Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360794

RESUMEN

Spinal muscular atrophy (SMA) is a motor neuron disease caused by insufficient levels of the survival motor neuron (SMN) protein. One of the most prominent pathological characteristics of SMA involves defects of the neuromuscular junction (NMJ), such as denervation and reduced clustering of acetylcholine receptors (AChRs). Recent studies suggest that upregulation of agrin, a crucial NMJ organizer promoting AChR clustering, can improve NMJ innervation and reduce muscle atrophy in the delta7 mouse model of SMA. To test whether the muscle-specific kinase (MuSK), part of the agrin receptor complex, also plays a beneficial role in SMA, we treated the delta7 SMA mice with an agonist antibody to MuSK. MuSK agonist antibody #13, which binds to the NMJ, significantly improved innervation and synaptic efficacy in denervation-vulnerable muscles. MuSK agonist antibody #13 also significantly increased the muscle cross-sectional area and myofiber numbers in these denervation-vulnerable muscles but not in denervation-resistant muscles. Although MuSK agonist antibody #13 did not affect the body weight, our study suggests that preservation of NMJ innervation by the activation of MuSK may serve as a complementary therapy to SMN-enhancing drugs to maximize the therapeutic effectiveness for all types of SMA patients.


Asunto(s)
Neuronas Motoras/enzimología , Atrofia Muscular Espinal/enzimología , Unión Neuromuscular/enzimología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Modelos Animales de Enfermedad , Activación Enzimática , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Proteínas Tirosina Quinasas Receptoras/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
2.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751307

RESUMEN

Exercise perturbs homeostasis, alters the levels of circulating mediators and hormones, and increases the demand by skeletal muscles and other vital organs for energy substrates. Exercise also affects bone and mineral metabolism, particularly calcium and phosphate, both of which are essential for muscle contraction, neuromuscular signaling, biosynthesis of adenosine triphosphate (ATP), and other energy substrates. Parathyroid hormone (PTH) is involved in the regulation of calcium and phosphate homeostasis. Understanding the effects of exercise on PTH secretion is fundamental for appreciating how the body adapts to exercise. Altered PTH metabolism underlies hyperparathyroidism and hypoparathyroidism, the complications of which affect the organs involved in calcium and phosphorous metabolism (bone and kidney) and other body systems as well. Exercise affects PTH expression and secretion by altering the circulating levels of calcium and phosphate. In turn, PTH responds directly to exercise and exercise-induced myokines. Here, we review the main concepts of the regulation of PTH expression and secretion under physiological conditions, in acute and chronic exercise, and in relation to PTH-related disorders.


Asunto(s)
Calcio/metabolismo , Ejercicio Físico , Hiperparatiroidismo/metabolismo , Hipoparatiroidismo/metabolismo , Hormona Paratiroidea/genética , Fósforo/metabolismo , Huesos/citología , Huesos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación de la Expresión Génica , Homeostasis/genética , Humanos , Hiperparatiroidismo/genética , Hiperparatiroidismo/patología , Hipoparatiroidismo/genética , Hipoparatiroidismo/patología , Interleucinas/genética , Interleucinas/metabolismo , Riñón/citología , Riñón/metabolismo , Redes y Vías Metabólicas/genética , Contracción Muscular/genética , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Hormona Paratiroidea/metabolismo , Transducción de Señal , Vitamina D/metabolismo
3.
Nat Protoc ; 15(2): 421-449, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31932771

RESUMEN

This protocol describes the design, fabrication and use of a 3D physiological and pathophysiological motor unit model consisting of motor neurons coupled to skeletal muscles interacting via the neuromuscular junction (NMJ) within a microfluidic device. This model facilitates imaging and quantitative functional assessment. The 'NMJ chip' enables real-time, live imaging of axonal outgrowth, NMJ formation and muscle maturation, as well as synchronization of motor neuron activity and muscle contraction under optogenetic control for the study of normal physiological events. The proposed protocol takes ~2-3 months to be implemented. Pathological behaviors associated with various neuromuscular diseases, such as regression of motor neuron axons, motor neuron death, and muscle degradation and atrophy can also be recapitulated in this system. Disease models can be created by the use of patient-derived induced pluripotent stem cells to generate both the motor neurons and skeletal muscle cells used. This is demonstrated by the use of cells from a patient with sporadic amyotrophic lateral sclerosis but can be applied more generally to models of neuromuscular disease, such as spinal muscular atrophy, NMJ disorder and muscular dystrophy. Models such as this hold considerable potential for applications in precision medicine, drug screening and disease risk assessment.


Asunto(s)
Evaluación Preclínica de Medicamentos/instrumentación , Procedimientos Analíticos en Microchip/métodos , Enfermedades Neuromusculares/tratamiento farmacológico , Medicina de Precisión/instrumentación , Humanos , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Neuromusculares/patología , Enfermedades Neuromusculares/fisiopatología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Medición de Riesgo
4.
Exp Neurol ; 315: 60-71, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30731076

RESUMEN

Peripheral nerve regeneration following injury is often incomplete, resulting in significant personal and socioeconomic costs. Although a conditioning crush lesion prior to surgical nerve transection and repair greatly promotes nerve regeneration and functional recovery, feasibility and ethical considerations have hindered its clinical applicability. In a recent proof of principle study, we demonstrated that conditioning electrical stimulation (CES) had effects on early nerve regeneration, similar to that seen in conditioning crush lesions (CCL). To convincingly determine its clinical utility, establishing the effects of CES on target reinnervation and functional outcomes is of utmost importance. In this study, we found that CES improved nerve regeneration and reinnervation well beyond that of CCL. Specifically, compared to CCL, CES resulted in greater intraepidermal skin and NMJ reinnervation, and greater physiological and functional recovery including mechanosensation, compound muscle action potential on nerve conduction studies, normalization of gait pattern, and motor performance on the horizontal ladder test. These findings have direct clinical relevance as CES could be delivered at the bedside before scheduled nerve surgery.


Asunto(s)
Terapia por Estimulación Eléctrica , Regeneración Nerviosa , Potenciales de Acción , Animales , Marcha , Masculino , Compresión Nerviosa , Conducción Nerviosa , Unión Neuromuscular/patología , Traumatismos de los Nervios Periféricos/patología , Desempeño Psicomotor , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Sensación , Piel/inervación
5.
Lancet Neurol ; 17(3): 251-267, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29395989

RESUMEN

Since the publication of the Duchenne muscular dystrophy (DMD) care considerations in 2010, multidisciplinary care of this severe, progressive neuromuscular disease has evolved. In conjunction with improved patient survival, a shift to more anticipatory diagnostic and therapeutic strategies has occurred, with a renewed focus on patient quality of life. In 2014, a steering committee of experts from a wide range of disciplines was established to update the 2010 DMD care considerations, with the goal of improving patient care. The new care considerations aim to address the needs of patients with prolonged survival, to provide guidance on advances in assessments and interventions, and to consider the implications of emerging genetic and molecular therapies for DMD. The committee identified 11 topics to be included in the update, eight of which were addressed in the original care considerations. The three new topics are primary care and emergency management, endocrine management, and transitions of care across the lifespan. In part 1 of this three-part update, we present care considerations for diagnosis of DMD and neuromuscular, rehabilitation, endocrine (growth, puberty, and adrenal insufficiency), and gastrointestinal (including nutrition and dysphagia) management.


Asunto(s)
Manejo de la Enfermedad , Sistema Endocrino/fisiopatología , Tracto Gastrointestinal/fisiopatología , Distrofia Muscular de Duchenne , Unión Neuromuscular/patología , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/fisiopatología , Distrofia Muscular de Duchenne/terapia , Unión Neuromuscular/fisiopatología , Terapia Nutricional
6.
eNeuro ; 5(6)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627660

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease characterized by degeneration of spinal motor neurons resulting in variable degrees of muscular wasting and weakness. It is caused by a loss-of-function mutation in the survival motor neuron (SMN1) gene. Caenorhabditis elegans mutants lacking SMN recapitulate several aspects of the disease including impaired movement and shorted life span. We examined whether genes previously implicated in life span extension conferred benefits to C. elegans lacking SMN. We find that reducing daf-2/insulin receptor signaling activity promotes survival and improves locomotor behavior in this C. elegans model of SMA. The locomotor dysfunction in C. elegans lacking SMN correlated with structural and functional abnormalities in GABAergic neuromuscular junctions (NMJs). Moreover, we demonstrated that reduction in daf-2 signaling reversed these abnormalities. Remarkably, enhancing GABAergic neurotransmission alone was able to correct the locomotor dysfunction. Our work indicated that an imbalance of excitatory/inhibitory activity within motor circuits and underlies motor system dysfunction in this SMA model. Interventions aimed at restoring the balance of excitatory/inhibitory activity in motor circuits could be of benefit to individuals with SMA.


Asunto(s)
Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Atrofia Muscular Espinal/complicaciones , Ácido gamma-Aminobutírico/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Animales Modificados Genéticamente , Fenómenos Biomecánicos/efectos de los fármacos , Fenómenos Biomecánicos/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inhibidores de la Colinesterasa/farmacología , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Trastornos Neurológicos de la Marcha/patología , Levamisol/farmacología , Longevidad/efectos de los fármacos , Longevidad/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/patología , Bromuro de Piridostigmina/farmacología , Interferencia de ARN/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Análisis de Supervivencia , Proteína 1 para la Supervivencia de la Neurona Motora/genética
7.
Neurotox Res ; 31(2): 230-244, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27826939

RESUMEN

The aim of the present study was to evaluate the therapeutic effect of the novel neuroprotective multitarget brain permeable monoamine oxidase inhibitor/iron chelating-radical scavenging drug, VAR10303 (VAR), co-administered with high-calorie/energy-supplemented diet (ced) in SOD1G93A transgenic amyotrophic lateral sclerosis (ALS) mice. Administration of VAR-ced was initiated after the appearance of disease symptoms (at day 88), as this regimen is comparable with the earliest time at which drug therapy could start in ALS patients. Using this rescue protocol, we demonstrated in the current study that VAR-ced treatment provided several beneficial effects in SOD1G93A mice, including improvement in motor performance, elevation of survival time, and attenuation of iron accumulation and motoneuron loss in the spinal cord. Moreover, VAR-ced treatment attenuated neuromuscular junction denervation and exerted a significant preservation of myofibril regular morphology, associated with a reduction in the expression levels of genes related to denervation and atrophy in the gastrocnemius (GNS) muscle in SOD1G93A mice. These effects were accompanied by upregulation of mitochondrial DNA and elevated activities of complexes I and II in the GNS muscle. We have also demonstrated that VAR-ced treatment upregulated the mitochondrial biogenesis master regulator, peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) and increased PGC-1α-targeted metabolic genes and proteins, such as, PPARγ, UCP1/3, NRF1/2, Tfam, and ERRα in GNS muscle. These results provide evidence of therapeutic potential of VAR-ced in SOD1G93A mice with underlying molecular mechanisms, further supporting the importance role of multitarget iron chelators in ALS treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , ADN Mitocondrial/metabolismo , Hidroxiquinolinas/farmacología , Hidroxiquinolinas/uso terapéutico , Destreza Motora/efectos de los fármacos , Tasa de Supervivencia , Esclerosis Amiotrófica Lateral/dietoterapia , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Terapia Combinada , Desnervación , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Hierro/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Músculo Esquelético/metabolismo , Miofibrillas/efectos de los fármacos , Unión Neuromuscular/patología , Estrés Oxidativo/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Médula Espinal/metabolismo , Médula Espinal/fisiología , Superóxido Dismutasa-1/genética , Regulación hacia Arriba/efectos de los fármacos
8.
Am J Hum Genet ; 99(3): 647-665, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27499521

RESUMEN

Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only ∼10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and -bundling protein, fully protects against SMA in SMN1-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression-a situation resembling the human condition in asymptomatic SMN1-deleted individuals-rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA.


Asunto(s)
Endocitosis/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Actinas/metabolismo , Animales , Axones/patología , Calcio/metabolismo , Proteínas Portadoras , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Oligonucleótidos Antisentido , Fenotipo , Terminales Presinápticos/metabolismo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Transmisión Sináptica/genética , Pez Cebra/genética , Pez Cebra/metabolismo
9.
Med Biol Eng Comput ; 54(11): 1761-1778, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27016366

RESUMEN

Myasthenia gravis (MG) is an autoimmune postsynaptic disorder of neuromuscular transmission caused, in most patients, by antibodies against postsynaptic acetylcholine receptors. Lambert-Eaton myasthenic syndrome (LEMS) is a presynaptic autoimmune disease in which there is a reduction in Ca2+ entry with each impulse due to the action of antibodies against Ca2+ channels. These diseases have a distinct pattern of response to low-frequency repetitive nerve stimulation which allows its recognition in a particular subject. Nevertheless, the physiologic basis of this response is not entirely known. A model of the time-course of release probability of neuromuscular junctions that incorporates facilitation and a depression-recovery mechanism has been developed with the aim to investigate these response patterns. When the basal value of release probability was in the physiologic range, as in MG, release probability showed an increment after its initial decrease only if the recovery from depression was accelerated by presynaptic residual Ca2+. Otherwise, when the basal release probability was low, as in LEMS, a progressive reduction in the release probability without any late increase was only obtained if the efficacy of Facilitation and Ca2+-dependent recovery from depression were reduced.


Asunto(s)
Terapia por Estimulación Eléctrica , Síndrome Miasténico de Lambert-Eaton/terapia , Modelos Neurológicos , Miastenia Gravis/terapia , Potenciales de Acción , Algoritmos , Calcio/metabolismo , Simulación por Computador , Humanos , Síndrome Miasténico de Lambert-Eaton/fisiopatología , Miastenia Gravis/fisiopatología , Tejido Nervioso/fisiopatología , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Probabilidad , Transmisión Sináptica , Factores de Tiempo
10.
Artículo en Inglés | MEDLINE | ID: mdl-26232582

RESUMEN

The commonly used mood altering drug fluoxetine (Prozac) in humans has a low occurrence in reports of harmful effects from overdose; however, individuals with altered metabolism of the drug and accidental overdose have led to critical conditions and even death. We addressed direct actions of high concentrations on synaptic transmission at neuromuscular junctions (NMJs), neural properties, and cardiac function unrelated to fluoxetine's action as a selective 5-HT reuptake inhibitor. There appears to be action in blocking action potentials in crayfish axons, enhanced occurrences of spontaneous synaptic vesicle fusion events in the presynaptic terminals at NMJs of both Drosophila and crayfish. In rodent neurons, cytoplasmic Ca(2+) rises by fluoxetine and is thapsigargin dependent. The Drosophila larval heart showed a dose dependent effect in cardiac arrest. Acute paralytic behavior in crayfish occurred at a systemic concentration of 2mM. A high percentage of death as well as slowed development occurred in Drosophila larvae consuming food containing 100µM fluoxetine. The release of Ca(2+) from the endoplasmic reticulum in neurons and the cardiac tissue as well as blockage of voltage-gated Na(+) channels in neurons could explain the effects on the whole animal as well as the isolated tissues. The use of various animal models in demonstrating the potential mechanisms for the toxic effects with high doses of fluoxetine maybe beneficial for acute treatments in humans. Future studies in determining how fluoxetine is internalized in cells and if there are subtle effects of these mentioned mechanisms presented with chronic therapeutic doses are of general interest.


Asunto(s)
Astacoidea/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Fluoxetina/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Neuronas/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/toxicidad , Animales , Astacoidea/metabolismo , Conducta Animal/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Drosophila melanogaster/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Paro Cardíaco/inducido químicamente , Paro Cardíaco/metabolismo , Ratones , Modelos Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Neuronas/metabolismo , Neuronas/patología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Medición de Riesgo , Especificidad de la Especie , Factores de Tiempo
11.
Neuroscience ; 290: 300-20, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25617654

RESUMEN

Activity and disuse of synapses are thought to influence progression of several neurodegenerative diseases in which synaptic degeneration is an early sign. Here we tested whether stimulation or disuse renders neuromuscular synapses more or less vulnerable to degeneration, using axotomy as a robust trigger. We took advantage of the slow synaptic degeneration phenotype of axotomized neuromuscular junctions in flexor digitorum brevis (FDB) and deep lumbrical (DL) muscles of Wallerian degeneration-Slow (Wld(S)) mutant mice. First, we maintained ex vivo FDB and DL nerve-muscle explants at 32°C for up to 48 h. About 90% of fibers from Wld(S) mice remained innervated, compared with about 36% in wild-type muscles at the 24-h checkpoint. Periodic high-frequency nerve stimulation (100 Hz: 1s/100s) reduced synaptic protection in Wld(S) preparations by about 50%. This effect was abolished in reduced Ca(2+) solutions. Next, we assayed FDB and DL innervation after 7 days of complete tetrodotoxin (TTX)-block of sciatic nerve conduction in vivo, followed by tibial nerve axotomy. Five days later, only about 9% of motor endplates remained innervated in the paralyzed muscles, compared with about 50% in 5 day-axotomized muscles from saline-control-treated Wld(S) mice with no conditioning nerve block. Finally, we gave mice access to running wheels for up to 4 weeks prior to axotomy. Surprisingly, exercising Wld(S) mice ad libitum for 4 weeks increased about twofold the amount of subsequent axotomy-induced synaptic degeneration. Together, the data suggest that vulnerability of mature neuromuscular synapses to axotomy, a potent neurodegenerative trigger, may be enhanced bimodally, either by disuse or by hyperactivity.


Asunto(s)
Unión Neuromuscular/fisiopatología , Degeneración Walleriana/fisiopatología , Animales , Axotomía , Calcio/metabolismo , Terapia por Estimulación Eléctrica , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/patología , Carrera/fisiología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/fisiopatología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Nervio Tibial/lesiones , Nervio Tibial/fisiopatología , Técnicas de Cultivo de Tejidos , Degeneración Walleriana/patología , Degeneración Walleriana/prevención & control
12.
Dis Model Mech ; 4(5): 673-85, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21669931

RESUMEN

Fragile X syndrome (FXS), caused by loss of the fragile X mental retardation 1 (FMR1) product (FMRP), is the most common cause of inherited intellectual disability and autism spectrum disorders. FXS patients suffer multiple behavioral symptoms, including hyperactivity, disrupted circadian cycles, and learning and memory deficits. Recently, a study in the mouse FXS model showed that the tetracycline derivative minocycline effectively remediates the disease state via a proposed matrix metalloproteinase (MMP) inhibition mechanism. Here, we use the well-characterized Drosophila FXS model to assess the effects of minocycline treatment on multiple neural circuit morphological defects and to investigate the MMP hypothesis. We first treat Drosophila Fmr1 (dfmr1) null animals with minocycline to assay the effects on mutant synaptic architecture in three disparate locations: the neuromuscular junction (NMJ), clock neurons in the circadian activity circuit and Kenyon cells in the mushroom body learning and memory center. We find that minocycline effectively restores normal synaptic structure in all three circuits, promising therapeutic potential for FXS treatment. We next tested the MMP hypothesis by assaying the effects of overexpressing the sole Drosophila tissue inhibitor of MMP (TIMP) in dfmr1 null mutants. We find that TIMP overexpression effectively prevents defects in the NMJ synaptic architecture in dfmr1 mutants. Moreover, co-removal of dfmr1 similarly rescues TIMP overexpression phenotypes, including cellular tracheal defects and lethality. To further test the MMP hypothesis, we generated dfmr1;mmp1 double null mutants. Null mmp1 mutants are 100% lethal and display cellular tracheal defects, but co-removal of dfmr1 allows adult viability and prevents tracheal defects. Conversely, co-removal of mmp1 ameliorates the NMJ synaptic architecture defects in dfmr1 null mutants, despite the lack of detectable difference in MMP1 expression or gelatinase activity between the single dfmr1 mutants and controls. These results support minocycline as a promising potential FXS treatment and suggest that it might act via MMP inhibition. We conclude that FMRP and TIMP pathways interact in a reciprocal, bidirectional manner.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster/enzimología , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/enzimología , Metaloproteinasa 1 de la Matriz/deficiencia , Minociclina/uso terapéutico , Red Nerviosa/patología , Animales , Forma de la Célula/efectos de los fármacos , Relojes Circadianos/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Eliminación de Gen , Metaloproteinasa 1 de la Matriz/metabolismo , Minociclina/farmacología , Cuerpos Pedunculados/efectos de los fármacos , Cuerpos Pedunculados/patología , Cuerpos Pedunculados/fisiopatología , Red Nerviosa/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Fenotipo , Sinapsis/efectos de los fármacos , Sinapsis/patología , Inhibidores Tisulares de Metaloproteinasas/metabolismo
13.
J Muscle Res Cell Motil ; 31(3): 195-205, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20706864

RESUMEN

We determine the effects of direct electrical stimulation (ES) on the histological profiles in atrophied skeletal muscle fibers after denervation caused by nerve freezing. Direct ES was performed on the tibialis anterior (TA) muscle after denervation in 7-week-old rats divided into groups as follows: control (CON), denervation (DN), or denervation with direct ES (subdivided into a 4 mA (ES4), an 8 mA (ES8), or a 16 mA stimulus (ES16). The stimulation frequency was set at 10 Hz, and the voltage was set at 40 V (30 min/day, 6 days/week, for 3 weeks). Ultrastructural profiles of the membrane systems involved in excitation-contraction coupling, and four kinds of mRNA expression profiles were evaluated. Morphological disruptions occurred in transverse (t)-tubule networks following denervation: an apparent disruption of the transverse networks, and an increase in the longitudinal t-tubules spanning the gap between the two transverse networks, with the appearance of pentads and heptads. These membrane disruptions seemed to be ameliorated by relatively low intensity ES (4 mA and 8 mA), and the area of longitudinally oriented t-tubules and the number of pentads and heptads decreased significantly (P < 0.01) in ES4 and ES8 compared to the DN. The highest intensity (16 mA) did not improve the disruption of membrane systems. There were no significant differences in the (alpha1s)DHPR and RyR1 mRNA expression among CON, DN, and all ES groups. After 3 weeks of denervation all nerve terminals had disappeared from the neuromuscular junctions (NMJs) in the CON and ES16 groups. However, in the ES4 and ES8 groups, modified nerve terminals were seen in the NMJs. The relatively low-intensity ES ameliorates disruption of membrane system architecture in denervated skeletal muscle fibers, but that it is necessary to select the optimal stimulus intensities to preserve the structural integrity of denervated muscle fibers.


Asunto(s)
Desnervación , Potenciales de la Membrana , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Animales , Terapia por Estimulación Eléctrica , Masculino , Proteínas Musculares/biosíntesis , Unión Neuromuscular/fisiopatología , Ratas , Ratas Wistar
14.
J Neurotrauma ; 26(4): 641-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19271967

RESUMEN

Previous studies have demonstrated that end-organ deprivation after peripheral nerve injury results in targeting of regenerating nerve fibers into inappropriate pathways, which leads to poor functional recovery. Here we studied the effect of electrical stimulation on the regeneration selectivity of motor nerves after peripheral nerve injury and end-organ deprivation. We found that end-organ deprivation reduced regenerating selectivity of motor nerves, total number of regenerating motoneurons, and level of neural trophic factors in the regenerating pathways after nerve injury (p < 0.05). Electrical stimulation successfully promoted motor nerve regeneration selectivity regardless of end-organ connections (p < 0.05). This increased selectivity was accompanied by an increase in the protein level of neural trophic factors in the distal nerve stumps by 3 weeks after nerve injury (p < 0.05). There was a similar increase in the protein level of these neural trophic factors in denervated muscle. However, the RNA level of these factors decreased both in the distal nerves and in the muscle. Despite the promising effect of promoting motor nerve regeneration selectivity, electrical stimulation did not prevent motoneuron loss caused by end-organ deprivation. The present study suggests that end organs contribute to the development of selective motor nerve regeneration by increasing the neurotrophic factors in the regeneration pathways. Electrical stimulation is an efficient strategy to ameliorate the deteriorated regeneration microenvironment caused by end-organ deprivation and to promote motor nerve regeneration selectivity when end-organ connections are deprived.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Factores de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos , Animales , Axones/patología , Axones/fisiología , Axotomía/efectos adversos , Desnervación/efectos adversos , Modelos Animales de Enfermedad , Femenino , Neuronas Motoras/patología , Músculo Esquelético/fisiopatología , Factores de Crecimiento Nervioso/genética , Unión Neuromuscular/lesiones , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Plasticidad Neuronal/fisiología , Nervios Periféricos/patología , Nervios Periféricos/fisiopatología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Regulación hacia Arriba/fisiología
15.
J Neurosci Res ; 85(12): 2726-40, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17243177

RESUMEN

In the chick embryo, in ovo application of NMDA from embryonic day (E) 5 to E9 results in selective damage to spinal cord motoneurons (MNs) that undergo a long-lasting degenerative process without immediate cell death. This contrasts with a single application of NMDA on E8, or later, which induces massive necrosis of the whole spinal cord. Chronic MN degeneration after NMDA implies transient incompetence to develop programmed cell death, altered protein processing within secretory pathways, and late activation of autophagy. Chronic NMDA treatment also results in an enlargement of thapsigargin-sensitive Ca(2+) stores. In particular MN pools, such as sartorius-innervating MNs, the neuropeptide CGRP is accumulated in somas, peripheral axons and neuromuscular junctions after chronic NMDA treatment, but not in embryos paralyzed by chronic administration of curare. Intramuscular axonal branching is also altered severely after NMDA: it usually increases, but in some cases a marked reduction can also be observed. Moreover, innervated muscle postsynaptic sites increase by NMDA, but to a lesser extent than by curare. Because some of these results show interesting homologies with MN pathology in human sporadic ALS, the model presented here provides a valuable tool for advancing in the understanding of some cellular and molecular processes particularly involved in this disease.


Asunto(s)
Autofagia/fisiología , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/efectos de los fármacos , Degeneración Nerviosa/fisiopatología , Unión Neuromuscular/patología , Factores de Edad , Animales , Autofagia/efectos de los fármacos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Calcio/metabolismo , Embrión de Pollo/efectos de los fármacos , Curare/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Agonistas de Aminoácidos Excitadores/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Microscopía Electrónica de Transmisión/métodos , Enfermedad de la Neurona Motora/inducido químicamente , Neuronas Motoras/ultraestructura , N-Metilaspartato/farmacología , Unión Neuromuscular/efectos de los fármacos , Fármacos Neuromusculares no Despolarizantes/farmacología , Receptores Nicotínicos/metabolismo , Médula Espinal/patología , Tubulina (Proteína)/metabolismo
16.
Neurobiol Dis ; 20(3): 943-52, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16046140

RESUMEN

Familial amyotrophic lateral sclerosis (FALS) has been modeled in transgenic mice by introducing mutated versions of human genomic DNA encompassing the entire gene for Cu,Zn superoxide dismutase (SOD1). In this setting, the transgene is expressed throughout the body and results in mice that faithfully recapitulate many pathological and behavioral aspects of FALS. By contrast, transgenic mice made by introducing recombinant vectors, encoding cDNA genes, that target mutant SOD1 expression to motor neurons, only, or astrocytes, only, do not develop disease. Here, we report that mice transgenic for human SOD1 cDNA with the G37R mutation, driven by the mouse prion promoter, develop motor neuron disease. In this model, expression of the transgene is highest in CNS (both neurons and astrocytes) and muscle. The gene was not expressed in cells of the macrophage lineage. Although the highest expressing hemizygous transgenic mice fail to develop disease by 20 months of age, mice homozygous for the transgene show typical ALS-like phenotypes as early as 7 months of age. Spinal cords and brain stems from homozygous animals with motor neuron disease were found to contain aggregated species of mutant SOD1. The establishment of this SOD1-G37R cDNA transgenic model indicates that expression of mutant SOD1 proteins in the neuromuscular unit is sufficient to cause motor neuron disease. The expression levels required to induce disease coincide with the levels required to induce the formation of SOD1 aggregates.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/genética , Sistema Nervioso Central/enzimología , Neuronas Motoras/metabolismo , Mutación/genética , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Astrocitos/patología , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiopatología , ADN Complementario/genética , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad/genética , Homocigoto , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Parálisis/genética , Parálisis/metabolismo , Parálisis/fisiopatología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Transgenes/genética
18.
J Spinal Cord Med ; 18(1): 28-32, 1995 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-7640971

RESUMEN

This is a study of the reaction of large nerves to implantation using a flexible, thin-film cuff electrode. Cuff electrodes were implanted on the sciatic nerve of three cats. An implantation period of six weeks allowed sufficient time for any injury responses in the nerve and connective tissue sheath around the cuff to develop. The electrode came off the nerve in one of the cats. In the remaining two cats, gross observation following explantation of the electrodes revealed encapsulation of the cuffs without swelling of nerve tissue. Histological evaluation did not demonstrate nerve injury. The nerve cuff electrodes, which are comprised of titanium and iridium coatings on a fluorocarbon polymer substrate, appeared unaffected by the implantation, and connective tissue encapsulation did not adhere to either the polymer substrate or metallization. Evaluation of the electrodes using activated iridium oxide charge injection sites in more extended studies is now being undertaken.


Asunto(s)
Terapia por Estimulación Eléctrica/instrumentación , Electrodos Implantados , Unión Neuromuscular/fisiopatología , Nervios Periféricos/fisiopatología , Animales , Gatos , Tejido Conectivo/patología , Diseño de Equipo , Masculino , Degeneración Nerviosa/fisiología , Unión Neuromuscular/patología , Nervios Periféricos/patología , Politetrafluoroetileno , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA