata used high-throughput chromatographic techniques to give two new naphthofuranquinone derivatives, hydroxyavicenol C (1) and glycosemiquinone (2), along with the known compounds avicenol C (3), avicequinone C (4), glycoquinone (5), taraxerone (6), taraxerol (7), ß-sitosterol (8) and stigmasterol (9). The elucidation and identification of the targeted bioactive compounds used 1D and 2D-NMR and mass spectrometry. Except for 6-9, all isolated naphthoquinone compounds (1-5) from the mangrove plant A. lanata showed significant anti-trypanosomal activity on Trypanosoma brucei brucei with MIC values of 3.12-12.5 µM. Preliminary cytotoxicity screening against normal prostate cells (PNT2A) was also performed. All compounds exhibited low cytotoxicity, with compounds 3 and 4 showing moderate cytotoxicity of 78.3% and 68.6% of the control values at 100 µg/mL, respectively.


Asunto(s)
Antiprotozoarios/aislamiento & purificación , Avicennia , Furanos/aislamiento & purificación , Naftoquinonas/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Trypanosoma brucei brucei/efectos de los fármacos , Antiprotozoarios/farmacología , Línea Celular , Furanos/farmacología , Humanos , Naftoquinonas/farmacología , Extractos Vegetales/farmacología , Trypanosoma brucei brucei/fisiología
20.
PLoS Negl Trop Dis ; 14(12): e0008919, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33382717

RESUMEN

BACKGROUND: Ghana is endemic for some neglected tropical diseases (NTDs) including schistosomiasis, onchocerciasis and lymphatic filariasis. The major intervention for these diseases is mass drug administration of a few repeatedly recycled drugs which is a cause for major concern due to reduced efficacy of the drugs and the emergence of drug resistance. Evidently, new treatments are needed urgently. Medicinal plants, on the other hand, have a reputable history as important sources of potent therapeutic agents in the treatment of various diseases among African populations, Ghana inclusively, and provide very useful starting points for the discovery of much-needed new or alternative drugs. METHODOLOGY/PRINCIPAL FINDINGS: In this study, extracts of fifteen traditional medicines used for treating various NTDs in local communities were screened in vitro for efficacy against schistosomiasis, onchocerciasis and African trypanosomiasis. Two extracts, NTD-B4-DCM and NTD-B7-DCM, prepared from traditional medicines used to treat schistosomiasis, displayed the highest activity (IC50 = 30.5 µg/mL and 30.8 µg/mL, respectively) against Schistosoma mansoni adult worms. NTD-B2-DCM, also obtained from an antischistosomal remedy, was the most active against female and male adult Onchocera ochengi worms (IC50 = 76.2 µg/mL and 76.7 µg/mL, respectively). Antitrypanosomal assay of the extracts against Trypanosoma brucei brucei gave the most promising results (IC50 = 5.63 µg/mL to 18.71 µg/mL). Incidentally, NTD-B4-DCM and NTD-B2-DCM, also exhibited the greatest antitrypanosomal activities (IC50 = 5.63 µg/mL and 7.12 µg/mL, respectively). Following the favourable outcome of the antitrypanosomal screening, this assay was selected for bioactivity-guided fractionation. NTD-B4-DCM, the most active extract, was fractionated and subsequent isolation of bioactive constituents led to an eupatoriochromene-rich oil (42.6%) which was 1.3-fold (IC50 <0.0977 µg/mL) more active than the standard antitrypanosomal drug, diminazene aceturate (IC50 = 0.13 µg/mL). CONCLUSION/SIGNIFICANCE: These findings justify the use of traditional medicines and demonstrate their prospects towards NTDs drug discovery.


Asunto(s)
Filaricidas/farmacología , Onchocerca/efectos de los fármacos , Schistosoma mansoni/efectos de los fármacos , Esquistosomicidas/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Ghana , Medicinas Tradicionales Africanas , Enfermedades Desatendidas/tratamiento farmacológico , Enfermedades Desatendidas/parasitología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA