Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Tipo del documento
Intervalo de año de publicación
1.
J Cell Biochem ; 122(11): 1701-1714, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34346095

RESUMEN

Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is the key regulatory enzyme of the purine salvage pathway present in the members of trypanosomatids. The parasite solely depends on this pathway for the synthesis of nucleotides due to the absence of the de novo pathway. This study intends to identify putative inhibitors towards Trypanosoma cruzi HGPRT (TcHGPRT). Initial virtual screening was performed with substructures of phosphoribosyl pyrophosphate (PRPP), an original substrate of HGPRT. Twenty compounds that had greater binding energy than the substrate was treated as hits and was further screened and narrowed down through induced fit docking which resulted in top five compounds which was distinguished into two groups based on the ligand occupancy within the PRPP binding site of TcHGPRT. Group-I compounds (PubChem CID 130316561 and 134978234) are analogous to PRPP structure with greater occupancy, were preferred over Group-II compounds which had lesser occupancy than the substrate. However, one compound (22404820) among Group II was chosen for further analysis considering its significant electrostatic interactions. Molecular docking studies revealed the requirement of an electronegative moiety like phosphate group to be present in the ligand due to the presence of metal ions in the substrate binding site. The three chosen compounds along with PRPP were subjected to molecular dynamics analysis, which indicated a strong presence of electrostatic interaction. Considering the dynamic stability of interactions as well as pharmacological properties of ligands based on absorption, distribution, metabolism, excretion prediction, Group-I compounds were selected as lead compounds and were subjected to molecular electrostatic potential analysis to determine the charge distribution of the compound. The overall analysis thus suggests both 130316561 and 134978234 can be used as TcHGPRT inhibitors. Furthermore, these computational results emphasize the requirement of phosphorylated ligands which are essential in mediating electrostatic interactions and to compete with the binding affinity of the original substrate.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Hipoxantina Fosforribosiltransferasa/antagonistas & inhibidores , Hipoxantina Fosforribosiltransferasa/química , Proteínas Protozoarias/antagonistas & inhibidores , Trypanosoma cruzi/enzimología , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Humanos , Hipoxantina Fosforribosiltransferasa/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Electricidad Estática
2.
Med Chem ; 17(7): 724-731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32370720

RESUMEN

BACKGROUND: Chagas disease, caused by the parasite Trypanosoma cruzi, represents a worldwide epidemiological, economic, and social problem. In the last decades, the trans-sialidase enzyme of Trypanosoma cruzi has been considered an attractive target for the development of new agents with potential trypanocidal activity. OBJECTIVE: In this work, the aim was to find new potential non-sugar trans-sialidase inhibitors using benzoic acid as a scaffold. METHODS: A structure-based virtual screening of the ZINC15 database was carried out. Additionally, the enzyme and trypanocidal activity of the selected compounds was determined. RESULTS: The results of this work detected 487 compounds derived from benzoic acid as potential transsialidase inhibitors with a more promising binding energy value (< -7.7 kcal/mol) than the known inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA). In particular, two lead compounds, V1 and V2, turned out to be promising trans-sialidase inhibitors. Even though the trypanocidal activity displayed was low, these compounds showed trans-sialidase inhibition values of 87.6% and 29.6%, respectively. CONCLUSION: Structure-based virtual screening using a molecular docking approach is a useful method for the identification of new trans-sialidase inhibitors.


Asunto(s)
Ácido Benzoico/química , Ácido Benzoico/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Neuraminidasa/antagonistas & inhibidores , Trypanosoma cruzi/enzimología , Ácido Benzoico/metabolismo , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/metabolismo , Simulación del Acoplamiento Molecular , Neuraminidasa/química , Neuraminidasa/metabolismo , Conformación Proteica , Termodinámica , Trypanosoma cruzi/efectos de los fármacos , Interfaz Usuario-Computador
3.
J Enzyme Inhib Med Chem ; 35(1): 21-30, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31619095

RESUMEN

Trypanosoma cruzi carbonic anhydrase (TcCA) has recently emerged as an interesting target for the design of new compounds to treat Chagas disease. In this study we report the results of a structure-based virtual screening campaign to identify novel and selective TcCA inhibitors. The combination of properly validated computational methodologies such as comparative modelling, molecular dynamics and docking simulations allowed us to find high potency hits, with KI values in the nanomolar range. The compounds also showed trypanocidal effects against T. cruzi epimastigotes and trypomastigotes. All the candidates are selective for inhibiting TcCA over the human isoform CA II, which is encouraging in terms of possible therapeutic safety and efficacy.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Enfermedad de Chagas/tratamiento farmacológico , Ciclamatos/farmacología , Tripanocidas/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Enfermedad de Chagas/metabolismo , Ciclamatos/síntesis química , Ciclamatos/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología
4.
Molecules ; 24(7)2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30987092

RESUMEN

Benznidazole and nifurtimox, the only drugs available for the treatment of Chagas disease, have limited efficacy and have been associated with severe adverse side effects. Thus, there is an urgent need to find new biotargets for the identification of novel bioactive compounds against the parasite and with low toxicity. Silent information regulator 2 (Sir2) enzymes, or sirtuins, have emerged as attractive targets for the development of novel antitrypanosomatid agents. In the present work, we evaluated the inhibitory effect of natural compounds isolated from cashew nut (Anacardium occidentale, L. Anacardiaceae) against the target enzymes TcSir2rp1 and TcSir2rp3 as well as the parasite. Two derivates of cardol (1, 2), cardanol (3, 4), and anacardic acid (5, 6) were investigated. The two anacardic acids (5, 6) inhibited both TcSir2rp1 and TcSir2rp3, while the cardol compound (2) inhibited only TcSir2rp1. The most potent sirtuin inhibitor active against the parasite was the cardol compound (2), with an EC50 value of 12.25 µM, similar to that of benznidazole. Additionally, compounds (1, 4), which were inactive against the sirtuin targets, presented anti-T. cruzi effects. In conclusion, our results showed the potential of Anacardium occidentale compounds for the development of potential sirtuin inhibitors and anti-Trypanosoma cruzi agents.


Asunto(s)
Anacardium/química , Extractos Vegetales/farmacología , Sirtuinas/antagonistas & inhibidores , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Extractos Vegetales/química
5.
Comput Biol Chem ; 79: 36-47, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30710804

RESUMEN

Trypanosoma cruzi Trypanothione Reductase (TcTR) is one of the therapeutic targets studied in the development of new drugs against Chagas' disease. Due to its biodiversity, Brazil has several compounds of natural origin that were not yet properly explored in drug discovery. Therefore, we employed the Virtual Screening against TcTR aiming to discover new inhibitors from the Natural Products Database of the Bahia Semi-Arid region (NatProDB). This database has a wide chemical diversity favoring the discovery of new chemical entities. Subsequently, we analyzed the best docking conformations using self-organizing maps (AuPosSOM) aiming to verify their interaction sites at TcTR. Finally, the Pred-hERG, the Aggregator Advisor, the FAF-DRUGS and the pkCSM results allowed us to evaluate, respectively, the cardiotoxicity, aggregation capacity, presence of false positives (PAINS) and its toxicity. Thus, we selected three molecules that could be tested in in vitro assays in the hope that the computational results reported here would favor the development of new anti-chagasic drugs.


Asunto(s)
Antiprotozoarios/farmacología , Productos Biológicos/farmacología , Simulación por Computador , Bases de Datos de Compuestos Químicos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Trypanosoma cruzi/efectos de los fármacos , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Brasil , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , NADH NADPH Oxidorreductasas/metabolismo , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Trypanosoma cruzi/enzimología
6.
Mol Divers ; 21(3): 697-711, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28656524

RESUMEN

American trypanosomiasis or Chagas disease caused by the protozoan Trypanosoma cruzi (T. cruzi) is an important endemic trypanosomiasis in Central and South America. This disease was considered to be a priority in the global plan to combat neglected tropical diseases, 2008-2015, which indicates that there is an urgent need to develop more effective drugs. The development of new chemotherapeutic agents against Chagas disease can be related to an important biochemical feature of T. cruzi: its redox defense system. This system is based on trypanothione ([Formula: see text],[Formula: see text]-bis(glutathyonil)spermidine) and trypanothione reductase (TR), which are rather unique to trypanosomes and completely absent in mammalian cells. In this regard, tricyclic compounds have been studied extensively due to their ability to inhibit the T. cruzi TR. However, synthetic derivatives of natural products, such as [Formula: see text]-carboline derivatives ([Formula: see text]-CDs), as potential TR inhibitors, has received little attention. This study presents an analysis of the structural and physicochemical properties of commercially available [Formula: see text]-CDs in relation to compounds tested against T. cruzi in previously reported enzymatic assays and shows that [Formula: see text]-CDs cover chemical space that has not been considered for the design of TR inhibitors. Moreover, this study presents a ligand-based approach to discover potential TR inhibitors among commercially available [Formula: see text]-CDs, which could lead to the generation of promising [Formula: see text]-CD candidates.


Asunto(s)
Carbolinas/química , Inhibidores Enzimáticos/química , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Tripanocidas/química , Trypanosoma cruzi/enzimología , Carbolinas/farmacología , Simulación por Computador , Bases de Datos Farmacéuticas , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Glutatión/análogos & derivados , Glutatión/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , NADH NADPH Oxidorreductasas/química , Espermidina/análogos & derivados , Espermidina/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos
7.
PLoS Negl Trop Dis ; 11(3): e0005472, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28306713

RESUMEN

Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6-10.3 µM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 µM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of Chagas disease.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Isotretinoína/farmacología , Proteínas de Transporte de Membrana/metabolismo , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología , Aminoácidos/metabolismo , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Poliaminas/metabolismo
8.
Bioorg Med Chem ; 25(6): 1889-1900, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28215783

RESUMEN

Analogues of 8-chloro-N-(3-morpholinopropyl)-5H-pyrimido[5,4-b]indol-4-amine 1, a known cruzain inhibitor, were synthesized using a molecular simplification strategy. Five series of analogues were obtained: indole, pyrimidine, quinoline, aniline and pyrrole derivatives. The activity of the compounds was evaluated against the enzymes cruzain and rhodesain as well as against Trypanosoma cruzi amastigote and trypomastigote forms. The 4-aminoquinoline derivatives showed promising activity against both enzymes, with IC50 values ranging from 15 to 125µM. These derivatives were selective inhibitors for the parasitic proteases, being unable to inhibit mammalian cathepsins B and S. The most active compound against cruzain (compound 5a; IC50=15µM) is considerably more synthetically accessible than 1, while retaining its ligand efficiency. As observed for the original lead, compound 5a was shown to be a competitive enzyme inhibitor. In addition, it was also active against T. cruzi (IC50=67.7µM). Interestingly, the pyrimidine derivative 4b, although inactive in enzymatic assays, was highly active against T. cruzi (IC50=3.1µM) with remarkable selectivity index (SI=128) compared to uninfected fibroblasts. Both 5a and 4b exhibit drug-like physicochemical properties and are predicted to have a favorable ADME profile, therefore having great potential as candidates for lead optimization in the search for new drugs to treat Chagas disease.


Asunto(s)
Cisteína Endopeptidasas/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/química , Evaluación Preclínica de Medicamentos , Análisis Espectral/métodos , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología
9.
PLoS Negl Trop Dis ; 10(4): e0004617, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27070550

RESUMEN

BACKGROUND: The search for novel chemical entities targeting essential and parasite-specific pathways is considered a priority for neglected diseases such as trypanosomiasis and leishmaniasis. The thiol-dependent redox metabolism of trypanosomatids relies on bis-glutathionylspermidine [trypanothione, T(SH)2], a low molecular mass cosubstrate absent in the host. In pathogenic trypanosomatids, a single enzyme, trypanothione synthetase (TryS), catalyzes trypanothione biosynthesis, which is indispensable for parasite survival. Thus, TryS qualifies as an attractive drug target candidate. METHODOLOGY/PRINCIPAL FINDING: A library composed of 144 compounds from 7 different families and several singletons was screened against TryS from three major pathogen species (Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum). The screening conditions were adjusted to the TryS´ kinetic parameters and intracellular concentration of substrates corresponding to each trypanosomatid species, and/or to avoid assay interference. The screening assay yielded suitable Z' and signal to noise values (≥0.85 and ~3.5, respectively), and high intra-assay reproducibility. Several novel chemical scaffolds were identified as low µM and selective tri-tryp TryS inhibitors. Compounds displaying multi-TryS inhibition (N,N'-bis(3,4-substituted-benzyl) diamine derivatives) and an N5-substituted paullone (MOL2008) halted the proliferation of infective Trypanosoma brucei (EC50 in the nM range) and Leishmania infantum promastigotes (EC50 = 12 µM), respectively. A bis-benzyl diamine derivative and MOL2008 depleted intracellular trypanothione in treated parasites, which confirmed the on-target activity of these compounds. CONCLUSIONS/SIGNIFICANCE: Novel molecular scaffolds with on-target mode of action were identified as hit candidates for TryS inhibition. Due to the remarkable species-specificity exhibited by tri-tryp TryS towards the compounds, future optimization and screening campaigns should aim at designing and detecting, respectively, more potent and broad-range TryS inhibitors.


Asunto(s)
Amida Sintasas/antagonistas & inhibidores , Antiprotozoarios/aislamiento & purificación , Inhibidores Enzimáticos/aislamiento & purificación , Leishmania infantum/efectos de los fármacos , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Antiprotozoarios/metabolismo , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/metabolismo , Leishmania infantum/enzimología , Trypanosoma brucei brucei/enzimología , Trypanosoma cruzi/enzimología
10.
Nat Prod Commun ; 11(1): 57-62, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26996020

RESUMEN

Trypanothione reductase (TryR) is a key enzyme in the metabolism of Trypanosoma cruzi, the parasite responsible for Chagas disease. The available repertoire of TryR inhibitors relies heavily on synthetic substrates of limited structural diversity, and less on plant-derived natural products. In this study, a molecular docking procedure using a Lamarckian Genetic Algorithm was implemented to examine the protein-ligand binding interactions of strong in vitro inhibitors for which no X-ray data is available. In addition, a small, skeletally diverse, set of natural alkaloids was assessed computationally against T. cruzi TryR in search of new scaffolds for lead development. The preferential binding mode (low number of clusters, high cluster population), together with the deduced binding interactions were used to discriminate among the virtual inhibitors. This study confirms the prior in vitro data and proposes quebrachamine, cephalotaxine, cryptolepine, (22S,25S)-tomatidine, (22R,25S)-solanidine, and (22R,25R)-solasodine as new alkaloid scaffold leads in the search for more potent and selective TryR inhibitors.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Plantas/química , Trypanosoma cruzi/enzimología , Simulación por Computador , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Unión Proteica
11.
PLoS Negl Trop Dis ; 9(9): e0004014, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26394211

RESUMEN

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life threatening global health problem with only two drugs available for treatment (benznidazole and nifurtimox), both having variable efficacy in the chronic stage of the disease and high rates of adverse drug reactions. Inhibitors of sterol 14α-demethylase (CYP51) have proven effective against T. cruzi in vitro and in vivo in animal models of Chagas disease. Consequently two azole inhibitors of CYP51 (posaconazole and ravuconazole) have recently entered clinical development by the Drugs for Neglected Diseases initiative. Further new drug treatments for this disease are however still urgently required, particularly having a different mode of action to CYP51 in order to balance the overall risk in the drug discovery portfolio. This need has now been further strengthened by the very recent reports of treatment failure in the clinic for both posaconazole and ravuconazole. To this end and to prevent enrichment of drug candidates against a single target, there is a clear need for a robust high throughput assay for CYP51 inhibition in order to evaluate compounds active against T. cruzi arising from phenotypic screens. A high throughput fluorescence based functional assay using recombinantly expressed T. cruzi CYP51 (Tulahuen strain) is presented here that meets this requirement. This assay has proved valuable in prioritising medicinal chemistry resource on only those T. cruzi active series arising from a phenotypic screening campaign where it is clear that the predominant mode of action is likely not via inhibition of CYP51.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/aislamiento & purificación , Antiprotozoarios/aislamiento & purificación , Evaluación Preclínica de Medicamentos/métodos , Fluorometría/métodos , Esterol 14-Desmetilasa/metabolismo , Trypanosoma cruzi/efectos de los fármacos , Inhibidores de 14 alfa Desmetilasa/farmacología , Animales , Antiprotozoarios/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Descubrimiento de Drogas/métodos , Fluorescencia , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Trypanosoma cruzi/enzimología
12.
Antimicrob Agents Chemother ; 59(12): 7564-70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26416857

RESUMEN

The lack of translation between preclinical assays and clinical trials for novel therapies for Chagas disease (CD) indicates a need for more feasible and standardized protocols and experimental models. Here, we investigated the effects of treatment with benznidazole (Bz) and with the potent experimental T. cruzi CYP51 inhibitor VNI in mouse models of Chagas disease by using different animal genders and parasite strains and employing distinct types of therapeutic schemes. Our findings confirm that female mice are less vulnerable to the infection than males, show that male models are less susceptible to treatment with both Bz and VNI, and thus suggest that male models are much more suitable for selection of the most promising antichagasic agents. Additionally, we have found that preventive protocols (compound given at 1 dpi) result in higher treatment success rates, which also should be avoided during advanced steps of in vivo trials of novel anti-T. cruzi drug candidates. Another consideration is the relevance of immunosuppression methods in order to verify the therapeutic profile of novel compounds, besides the usefulness of molecular diagnostic tools (quantitative PCR) to ascertain compound efficacy in experimental animals. Our study aims to contribute to the development of more reliable methods and decision gates for in vivo assays of novel antiparasitic compounds in order to move them from preclinical to clinical trials for CD.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Imidazoles/farmacología , Oxadiazoles/farmacología , Parasitemia/tratamiento farmacológico , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/patología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Animales de Enfermedad , Esquema de Medicación , Evaluación Preclínica de Medicamentos/métodos , Femenino , Expresión Génica , Inmunosupresores/farmacología , Masculino , Ratones , Nitroimidazoles/farmacología , Parasitemia/inmunología , Parasitemia/parasitología , Parasitemia/patología , Factores Sexuales , Resultado del Tratamiento , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/genética
13.
Nat Prod Commun ; 10(6): 917-20, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26197515

RESUMEN

Flavonoid compounds active against Trypanosoma cruzi and Leishmania species were submitted to several methodologies in silico: docking with the enzymes cruzain and trypanothione reductase (from T. cruzi), and N-myristoyltransferase, dihydroorotate dehydrogenase, and trypanothiona reductase (from Leishmania spp). Molecular maps of the complexes and the ligands were calculated. In order to compare and evaluate the antioxidant activity of the flavonoids with their antiprotozoal activity, quantum parameters were calculated. Considering the energies, interactions, and hydrophobic surfaces calculated, the flavonoids chrysin dimethyl ether against T. cruzi, and ladanein against Leishmania sp. presented the best results. The antioxidant activity did not show any correlation with anti-parasitic activity; only chrysin and its dimethyl ether showed favorable anti-parasitic results. This study hopes to contribute to existing research on these natural products against these tropical parasites.


Asunto(s)
Antiprotozoarios/química , Inhibidores Enzimáticos/química , Flavonoides/química , Leishmania/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Antiprotozoarios/farmacología , Biología Computacional , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Leishmania/química , Leishmania/enzimología , Estructura Molecular , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Trypanosoma cruzi/química , Trypanosoma cruzi/enzimología
14.
PLoS Negl Trop Dis ; 9(6): e0003773, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26042772

RESUMEN

With the goal to identify novel trypanothione reductase (TR) inhibitors, we performed a combination of in vitro and in silico screening approaches. Starting from a highly diverse compound set of 2,816 compounds, 21 novel TR inhibiting compounds could be identified in the initial in vitro screening campaign against T. cruzi TR. All 21 in vitro hits were used in a subsequent similarity search-based in silico screening on a database containing 200,000 physically available compounds. The similarity search resulted in a data set containing 1,204 potential TR inhibitors, which was subjected to a second in vitro screening campaign leading to 61 additional active compounds. This corresponds to an approximately 10-fold enrichment compared to the initial pure in vitro screening. In total, 82 novel TR inhibitors with activities down to the nM range could be identified proving the validity of our combined in vitro/in silico approach. Moreover, the four most active compounds, showing IC50 values of <1 µM, were selected for determining the inhibitor constant. In first on parasites assays, three compounds inhibited the proliferation of bloodstream T. brucei cell line 449 with EC50 values down to 2 µM.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Clorhexidina/farmacología , Simulación por Computador , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Glutatión/análogos & derivados , Glutatión/química , Glutatión/metabolismo , Concentración 50 Inhibidora , Cinética , Modelos Moleculares , NADH NADPH Oxidorreductasas/análisis , NADH NADPH Oxidorreductasas/química , Proteínas Protozoarias/antagonistas & inhibidores , Quinacrina/farmacología , Espermidina/análogos & derivados , Espermidina/química , Espermidina/metabolismo , Tripanocidas/química , Trypanosoma cruzi/enzimología
15.
Small GTPases ; 6(1): 8-10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25862161

RESUMEN

Trypanosoma cruzi, the causative agent of Chagas disease, is a unicellular parasite that possesses a contractile vacuole complex (CVC). This organelle is usually present in free-living protists and is mainly involved in osmoregulation. However, in some organisms, like for example Dictyostelium discoideum, other roles include calcium homeostasis and transference of proteins to the plasma membrane. T. cruzi plasma membrane is very rich in glycosylphosphatidylinositol anchored proteins (GPI-AP) and a very important group of GPI-AP is that of the trans-sialidases. These enzymes catalyze the transfer of sialic acid from host glycoconjugates to mucins present in the surface of the parasite and are important for host cell invasion among other functions. We recently reported that a pathway dependent on the Rab GTPase Rab11 is involved in the traffic of trans-sialidases to the plasma membrane through the CVC of the infective stages of the parasite and that preventing this traffic results in considerable reduction in the ability of T. cruzi to infect host cells. We also found that traffic of other GPI-anchored proteins is also through the CVC but uses a Rab11-independent pathway. These represent unconventional pathways of GPI-anchored protein traffic to the plasma membrane.


Asunto(s)
Membrana Celular/enzimología , Enfermedad de Chagas/parasitología , Proteínas de Unión al GTP/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Neuraminidasa/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/enzimología , Membrana Celular/metabolismo , Proteínas de Unión al GTP/genética , Humanos , Neuraminidasa/genética , Unión Proteica , Transporte de Proteínas , Proteínas Protozoarias/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
16.
J Biomol Screen ; 20(1): 131-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25231971

RESUMEN

Methods to discover biologically active small molecules include target-based and phenotypic screening approaches. One of the main difficulties in drug discovery is elucidating and exploiting the relationship between drug activity at the protein target and disease modification, a phenotypic endpoint. Fragment-based drug discovery is a target-based approach that typically involves the screening of a relatively small number of fragment-like (molecular weight <300) molecules that efficiently cover chemical space. Here, we report a fragment screening on TbrPDEB1, an essential cyclic nucleotide phosphodiesterase (PDE) from Trypanosoma brucei, and human PDE4D, an off-target, in a workflow in which fragment hits and a series of close analogs are subsequently screened for antiparasitic activity in a phenotypic panel. The phenotypic panel contained T. brucei, Trypanosoma cruzi, Leishmania infantum, and Plasmodium falciparum, the causative agents of human African trypanosomiasis (sleeping sickness), Chagas disease, leishmaniasis, and malaria, respectively, as well as MRC-5 human lung cells. This hybrid screening workflow has resulted in the discovery of various benzhydryl ethers with antiprotozoal activity and low toxicity, representing interesting starting points for further antiparasitic optimization.


Asunto(s)
Antiparasitarios/farmacología , Descubrimiento de Drogas/métodos , Pruebas de Sensibilidad Parasitaria/métodos , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Antiparasitarios/química , Enfermedad de Chagas/tratamiento farmacológico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Enfermedades Desatendidas/tratamiento farmacológico , Proteínas Protozoarias/antagonistas & inhibidores , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología
17.
Curr Top Med Chem ; 14(16): 1899-912, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25262801

RESUMEN

Virtual screening (VS) techniques are well-established tools in the modern drug discovery process, mainly used for hit finding in drug discovery. The availability of knowledge of structural information, which includes an increasing number of 3D protein structures and the readiness of free databases of commercially available smallmolecules, provides a broad platform for VS. This review summarizes the current developments in VS regarding chemical databases and highlights the achievements as well as the challenges with an emphasis on a recent example of the successful application for the identification of new hits for sterol 14α-demethylase (CYP51) of Trypanosoma cruzi.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Evaluación Preclínica de Medicamentos , Esterol 14-Desmetilasa/metabolismo , Inhibidores de 14 alfa Desmetilasa/síntesis química , Inhibidores de 14 alfa Desmetilasa/química , Animales , Química Farmacéutica , Humanos , Trypanosoma cruzi/enzimología
18.
PLoS Pathog ; 10(5): e1004114, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24789335

RESUMEN

Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Farnesil Difosfato Farnesil Transferasa/antagonistas & inhibidores , Terapia Molecular Dirigida/métodos , Tripanocidas/uso terapéutico , Animales , Chlorocebus aethiops , Cristalografía por Rayos X , Difosfonatos/química , Difosfonatos/metabolismo , Difosfonatos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Farnesil Difosfato Farnesil Transferasa/química , Farnesil Difosfato Farnesil Transferasa/metabolismo , Humanos , Modelos Moleculares , Fosfatos de Poliisoprenilo/química , Fosfatos de Poliisoprenilo/metabolismo , Unión Proteica , Quinuclidinas/química , Quinuclidinas/metabolismo , Quinuclidinas/farmacología , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Tripanocidas/química , Tripanocidas/metabolismo , Tripanocidas/farmacología , Trypanosoma cruzi/enzimología , Células Vero
19.
Eur J Med Chem ; 70: 189-98, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24158012

RESUMEN

Chagas disease is today one of the most important neglected diseases for its upcoming expansion to non-endemic areas and has become a threat to blood recipients in many countries. In this study, the trypanocidal activity of ten derivatives of a family of aza-scorpiand like macrocycles is evaluated against Trypanosoma cruzi in vitro and in vivo murine model in which the acute and chronic phases of Chagas disease were analyzed. The compounds 4, 3 and 1 were found to be more active against the parasite and less toxic against Vero cells than the reference drug benznidazole, 4 being the most active compound, particularly in the chronic phase. While all these compounds showed a remarkable degree of inhibition of the Fe-SOD enzyme of the epimastigote forms of T. cruzi, they produced a negligible inhibition of human CuZn-SOD and Mn-SOD from Escherichia coli. The modifications observed by (1)H NMR and the amounts of excreted catabolites by the parasites after treatment suggested that the mechanism of action could be based on interactions of the side chains of the compounds with enzymes of the parasite metabolism. The ultrastructural alterations observed in treated epimastigote forms confirmed that the compounds having the highest activity are those causing the largest cell damage. A complementary histopathological analysis confirmed that the compounds tested were significantly less toxic to mammals than the reference drug.


Asunto(s)
Antiprotozoarios/farmacología , Compuestos Aza/farmacología , Modelos Animales de Enfermedad , Compuestos Macrocíclicos/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Compuestos Aza/síntesis química , Compuestos Aza/química , Células Cultivadas , Chlorocebus aethiops , Enfermedad Crónica/prevención & control , Escherichia coli/enzimología , Femenino , Humanos , Ligandos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/metabolismo , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/metabolismo , Células Vero
20.
PLoS Negl Trop Dis ; 7(8): e2370, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23991231

RESUMEN

A multi-step cascade strategy using integrated ligand- and target-based virtual screening methods was developed to select a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to 23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (K i) in the low micromolar range (3-60 µM) acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar range (4-80 µM), yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their effect on cell proliferation. In order to select the most promising enzyme inhibitors retaining trypanocidal activity for structure-activity relationship (SAR) studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells. Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite inhibition activities. The IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ strain was found to be 10.6±0.1 µM, tenfold lower than that obtained for benznidazole, which was taken as positive control. In addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a ligand efficiency (LE) of 0.33 kcal mol(-1) atom(-1) (compound Nequimed176) is highlighted as a novel non-peptidic, non-covalent cruzain inhibitor as a trypanocidal agent candidate for optimization.


Asunto(s)
Antiprotozoarios/aislamiento & purificación , Evaluación Preclínica de Medicamentos/métodos , Proteínas Protozoarias/antagonistas & inhibidores , Antiprotozoarios/farmacología , Cristalografía por Rayos X , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Concentración 50 Inhibidora , Cinética , Pruebas de Sensibilidad Parasitaria/métodos , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA