Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 319(Pt 3): 117285, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37839769

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ulmus macrocarpa Hance (UmH) bark has been traditionally utilized for medicinal purposes. The bark extract of this plant has diverse health benefits, and its potential role in enhancing bone health is of distinct interest, particularly when considering the substantial health and economic implications of bone-related pathologies, such as osteoporosis. Despite the compelling theoretical implications of UmH bark in fortifying bone health, no definitive evidence at the in vivo level is currently available, thus highlighting the innovative and as-yet-unexplored potential of this field of study. AIM OF THE STUDY: Primarily, our study aims to conduct a meticulous analysis of the disparity in the concentration of active compounds in the UmH root bark (Umrb) and trunk bark (Umtb) extracts and confirm UmH bark's efficacy in enhancing bone health in vivo, illuminating the cellular mechanisms involved. MATERIALS AND METHODS: The Umrb and Umtb extracts were subjected to component analysis using high-performance liquid chromatography and then assessed for their inhibitory effects on osteoclast differentiation through the TRAP assay. An ovariectomized (OVX) mouse model replicates postmenopausal conditions commonly associated with osteoporosis. Micro-CT was used to analyze bone structure parameters, and enzyme-linked immunosorbent assay and staining were used to assess bone formation markers and osteoclast activity. Furthermore, this study investigated the impact of the extract on the expression of pivotal proteins and genes involved in bone formation and resorption using mouse bone marrow-derived macrophages (BMMs). RESULTS: The findings of our study reveal a significant discrepancy in the concentration of active constituents between Umrb and Umtb, establishing Umtb as a superior source for promoting bone health. I addition, a standardized pilot-scale procedure was conducted for credibility. The bone health benefits of Umtb were verified using an OVX model. This validation involved the assessment of various parameters, including BMD, BV/TV, and BS/TV, using micro-CT imaging. Additionally, the activation of osteoblasts was evaluated by Umtb by measuring specific factors such as ALP, OCN, OPG in blood samples and through IHC staining. In the same investigations, diminished levels of osteoclast differentiation factors, such as TRAP, NFATc1, were also observed. The observed patterns exhibited consistency in vitro BMM investigations. CONCLUSIONS: Through verification at both in vitro levels using BMMs and in vivo levels using the OVX-induced mouse model, our research demonstrates that Umtb is a more effective means of improving bone health in comparison to Umrb. These findings pave the way for developing health-functional foods or botanical drugs targeting osteoporosis and other bone-related disorders and enhance the prospects for future research extensions, including clinical studies, in extract applications.


Asunto(s)
Osteoporosis , Ulmus , Femenino , Humanos , Animales , Ratones , Osteoclastos , Corteza de la Planta , Osteoporosis/prevención & control , Modelos Animales de Enfermedad , Ovariectomía
2.
Sci Rep ; 13(1): 11102, 2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423923

RESUMEN

Ulmus macrocarpa Hance bark (UmHb) has been used as a traditional herbal medicine in East Asia for bone concern diseases for a long time. To find a suitable solvent, we, in this study, compared the efficacy of UmHb water extract and ethanol extract which can inhibit osteoclast differentiation. Compared with two ethanol extracts (70% and 100% respectively), hydrothermal extracts of UmHb more effectively inhibited receptor activators of nuclear factor κB ligand-induced osteoclast differentiation in murine bone marrow-derived macrophages. We identified for the first time that (2R,3R)-epicatechin-7-O-ß-D-apiofuranoside (E7A) is a specific active compound in UmHb hydrothermal extracts through using LC/MS, HPLC, and NMR techniques. In addition, we confirmed through TRAP assay, pit assay, and PCR assay that E7A is a key compound in inhibiting osteoclast differentiation. The optimized condition to obtain E7A-rich UmHb extract was 100 mL/g, 90 °C, pH 5, and 97 min. At this condition, the content of E7A was 26.05 ± 0.96 mg/g extract. Based on TRAP assay, pit assay, PCR, and western blot, the optimized extract of E7A-rich UmHb demonstrated a greater inhibition of osteoclast differentiation compared to unoptimized. These results suggest that E7A would be a good candidate for the prevention and treatment of osteoporosis-related diseases.


Asunto(s)
Catequina , Ulmus , Ratones , Animales , Osteoclastos , Catequina/farmacología , Corteza de la Planta , Extractos Vegetales/farmacología , Extractos Vegetales/química , Etanol/farmacología , Diferenciación Celular , Ligando RANK/farmacología
3.
Front Endocrinol (Lausanne) ; 14: 1138676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234799

RESUMEN

Diabetic retinopathy (DR) is a disease that causes visual deficiency owing to vascular leakage or abnormal angiogenesis. Pericyte apoptosis is considered one of the main causes of vascular leakage in diabetic retina, but there are few known therapeutic agents that prevent it. Ulmus davidiana is a safe natural product that has been used in traditional medicine and is attracting attention as a potential treatment for various diseases, but its effect on pericyte loss or vascular leakage in DR is not known at all. In the present study, we investigated on the effects of 60% edible ethanolic extract of U. davidiana (U60E) and catechin 7-O-ß-D-apiofuranoside (C7A), a compound of U. davidiana, on pericyte survival and endothelial permeability. U60E and C7A prevented pericyte apoptosis by inhibiting the activation of p38 and JNK induced by increased glucose and tumor necrosis factor alpha (TNF-α) levels in diabetic retina. Moreover, U60E and C7A reduced endothelial permeability by preventing pericyte apoptosis in co-cultures of pericytes and endothelial cells. These results suggest that U60E and C7A could be a potential therapeutic agent for reducing vascular leakage by preventing pericyte apoptosis in DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Ulmus , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/prevención & control , Retinopatía Diabética/patología , Pericitos , Células Endoteliales/patología , Apoptosis , Diabetes Mellitus/patología
4.
Plant Signal Behav ; 17(1): 2138041, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36317599

RESUMEN

Ulmus parvifolia (U. parvifolia) is a Chinese medicine plant whose bark and leaves are used in the treatment of some diseases such as inflammation, diarrhea and fever. However, metabolic signatures of seeds have not been studied. The seeds and bark of U. parvifolia collected at the seed ripening stage were used for metabolite profiling analysis through the untargeted metabolomics approach. A total of 2,578 and 2,207 metabolites, while 503 and 132 unique metabolites were identified in seeds and bark, respectively. Additionally, 574 differential metabolites (DEMs) were detected in the two different organs of U. parvifolia, which were grouped into 52 classes. Most kinds of metabolites classed into prenol lipids class. The relative content of flavonoids class was the highest. DEMs contained some bioactive compounds (e.g., flavonoids, terpene glycosides, triterpenoids, sesquiterpenoids) with antioxidant, anti-inflammatory, and anti-cancer activities. Most kinds of flavonoids and sesquiterpenes were up-regulated in seeds. There were more varieties of terpene glycosides and triterpenoids showing up-regulated in bark. The pathway enrichment was performed, while flavonoid biosynthesis, flavone and flavonol biosynthesis were worthy of attention. This study identified DEMs with pharmaceutical value between seeds and bark during seed maturation and offered a molecular basis for alternative or complementary use of seeds and bark of U. parvifolia as a Chinese medicinal material.


Asunto(s)
Triterpenos , Ulmus , Ulmus/metabolismo , Corteza de la Planta/metabolismo , Medicina Tradicional China , Extractos Vegetales , Semillas/metabolismo , Flavonoides/metabolismo , Glicósidos/metabolismo , Triterpenos/metabolismo , Terpenos/metabolismo
5.
Int J Biol Macromol ; 211: 535-544, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35569684

RESUMEN

The root bark of Ulmus davidiana var. japonica (Rehder) Nakai (Japanese elm) has been used for inflammatory disease treatments. In this work, we isolated pectic polysaccharides from the root bark of U. davidiana (UDP) and explored the immune activities of intact and ultrasonicated UDP on human macrophages. The UDP-treated macrophages showed a proinflammatory response, indicating classical activation via Toll-like receptor-mediated recognition. For hydrogel formation, the ultrasonicated UDP was modified with methacrylate groups, then subjected to photocrosslinking. The formed bulk hydrogel was pulverized into microgels by homogenization, and the microgel size was modulated for macrophage phagocytosis. The UDP microgel-treated macrophages displayed microgel internalization and classical activation that involved upregulation of M1 polarization markers (IL6, TNF-α, and CCR7), indicating that the microgel can be used as a carrier for macrophage-targeted drug delivery.


Asunto(s)
Microgeles , Ulmus , Humanos , Hidrogeles , Pectinas , Corteza de la Planta , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Uridina Difosfato
6.
Medicina (Kaunas) ; 58(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35454305

RESUMEN

Background and Objectives: Traditional herbal medicines are becoming more popular as a complementary medication as they have the advantages of being mostly harmless and safe, causing fewer side-effects than conventional medications. Here, we demonstrate the inhibitory effects of the combination of Ulmus davidiana (UD) and Cornus officinalis (CO) extracts on osteoporotic bone loss. Materials and Methods: This study presented osteogenic effects in primary cultured osteoblasts, pre-osteoblastic MC3T3-E1 cell lines, and osteoclastogenic effects in osteoclasts derived from bone marrow monocytes, and finally, protective effects on bone loss in an ovariectomy (OVX)-induced osteoporotic animal model. Results: A significant increase in alkaline phosphatase (ALP) activity was observed following treatment with UD and CO mixtures (8:2, 7:3, and 5:5 ratios) and individual UD and CO extracts, with the highest ALP activity being detected for the treatment with UD and CO extracts at a 5:5 ratio. An optimal ratio of UD and CO (UC) extract promoted osteoblast differentiation in both pre-osteoblastic cells and primary osteoblasts by increasing osteoblastic markers such as Alpl, Runx2, and Bglap. However, treatment with the UC extract inhibited osteoclast differentiation with a decreased expression of osteoclastogenesis-related genes, including Ctsk, Acp5, Mmp9, and Nfatc1. In addition, UC treatment prevented osteoporotic bone loss in OVX mice and improved impaired skeletal structure parameters. Conclusions: This study suggests that combined UD and CO extracts may be a beneficial traditional medicine for the prevention of postmenopausal osteoporosis.


Asunto(s)
Cornus , Osteoporosis Posmenopáusica , Ulmus , Animales , Diferenciación Celular , Femenino , Humanos , Ratones , Osteoclastos , Osteoporosis Posmenopáusica/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ulmus/química
7.
Planta Med ; 88(9-10): 762-773, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35240714

RESUMEN

The phytochemical investigation of Ulmus minor subsp. minor samaras EtOAc and n-BuOH extracts is reported in this work for the first time, resulting in the isolation and characterization of twenty compounds (1:  - 20: ) including one new flavan-3-ol (1: ), one new trihydroxy fatty acid (2: ), and two glycosylated flavonoids (6:  - 7: ) whose NMR data are not available in the literature. Structure elucidation of the isolated compounds was obtained by 1D and 2D NMR and HRESIMS data. Prior to further pharmacological investigations, the extracts (100 - 6.25 µg/mL) and compounds 1:  - 12: (50 - 5 µM) were tested for their influence on viability of a murine macrophage cell line (J774A.1). Subsequently, extracts and compounds that did not impede viability, were studied for their inhibitory effect on some mediators of inflammation in J774A.1 cells stimulated with lipopolysaccharide of Escherichia coli (LPS). The NO release and the expression of iNOS and COX-2 were then evaluated and both extracts (50 - 6.25 µg/mL) and compounds (20 - 5 µM) significantly inhibited NO release as well as iNOS and COX-2 expression in macrophages. These data highlight the anti-inflammatory properties of several isolated compounds from U. minor samaras supporting their possible alimentary use.


Asunto(s)
Ulmus , Animales , Antiinflamatorios/farmacología , Ciclooxigenasa 2/metabolismo , Frutas , Lipopolisacáridos/farmacología , Ratones , Óxido Nítrico/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ulmus/química , Ulmus/metabolismo
8.
Molecules ; 27(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35209207

RESUMEN

This study was conducted to examine the anti-hair loss mechanism of the supercritical fluid extraction-residues extract of Ulmus davidiana by the regulation of cytokine production and hormone function in human dermal follicle papilla cells (HDFPCs). To investigate the modulatory effects on H2O2-induced cytokines, we measured transforming growth factor-beta and insulin-like growth factor 1 secreted from HDFPCs. To investigate the regulatory effects of supercritical extraction-residues extract of Ulmus davidiana on dihydrotestosterone hormone production, cells were co-incubated with high concentrations of testosterone. The supercritical extraction-residues extract of Ulmus davidiana significantly inhibited the secretion of transforming growth factor-beta but rescued insulin-like growth factor 1 in a dose-dependent manner. The supercritical extraction-residues extract of Ulmus davidiana markedly reduced dihydrotestosterone production. These results suggest that the supercritical fluid extract residues of Ulmus davidiana and their functional molecules are candidates for preventing human hair loss.


Asunto(s)
Citocinas/metabolismo , Dihidrotestosterona/metabolismo , Folículo Piloso/metabolismo , Corteza de la Planta/química , Extractos Vegetales/farmacología , Ulmus/química , Humanos , Extractos Vegetales/química
9.
J Microbiol ; 59(12): 1150-1156, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34697783

RESUMEN

The stem and root bark of Ulmus macrocarpa Hance has been used as traditional pharmacological agent against inflammation related disorders. The objective of this study was to explore the impact of Ulmus macrocarpa Hance extract (UME) on human gut microbiota. A randomized placebo-controlled clinical study was conducted in healthy adults. The study subjects were given 500 mg/day of UME or placebo orally for 4 weeks. Eighty fecal samples were collected at baseline and 4 weeks of UME or placebo intervention. The gut microbiota variation was evaluated by 16S rRNA profiling. The microbial response was highly personalized, and no statistically significant differences was observed in both species richness and abundance. The number of bacterial species identified in study subjects ranged from 86 to 182 species. The analysis for taxonomical changes revealed an increase in Eubacterium ventriosum, Blautia faecis, Ruminococcus gnavus in the UME group. Functional enrichment of bacterial genes showed an increase in primary and secondary bile acid biosynthesis in UME group. Having known from previous studies Eubacterium regulated bile acid homeostasis in protecting gut microbial architecture and immunity, we suggest that UME supplementation might enhance host immunity by modulating gut microbiota. This is the first stage study and forthcoming clinical studies with larger participants are needed to confirm these findings.


Asunto(s)
Microbioma Gastrointestinal , Extractos Vegetales/farmacología , Ulmus , Adulto , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Método Doble Ciego , Heces/microbiología , Femenino , Humanos , Masculino , Extractos Vegetales/administración & dosificación , ARN Ribosómico 16S/genética
10.
J Microbiol Biotechnol ; 31(7): 1011-1021, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34099594

RESUMEN

The root bark of Ulmus davidiana var. japonica (Japanese elm) is used in Korea and other East Asian countries as a traditional herbal remedy to treat a variety of inflammatory diseases and ailments such as edema, gastric cancer and mastitis. For this study, we investigated the lipid metabolism and anti-obesity efficacy of ethyl alcohol extract of Ulmus davidiana var. japonica root bark (UDE). First, HPLC was performed to quantify the level of (+)-catechin, the active ingredient of UDE. In the following experiments, cultured 3T3-L1 pre-adipocytes and high-fat diet (HFD)-fed murine model were studied for anti-obesity efficacy by testing the lipid metabolism effects of UDE and (+)-catechin. In the test using 3T3-L1 pre-adipocytes, treatment with UDE inhibited adipocyte differentiation and significantly reduced the production of adipogenic genes and transcription factors PPARγ, C/EBPα and SREBP-1c. HFD-fed, obese mice were administered with UDE (200 mg/kg per day) and (+)-catechin (30 mg/kg per day) by oral gavage for 4 weeks. Weight gain, epididymal and abdominal adipose tissue mass were significantly reduced, and a change in adipocyte size was observed in the UDE and (+)-catechin treatment groups compared to the untreated control group (***p < 0.001). Significantly lower total cholesterol and triglyceride levels were detected in UDE-treated HFD mice compared to the control, revealing the efficacy of UDE. In addition, it was found that lipid accumulation in hepatocytes was also significantly reduced after administration of UDE. These results suggest that UDE has significant anti-obesity and lipid metabolism effects through inhibition of adipocyte differentiation and adipogenesis.


Asunto(s)
Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/tratamiento farmacológico , Ulmus/química , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Animales , Fármacos Antiobesidad/administración & dosificación , Fármacos Antiobesidad/química , Catequina/administración & dosificación , Catequina/farmacología , Diferenciación Celular/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Lípidos/sangre , Ratones , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Corteza de la Planta/química , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Aumento de Peso/efectos de los fármacos
11.
Arch Biochem Biophys ; 709: 108969, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34153297

RESUMEN

Cancer is a second leading cause of death worldwide, and metastasis is the major cause of cancer-related mortality. The epithelial-mesenchymal transition (EMT), known as phenotypic change from epithelial cells to mesenchymal cells, is a crucial biological process during development. However, inappropriate activation of EMT contributes to tumor progression and promoting metastasis; therefore, inhibiting EMT is considered a promising strategy for developing drugs that can treat or prevent cancer. In the present study, we investigated the anti-cancer effect of bakuchiol (BC), a main component of Ulmus davidiana var. japonica, in human cancer cells using A549, HT29 and MCF7 cells. In MTT and colony forming assay, BC exerted cytotoxicity activity against cancer cells and inhibited proliferation of these cells. Anti-metastatic effects by BC were further confirmed by observing decreased migration and invasion in TGF-ß-induced cancer cells after BC treatment. Furthermore, BC treatment resulted in increase of E-cadherin expression and decrease of Snail level in Western blotting and immunofluorescence analysis, supporting its anti-metastatic activity. In addition, BC inhibited lung metastasis of tail vein injected human cancer cells in animal model. These findings suggest that BC inhibits migration and invasion of cancers by suppressing EMT and in vivo metastasis, thereby may be a potential therapeutic agent for treating cancers.


Asunto(s)
Antineoplásicos/uso terapéutico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Metástasis de la Neoplasia/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Fenoles/uso terapéutico , Ulmus/química , Animales , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Humanos , Ratones SCID , Corteza de la Planta/química , Extractos Vegetales/uso terapéutico , Raíces de Plantas/química , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Enzyme Inhib Med Chem ; 36(1): 1049-1055, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34000951

RESUMEN

A novel compound 1 and nine known compounds (2-10) were isolated by open column chromatography analysis of the root bark of Ulmus davidiana. Pure compounds (1-10) were tested in vitro to determine the inhibitory activity of the catalytic reaction of soluble epoxide hydrolase (sEH). Compounds 1, 2, 4, 6-8, and 10 had IC50 values ranging from 11.4 ± 2.3 to 36.9 ± 2.6 µM. We used molecular docking to simulate inhibitor binding of each compound and estimated the binding pose of the catalytic site of sEH. From this analysis, the compound 2 was revealed to be a potential inhibitor of sEH in vitro and in silico. Additionally, molecular dynamics (MD) study was performed to find detailed interaction signals of inhibitor 2 with enzyme. Finally, compound 2 is promising candidates for the development of a new sEH inhibitor from natural plants.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Ulmus/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Epóxido Hidrolasas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas/química , Solubilidad , Relación Estructura-Actividad
13.
Molecules ; 26(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546250

RESUMEN

As abnormal angiogenesis is associated with exacerbation of various diseases, precise control over angiogenesis is imperative. Vascular endothelial growth factor (VEGF), the most well-known angiogenic factor, binds to VEGF receptor (VEGFR), activates various signaling pathways, and mediates angiogenesis. Therefore, blocking the VEGF-induced angiogenic response-related signaling pathways may alleviate various disease symptoms through inhibition of angiogenesis. Ulmus davidiana is a safe natural product that has been traditionally consumed, but its effects on endothelial cells (ECs) and the underlying mechanism of action are unclear. In the present study, we focused on the effect of a 60% edible ethanolic extract of U. davidiana (U60E) on angiogenesis. U60E inhibited the VEGF-mediated proliferation, tube formation, and migration ability of ECs. Mechanistically, U60E inhibited endothelial nitric oxide synthase activation and nitric oxide production by blocking the protein kinase B signaling pathway activated by VEGF and consequently inhibiting proliferation, tube formation, and migration of ECs. These results suggest that U60E could be a potential and safe therapeutic agent capable of suppressing proangiogenic diseases by inhibiting VEGF-induced angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Extractos Vegetales , Ulmus/química , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Etanol/química , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología
14.
Mol Biol Rep ; 48(1): 721-729, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33439411

RESUMEN

Ulmus wallichiana is a traditional medicinal plant listed as a vulnerable in the IUCN red list data. Genomic and transcriptomic resources for this species are lacking, hindering its genetic exploration. Further, no polymorphic marker resource is available for this species, thus limiting the elucidation of its underlying genetic diversity, which is a pre-requisite for its conservation. This study was therefore aimed to generate a functionally annotated transcriptomic resource and screen it for SSR regions. We used paired-end Illumina based RNAseq technology and trinity based de novo assembly approach to generate full length transcripts, which were screened for SSR regions and functionally annotated. Around 6.6 million raw reads were de novo assembled transcripts, which were clustered into 146,083 unigenes. 19,909 transcripts were provided with 3986 unique KEGG ids, 70,519 transcripts with 6621 unique Pfam domains, and 45,125 transcripts with 7302 unique INTERPRO domains. 1456 transcripts were identified as transcriptions factors (TFs). Further, 8868 unique GO terms were obtained for the unigenes. The transcripts mapped to 23,056 known pre-determined orthology clusters in the eggNOG database. A total of 16,570 SSRs were identified from the unigenes. Out of the 90 SSRs selected for characterization on 20 genotypes, 28 were polymorphic. Mean effective alleles (Ne) of 2.53, mean observed heterozygosity (Ho) of 0.77, and average polymorphic information content (PIC) of 0.57 were found. This study may facilitate the genetic exploration of this species. The polymorphic SSRs would prove useful to explore its genetic diversity patterns, required for its conservation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Factores de Transcripción/genética , Transcriptoma , Ulmus/genética , Alelos , Conservación de los Recursos Naturales , Ontología de Genes , Marcadores Genéticos , Variación Genética , Heterocigoto , India , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Plantas Medicinales , Factores de Transcripción/metabolismo
15.
Bioorg Med Chem Lett ; 36: 127828, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33508466

RESUMEN

Bioactivity-driven LC/MS-based phytochemical analysis of the root bark extract of Ulmus davidiana var. japonica led to the isolation of 10 compounds including a new coumarin glycoside derivative, ulmusakidian (1). The structure of the new compound was elucidated using extensive spectroscopic analyses via 1D and 2D NMR spectroscopic data interpretations, HR-ESIMS, and chemical transformation. The isolated compounds 1-10 were tested for their antifungal activity against human fungal pathogens Cryptococcus neoformans and Candida albicans. Compounds 9 and 10 showed antifungal activity against C. neoformans, with the lowest minimal inhibitory concentration (MIC) of 12.5-25.0 µg/mL, whereas none of the compounds showed antifungal activity against C. albicans.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Fenoles/farmacología , Extractos Vegetales/farmacología , Ulmus/química , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Fenoles/química , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Raíces de Plantas/química , Relación Estructura-Actividad
16.
Nat Prod Res ; 35(21): 3562-3568, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32037889

RESUMEN

A preliminary phytochemical investigation of the stems of the endangered plant Ulmus elongata led to the isolation of a new coumarin derivative (named ulmuselactone A, 1) and eight known compounds (2-9). The new structure was elucidated by detailed analysis of comprehensive spectroscopic methods, and its absolute configuration was established by comparing experimental and calculated electronic circular dichroism (ECD) spectra. The isolated compounds were evaluated for their antibacterial activities.


Asunto(s)
Ulmus , Antibacterianos/farmacología , Cumarinas/farmacología , Fitoquímicos , Extractos Vegetales
17.
Sci Rep ; 10(1): 16281, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004864

RESUMEN

Plants respond to insect eggs with transcriptional changes, resulting in enhanced defence against hatching larvae. However, it is unknown whether phylogenetically distant plant species show conserved transcriptomic responses to insect eggs and subsequent larval feeding. We used Generally Applicable Gene set Enrichment (GAGE) on gene ontology terms to answer this question and analysed transcriptome data from Arabidopsis thaliana, wild tobacco (Nicotiana attenuata), bittersweet nightshade (Solanum dulcamara) and elm trees (Ulmus minor) infested by different insect species. The different plant-insect species combinations showed considerable overlap in their transcriptomic responses to both eggs and larval feeding. Within these conformable responses across the plant-insect combinations, the responses to eggs and feeding were largely analogous, and about one-fifth of these analogous responses were further enhanced when egg deposition preceded larval feeding. This conserved transcriptomic response to eggs and larval feeding comprised gene sets related to several phytohormones and to the phenylpropanoid biosynthesis pathway, of which specific branches were activated in different plant-insect combinations. Since insect eggs and larval feeding activate conserved sets of biological processes in different plant species, we conclude that plants with different lifestyles share common transcriptomic alarm responses to insect eggs, which likely enhance their defence against hatching larvae.


Asunto(s)
Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Insectos , Nicotiana/fisiología , Óvulo , Defensa de la Planta contra la Herbivoria , Solanum/fisiología , Ulmus/fisiología , Animales , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Larva , Lepidópteros , Defensa de la Planta contra la Herbivoria/fisiología , Solanum/metabolismo , Nicotiana/metabolismo , Transcriptoma/fisiología , Ulmus/metabolismo
18.
Molecules ; 25(10)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32456051

RESUMEN

The purpose of this study was to determine the antiallergic effects of AF-343, a mixture of natural plant extracts from Cassia tora L., Ulmus pumila L., and Taraxacum officinale, on rat basophilic leukemia (RBL-2H3) cells. The inhibitory effects on cell degranulation, proinflammatory cytokine secretion, and reactive oxygen species (ROS) production were studied in compound 48/80-treated RBL-2H3 cells. The bioactive compounds in AF-343 were also identified by HPLC-UV. AF-343 was found to effectively suppress compound 48/80-induced b-hexosaminidase release, and interleukin (IL)-4 and tumor necrosis factor-a (TNF-a) production in RBL-2H3 cells. In addition, AF-343 exhibited DPPH free radical scavenging effects in vitro (half-maximal inhibitory concentration (IC50) = 105 µg/mL) and potently inhibited compound 48/80-induced cellular ROS generation in a 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. Specifically, treatment with AF-343 exerted stronger antioxidant effects in vitro and antiallergic effects in cells than treatment with three single natural plant extracts. Furthermore, AF-343 was observed to contain bioactive compounds, including catechin, aurantio-obtusin, and chicoric acid, which have been reported to elicit antiallergic responses. This study reveals that AF-343 attenuates allergic responses via suppression of b-hexosaminidase release, IL-4 and TNF-a secretion, and ROS generation, perhaps through mechanisms related to catechin, aurantio-obtusin, and chicoric acid. The results indicate that AF-343 can be considered a treatment for various allergic diseases.


Asunto(s)
Cinnamomum aromaticum/química , Hipersensibilidad/tratamiento farmacológico , Taraxacum/química , Ulmus/química , Animales , Antialérgicos/química , Antialérgicos/farmacología , Degranulación de la Célula/efectos de los fármacos , Combinación de Medicamentos , Humanos , Mastocitos/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ratas , p-Metoxi-N-metilfenetilamina
19.
Nutr Res ; 76: 37-51, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32151878

RESUMEN

Gastrointestinal (GI) problems affect half of Western populations. Symptoms can vary from frequent reflux to irritable bowel syndrome. The Nutrition Care (NC) Gut Relief Formula contains a combination of herbs and nutrients including curcumin, Aloe vera, slippery elm, guar gum, pectin, peppermint oil, and glutamine shown to benefit the GI system. The 16-week pre-post study tested the hypothesis that the NC Gut Relief Formula would be tolerable and effective in improving GI symptoms and gut health in adults with digestive disorders. A total of 43 participants completed the study. After a control phase, participants took 5 g/d and then 10 g/d of the formula for 4 weeks. GI symptoms and GI health were assessed by a series of validated questionnaires, for example, Leeds Dyspepsia Questionnaire, Bristol Stool Chart, Birmingham IBS Symptom Questionnaire, and by intestinal permeability and gut microbiota profile. The NC Gut Relief Formula significantly improved the frequency and severity of upper and lower GI symptoms by 60%-80%, including indigestion, heartburn, nausea, constipation or diarrhea, abdominal pain, and troublesome flatulence, and significantly improved physical functioning, energy levels, mood, and sleep by 60%-80%. All participants with normal stool, 90% with hard stool, and 66% with soft stool recovered from intestinal permeability, evident by normal lactulose to mannitol ratios. The NC Gut Relief Formula generally improved microbial profile, with a marked increase in Lactobacillus, Clostridium, and Faecalibacterium prausnitzii. Almost half of the participants with upper GI symptoms taking proton pump inhibitors for heartburn no longer required proton pump inhibitors at the end of the study. A third of participants were able to reintroduce food triggers, such as fermentable oligosaccharides, disaccharides, monosaccharides, and polyols garlic, onion, and beans, or reflux-causing acidic/spicy foods, for example, citrus, tomato, and caffeine, in their diet after 3 months without symptom aggravation. The NC Gut Relief Formula significantly improved GI symptoms and associated quality of life over 3 months while reducing intestinal permeability, improving the microbial profile, reducing the need for reflux medication, and enabling the consumption of previous food triggers.


Asunto(s)
Enfermedades Gastrointestinales/tratamiento farmacológico , Intestinos/efectos de los fármacos , Magnoliopsida/química , Fitoterapia , Preparaciones de Plantas/uso terapéutico , Tracto Gastrointestinal Superior/efectos de los fármacos , Adulto , Aloe , Australia , Curcumina , Dieta , Femenino , Galactanos , Enfermedades Gastrointestinales/complicaciones , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/patología , Microbioma Gastrointestinal/efectos de los fármacos , Glutamina , Humanos , Intestinos/microbiología , Intestinos/patología , Masculino , Mananos , Mentha piperita , Persona de Mediana Edad , Pectinas , Permeabilidad , Gomas de Plantas , Aceites de Plantas , Preparaciones de Plantas/farmacología , Ulmus , Tracto Gastrointestinal Superior/patología
20.
Genes Genomics ; 42(1): 87-95, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31736005

RESUMEN

BACKGROUND: Ulmus davidiana (UD) is a traditional Korean herb medicine that is used to treat inflammatory disorders. UD has been shown to modulate a number of inflammatory processes in vitro or in vivo studies. However, the molecular mechanisms of UD on lipopolysaccharide (LPS)-induced acute lung injury remain to be understood. OBJECTIVE: The primary objective of this study is to determine the effect of UD bark water extract on LPS-induced immune responses and lung injury using both in vitro and in vivo models. METHODS: RAW 264.7 cells and a rat model of acute lung injury (ALI) were used to study the effects of UD on several parameters. Nitrite level, lactate dehydrogenase (LDH) level, and superoxide dismutase (SOD) activities were measured. Tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and plasma transaminase activities in blood were also determined. Pathological investigations were also performed. RESULTS: LPS infusion resulted in elevated IL-1ß mRNA expression, nitrite levels, TNF-α expression, and IL-1ß expression in RAW 264.7 cells. LPS infusion also increased levels of nitrite/nitrate, total protein, LDH, and TNF-α in bronchoalveolar lavage fluid, but reduced SOD levels in ex vivo and in vivo models. UD administration ameliorated all these inflammatory markers. In particular, treatment with UD reduced LPS-induced nitrite production in RAW 264.7 cells in a dose-dependent manner. UD treatment also counteracted the LPS-induced increase in alanine aminotransferase (ALT) and aspartate transaminase (AST) activity in rat plasma, leading to a significant reduction in ALT and AST activity. CONCLUSIONS: The results revealed that UD treatment reduces LPS-induced nitrite production, IL-1ß mRNA expression, and TNF-α expression. In addition, LPS-induced decrease in SOD level is significantly elevated by UD administration. These results indicate that UD extract merits consideration as a potential drug for treating and/or preventing ALI.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Extractos Vegetales/administración & dosificación , Síndrome de Dificultad Respiratoria/prevención & control , Ulmus/química , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/metabolismo , Administración Oral , Animales , Interleucina-1beta/genética , Masculino , Ratones , Extractos Vegetales/farmacología , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA