Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(11): 5678-5698, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37207337

RESUMEN

Universal Minicircle Sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind the single-stranded G-rich UMS sequence, conserved at the replication origins of minicircles in the kinetoplast DNA, the mitochondrial genome of kinetoplastids. Trypanosoma brucei UMSBP2 has been recently shown to colocalize with telomeres and to play an essential role in chromosome end protection. Here we report that TbUMSBP2 decondenses in vitro DNA molecules, which were condensed by core histones H2B, H4 or linker histone H1. DNA decondensation is mediated via protein-protein interactions between TbUMSBP2 and these histones, independently of its previously described DNA binding activity. Silencing of the TbUMSBP2 gene resulted in a significant decrease in the disassembly of nucleosomes in T. brucei chromatin, a phenotype that could be reverted, by supplementing the knockdown cells with TbUMSBP2. Transcriptome analysis revealed that silencing of TbUMSBP2 affects the expression of multiple genes in T. brucei, with a most significant effect on the upregulation of the subtelomeric variant surface glycoproteins (VSG) genes, which mediate the antigenic variation in African trypanosomes. These observations suggest that UMSBP2 is a chromatin remodeling protein that functions in the regulation of gene expression and plays a role in the control of antigenic variation in T. brucei.


Asunto(s)
Proteínas Protozoarias , Trypanosoma brucei brucei , Variación Antigénica/genética , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Telómero/genética , Telómero/metabolismo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Proteínas Protozoarias/metabolismo , Ensamble y Desensamble de Cromatina
2.
Nucleic Acids Res ; 50(17): 10123-10139, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36095119

RESUMEN

Each of the three similar RNA Editing Catalytic Complexes (RECCs) that perform gRNA-directed uridine insertion and deletion during Trypanosoma brucei mitochondrial (mt) mRNA editing has a distinct endonuclease activity that requires two related RNase III proteins, with only one competent for catalysis. We identified multiple loss-of-function mutations in the RNase III and other motifs of the non-catalytic KREPB6, KREPB7, and KREPB8 components by random mutagenesis and screening. These mutations had various effects on growth, editing, and both the abundances and RECC associations of these RNase III protein pairs in bloodstream form (BF) and procyclic form (PF) cells. Protein structure modelling predicted that the Zinc Finger (ZnF) of each paired RNase III protein contacts RNA positioned at the heterodimeric active site which is flanked by helices of a novel RNase III-Associated Motif (RAM). The results indicate that the protein domains of the non-catalytic subunits function together in RECC integrity, substrate binding, and editing site recognition during the multistep RNA editing process. Additionally, several mutants display distinct functional consequences in different life cycle stages. These results highlight the complementary roles of protein pairs and three RECCs within the complicated T. brucei mRNA editing machinery that matures mt mRNAs differentially between developmental stages.


Asunto(s)
Proteínas Protozoarias/metabolismo , Ribonucleasa III/metabolismo , Trypanosoma brucei brucei , Endonucleasas/genética , Endonucleasas/metabolismo , ARN/metabolismo , Edición de ARN , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , Trypanosoma brucei brucei/metabolismo , Uridina/metabolismo
3.
J Phys Chem B ; 125(49): 13366-13375, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34870419

RESUMEN

Glutaredoxins are small proteins that share a common well-conserved thioredoxin-fold and participate in a wide variety of biological processes. Among them, class II Grx are redox-inactive proteins involved in iron-sulfur (Fe-S) metabolism. In the present work, we report different structural and dynamics aspects of 1CGrx1 from the pathogenic parasite Trypanosoma brucei that differentiate it from other orthologues by the presence of a parasite-specific unstructured N-terminal extension whose role has not been fully elucidated yet. Previous nuclear magnetic resonance (NMR) studies revealed significant differences with respect to the mutant lacking the disordered tail. Herein, we have performed atomistic molecular dynamics simulations that, complementary to NMR studies, confirm the intrinsically disordered nature of the N-terminal extension. Moreover, we confirm the main role of these residues in modulating the conformational dynamics of the glutathione-binding pocket. We observe that the N-terminal extension modifies the ligand cavity stiffening it by specific interactions that ultimately modulate its intrinsic flexibility, which may modify its role in the storage and/or transfer of preformed iron-sulfur clusters. These unique structural and dynamics aspects of Trypanosoma brucei 1CGrx1 differentiate it from other orthologues and could have functional relevance. In this way, our results encourage the study of other similar protein folding families with intrinsically disordered regions whose functional roles are still unrevealed and the screening of potential 1CGrx1 inhibitors as antitrypanosomal drug candidates.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Hierro-Azufre , Trypanosoma brucei brucei , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Ligandos , Unión Proteica , Pliegue de Proteína , Trypanosoma brucei brucei/metabolismo
4.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34081090

RESUMEN

The kinetochore is the macromolecular protein complex that assembles onto centromeric DNA and binds spindle microtubules. Evolutionarily divergent kinetoplastids have an unconventional set of kinetochore proteins. It remains unknown how kinetochores assemble at centromeres in these organisms. Here, we characterize KKT2 and KKT3 in the kinetoplastid parasite Trypanosoma brucei. In addition to the N-terminal kinase domain and C-terminal divergent polo boxes, these proteins have a central domain of unknown function. We show that KKT2 and KKT3 are important for the localization of several kinetochore proteins and that their central domains are sufficient for centromere localization. Crystal structures of the KKT2 central domain from two divergent kinetoplastids reveal a unique zinc-binding domain (termed the CL domain for centromere localization), which promotes its kinetochore localization in T. brucei. Mutations in the equivalent domain in KKT3 abolish its kinetochore localization and function. Our work shows that the unique central domains play a critical role in mediating the centromere localization of KKT2 and KKT3.


Asunto(s)
Cinetocoros/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/genética , Relación Estructura-Actividad , Trypanosoma brucei brucei/genética , Zinc/metabolismo
5.
FASEB J ; 35(2): e21176, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33184899

RESUMEN

The mitochondrial inner membrane glycerophospholipid cardiolipin (CL) associates with mitochondrial proteins to regulate their activities and facilitate protein complex and supercomplex formation. Loss of CL leads to destabilized respiratory complexes and mitochondrial dysfunction. The role of CL in an organism lacking a conventional electron transport chain (ETC) has not been elucidated. Trypanosoma brucei bloodstream forms use an unconventional ETC composed of glycerol-3-phosphate dehydrogenase and alternative oxidase (AOX), while the mitochondrial membrane potential (ΔΨm) is generated by the hydrolytic action of the Fo F1 -ATP synthase (aka Fo F1 -ATPase). We now report that the inducible depletion of cardiolipin synthase (TbCls) is essential for survival of T brucei bloodstream forms. Loss of CL caused a rapid drop in ATP levels and a decline in the ΔΨm. Unbiased proteomic analyses revealed a reduction in the levels of many mitochondrial proteins, most notably of Fo F1 -ATPase subunits and AOX, resulting in a strong decline of glycerol-3-phosphate-stimulated oxygen consumption. The changes in cellular respiration preceded the observed decrease in Fo F1 -ATPase stability, suggesting that the AOX-mediated ETC is the first pathway responding to the decline in CL. Select proteins and pathways involved in glucose and amino acid metabolism were upregulated to counteract the CL depletion-induced drop in cellular ATP.


Asunto(s)
Cardiolipinas/genética , Metabolismo Energético/genética , Técnicas de Inactivación de Genes , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Adenosina Trifosfato/metabolismo , Cardiolipinas/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Organismos Modificados Genéticamente , Oxidorreductasas/metabolismo , Consumo de Oxígeno/genética , Proteínas de Plantas/metabolismo , Proteoma , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Trypanosoma brucei brucei/clasificación
6.
Chem Biol Drug Des ; 90(6): 1067-1078, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28547936

RESUMEN

Neglected diseases (NDs) affect large populations and almost whole continents, representing 12% of the global health burden. In contrast, the treatment available today is limited and sometimes ineffective. Under this scenery, the Fragment-Based Drug Discovery emerged as one of the most promising alternatives to the traditional methods of drug development. This method allows achieving new lead compounds with smaller size of fragment libraries. Even with the wide Fragment-Based Drug Discovery success resulting in new effective therapeutic agents against different diseases, until this moment few studies have been applied this approach for NDs area. In this article, we discuss the basic Fragment-Based Drug Discovery process, brief successful ideas of general applications and show a landscape of its use in NDs, encouraging the implementation of this strategy as an interesting way to optimize the development of new drugs to NDs.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Diseño de Fármacos , Enfermedades Desatendidas/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Cisteína Endopeptidasas/química , Evaluación Preclínica de Medicamentos , Humanos , Enfermedades Desatendidas/parasitología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Programas Informáticos , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo
7.
PLoS Negl Trop Dis ; 11(4): e0005552, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28414727

RESUMEN

The mitochondrial (mt) FoF1-ATP synthase of the digenetic parasite, Trypanosoma brucei, generates ATP during the insect procyclic form (PF), but becomes a perpetual consumer of ATP in the mammalian bloodstream form (BF), which lacks a canonical respiratory chain. This unconventional dependence on FoF1-ATPase is required to maintain the essential mt membrane potential (Δψm). Normally, ATP hydrolysis by this rotary molecular motor is restricted to when eukaryotic cells experience sporadic hypoxic conditions, during which this compulsory function quickly depletes the cellular ATP pool. To protect against this cellular treason, the highly conserved inhibitory factor 1 (IF1) binds the enzyme in a manner that solely inhibits the hydrolytic activity. Intriguingly, we were able to identify the IF1 homolog in T. brucei (TbIF1), but determined that its expression in the mitochondrion is tightly regulated throughout the life cycle as it is only detected in PF cells. TbIF1 appears to primarily function as an emergency brake in PF cells, where it prevented the restoration of the Δψm by FoF1-ATPase when respiration was chemically inhibited. In vitro, TbIF1 overexpression specifically inhibits the hydrolytic activity but not the synthetic capability of the FoF1-ATP synthase in PF mitochondria. Furthermore, low µM amounts of recombinant TbIF1 achieve the same inhibition of total mt ATPase activity as the FoF1-ATPase specific inhibitors, azide and oligomycin. Therefore, even minimal ectopic expression of TbIF1 in BF cells proved lethal as the indispensable Δψm collapsed due to inhibited FoF1-ATPase. In summary, we provide evidence that T. brucei harbors a natural and potent unidirectional inhibitor of the vital FoF1-ATPase activity that can be exploited for future structure-based drug design.


Asunto(s)
Adenosina Trifosfato/metabolismo , Inhibidores Enzimáticos/metabolismo , Regulación de la Expresión Génica , ATPasas de Translocación de Protón/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/metabolismo , Hidrólisis , Trypanosoma brucei brucei/genética
8.
PLoS One ; 12(1): e0168775, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28045943

RESUMEN

For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (Km 3.6 ± 0.4 µM) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arginine-ß-naphthylamide, while lysine was inhibitory only at 100-times excess, and histidine or ornithine did not reduce arginine uptake rates significantly. TbAAT16-1 is a high affinity (Km 4.3 ± 0.5 µM) and highly selective L-lysine transporter and of the compounds tested, only L-lysine and thialysine were competing for L-lysine uptake. TbAAT5-3 and TbAAT16-1 are expressed in both procyclic and bloodstream form T. brucei and cMyc-tagged proteins indicate localization at the plasma membrane. RNAi-mediated down-regulation of TbAAT5 and TbAAT16 in bloodstream form trypanosomes resulted in growth arrest, demonstrating that TbAAT5-mediated arginine and TbAAT16-mediated lysine transport are essential for T. brucei. Growth of induced RNAi lines could partially be rescued by supplementing a surplus of arginine or lysine, respectively, while addition of both amino acids was less efficient. Single and double RNAi lines indicate that additional low affinity uptake systems for arginine and lysine are present in T. brucei.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Lisina/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Arginina/análogos & derivados , Canavanina/metabolismo , Homoarginina/metabolismo , Humanos , Cinética , Oocitos/metabolismo , Sistemas de Lectura Abierta , Filogenia , Interferencia de ARN , Saccharomyces cerevisiae/genética , Xenopus laevis
9.
Phytomedicine ; 23(14): 1771-1777, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27912879

RESUMEN

BACKGROUND: Although Trypanosoma brucei causes deadly sleeping sickness, the number of the registered medications is rather limited. Some plant alkaloids are potent trypanocidal agents. PURPOSE: In this study, we wanted to elucidate the molecular modes of trypanocidal activity of the alkaloids emetine and homoharringtonine against Trypanosoma brucei brucei. METHODS: We investigated the activity of both alkaloids regarding growth recovery from alkaloid-induced stress. We measured the inhibition of protein biosynthesis using the Click-iT® AHA Alexa Fluor® 488 Protein Synthesis HCS Assay kit. Reduction of mitochondrial membrane potential and cell cycle arrest were measured by means of flow cytometry. Additionally, we determined spectrophotometrically the inhibition of the trypanosome specific enzyme trypanothione reductase activity and DNA intercalation. RESULTS: Both alkaloids prevented that parasites could resume normal growth after pretreatment with the alkaloids. They inhibited protein biosynthesis in a time- and concentration-dependent manner. In contrast to homoharringtonine, emetine is also a DNA intercalator. Homoharringtonine decreased the mitochondrial membrane potential. Both alkaloids caused cell cycle arrest. Both alkaloids failed to affect trypanothione reductase, a crucial component of the redox system of trypanosomes. CONCLUSION: We assume that both alkaloids are primarily inhibitors of protein biosynthesis in trypanosomes, with DNA intercalation as an additional mechanism for emetine. This is the first study that elucidates the molecular mode of trypanocidal action of emetine and homoharringtonine.


Asunto(s)
Emetina/farmacología , Harringtoninas/farmacología , Extractos Vegetales/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/parasitología , Alcaloides/farmacología , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , ADN Protozoario/metabolismo , Homoharringtonina , Potencial de la Membrana Mitocondrial/efectos de los fármacos , NADH NADPH Oxidorreductasas/metabolismo , Fitoterapia , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico
10.
Bioorg Med Chem Lett ; 26(21): 5247-5253, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27720295

RESUMEN

Trypanosoma brucei are protozoan parasites that cause African sleeping sickness in humans (also known as Human African Trypanosomiasis-HAT). Without treatment, T. brucei infections are fatal. There is an urgent need for new therapeutic strategies as current drugs are toxic, have complex treatment regimens, and are becoming less effective owing to rising antibiotic resistance in parasites. We hypothesize that targeting the HSP60/10 chaperonin systems in T. brucei is a viable anti-trypanosomal strategy as parasites rely on these stress response elements for their development and survival. We recently discovered several hundred inhibitors of the prototypical HSP60/10 chaperonin system from Escherichia coli, termed GroEL/ES. One of the most potent GroEL/ES inhibitors we discovered was compound 1. While examining the PubChem database, we found that a related analog, 2e-p, exhibited cytotoxicity to Leishmania major promastigotes, which are trypanosomatids highly related to Trypanosoma brucei. Through initial counter-screening, we found that compounds 1 and 2e-p were also cytotoxic to Trypanosoma brucei parasites (EC50=7.9 and 3.1µM, respectively). These encouraging initial results prompted us to develop a library of inhibitor analogs and examine their anti-parasitic potential in vitro. Of the 49 new chaperonin inhibitors developed, 39% exhibit greater cytotoxicity to T. brucei parasites than parent compound 1. While many analogs exhibit moderate cytotoxicity to human liver and kidney cells, we identified molecular substructures to pursue for further medicinal chemistry optimization to increase the therapeutic windows of this novel class of chaperonin-targeting anti-parasitic candidates. An intriguing finding from this study is that suramin, the first-line drug for treating early stage T. brucei infections, is also a potent inhibitor of GroEL/ES and HSP60/10 chaperonin systems.


Asunto(s)
Antiprotozoarios/farmacología , Chaperonina 10/efectos de los fármacos , Chaperonina 60/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Antiprotozoarios/uso terapéutico , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA