Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chin J Nat Med ; 22(4): 329-340, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658096

RESUMEN

The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding ß-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Ubiquitina Tiolesterasa , Vía de Señalización Wnt , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Ratones , Humanos , Vía de Señalización Wnt/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , beta Catenina/metabolismo , Ratones Endogámicos BALB C
2.
J Tradit Chin Med ; 44(2): 251-259, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504531

RESUMEN

OBJECTIVE: To investigate the synergistic effects of polyphyllin I (PPI) combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the growth of osteosarcoma cells through downregulating the Wnt/ß-catenin signaling pathway. METHODS: Cell viability, apoptosis and cell cycle distribution were examined using cell counting kit-8 and flow cytometry assays. The morphology of cancer cells was observed with inverted phase contrast microscope. The migration and invasion abilities were examined by xCELLigence real time cell analysis DP system and transwell assays. The expressions of poly (adenosine diphosphate-ribose) polymerase, C-Myc, Cyclin B1, cyclin-dependent kinases 1, N-cadherin, Vimentin, Active-ß-catenin, ß-catenin, p-glycogen synthase kinase 3ß (GSK-3ß) and GSK-3ß were determined by Western blotting assay. RESULTS: PPI sensitized TRAIL-induced decrease of viability, migration and invasion, as well as increase of apoptosis and cell cycle arrest of MG-63 and U-2 OS osteosarcoma cells. The synergistic effect of PPI with TRAIL in inhibiting the growth of osteosarcoma cells was at least partially realized through the inactivation of Wnt/ß-catenin signaling pathway. CONCLUSION: The combination of PPI and TRAIL is potentially a novel treatment strategy of osteosarcoma.


Asunto(s)
Neoplasias Óseas , Diosgenina/análogos & derivados , Osteosarcoma , Humanos , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ligandos , Línea Celular Tumoral , Proliferación Celular , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Ciclo Celular , Apoptosis , Factor de Necrosis Tumoral alfa/farmacología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Movimiento Celular
3.
BMC Vet Res ; 20(1): 109, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500165

RESUMEN

BACKGROUND: Endometritis is a common bovine postpartum disease. Rapid endometrial repair is beneficial for forming natural defense barriers and lets cows enter the next breeding cycle as soon as possible. Selenium (Se) is an essential trace element closely related to growth and development in animals. This study aims to observe the effect of Se on the proliferation of bovine endometrial epithelial cells (BEECs) induced by lipopolysaccharide (LPS) and to elucidate the possible underlying mechanism. RESULTS: In this study, we developed a BEECs damage model using LPS. Flow cytometry, cell scratch test and EdU proliferation assay were used to evaluate the cell cycle, migration and proliferation. The mRNA transcriptions of growth factors were detected by quantitative reverse transcription-polymerase chain reaction. The activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/ß-catenin pathways were detected by Western blotting and immunofluorescence. The results showed that the cell viability and BCL-2/BAX protein ratio were significantly decreased, and the cell apoptosis rate was significantly increased in the LPS group. Compared with the LPS group, Se promoted cell cycle progression, increased cell migration and proliferation, and significantly increased the gene expressions of TGFB1, TGFB3 and VEGFA. Se decreased the BCL-2/BAX protein ratio, promoted ß-catenin translocation from the cytoplasm to the nucleus and activated the Wnt/ß-catenin and PI3K/AKT signaling pathways inhibited by LPS. CONCLUSIONS: In conclusion, Se can attenuate LPS-induced damage to BEECs and promote cell proliferation and migration in vitro by enhancing growth factors gene expression and activating the PI3K/AKT and Wnt/ß-catenin signaling pathways.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Selenio , Femenino , Bovinos , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Selenio/farmacología , Selenio/metabolismo , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína X Asociada a bcl-2/farmacología , Vía de Señalización Wnt , Células Epiteliales , Proliferación Celular , Apoptosis
4.
Phytomedicine ; 128: 155363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493715

RESUMEN

BACKGROUND: Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE: This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN: The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 µM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS: The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/ß-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS: The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/ß-catenin signaling. The fact that Wnt/ß-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION: Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/ß-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.


Asunto(s)
Alcaloides , Pollos , Coccidiosis , Eimeria , Matrinas , Enfermedades de las Aves de Corral , Quinolizinas , Vía de Señalización Wnt , Animales , Quinolizinas/farmacología , Alcaloides/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Eimeria/efectos de los fármacos , Coccidiosis/tratamiento farmacológico , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/parasitología , Células Madre/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/parasitología
5.
Phytomedicine ; 128: 155419, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522314

RESUMEN

BACKGROUND: Disturbance of the blood‒brain barrier (BBB) and associated inflammatory responses are observed in patients with hepatic encephalopathy (HE) and can cause long-term complications. Dahuang-Wumei decoction (DWD) is a renowned traditional Chinese herbal medicine with a long history of clinical use and has been widely employed as an effective treatment for hepatic encephalopathy (HE). Despite its established efficacy, the precise mechanisms underlying the therapeutic effects of DWD have not been fully elucidated. PURPOSE: The present study aimed to comprehensively explore the potential effects and underlying molecular mechanisms of DWD on HE through an integrated investigation that included both in vivo and in vitro experiments. METHODS: In the present study, carbon tetrachloride (CCl4) and thioacetamide (TAA) were used to establish an HE model in mice. The therapeutic effects of DWD on liver injury, fibrosis, brain injury, behaviour, and consciousness disorders were evaluated in vivo. C8-D1A and bEnd.3 cells were used to construct a BBB model in vitro. The effects of DWD on proinflammatory factor expression, BBB damage and the Wnt/ß-catenin pathway were detected in vivo and in vitro. RESULTS: Our results showed that DWD can improve liver injury and fibrosis and brain damage and inhibit neurofunctional and behavioural disorders in mice with HE. Afterwards, we found that DWD decreased the levels of proinflammatory factors and suppressed BBB disruption by increasing the levels of junction proteins in vivo and vitro. Further studies verified that the Wnt/ß-catenin pathway may play a pivotal role in mediating the inhibitory effect of DWD on HE. CONCLUSION: These results demonstrated that DWD can treat HE by preventing BBB disruption, and the underlying mechanisms involved were associated with the activation of the Wnt/ß-catenin pathway and the inhibition of inflammatory responses.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Encefalopatía Hepática , Tioacetamida , Vía de Señalización Wnt , Animales , Medicamentos Herbarios Chinos/farmacología , Encefalopatía Hepática/tratamiento farmacológico , Masculino , Vía de Señalización Wnt/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Ratones , Tetracloruro de Carbono , Línea Celular , Ratones Endogámicos C57BL
6.
Phytomedicine ; 126: 155462, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394734

RESUMEN

BACKGROUND: Cetuximab, an inhibitor targeting EGFR, is widely applied in clinical management of colorectal cancer (CRC). Nevertheless, drug resistance induced by KRAS-mutations limits cetuximab's anti-cancer effectiveness. Furthermore, the persistent activation of EGFR-independent AKT is another significant factor in cetuximab resistance. Nevertheless, the mechanism that EGFR-independent AKT drives cetuximab resistance remains unclear. Thus, highlighting the need to optimize therapies to overcome cetuximab resistance and also to explore the underlying mechanism. PURPOSE: This work aimed to investigate whether and how andrographolide enhance the therapeutic efficacy of cetuximab in KRAS-mutant CRC cells by modulating AKT. METHODS: The viabilities of CRC cell lines were analyzed by CCK-8. The intracellular proteins phosphorylation levels were investigated by Human Phospho-kinase Antibody Array analysis. Knockdown and transfection of PDGFRß were used to evaluate the role of andrographolide on PDGFRß. The western blotting was used to investigate Wnt/ß-catenin pathways, PI3K/AKT, and EMT in KRAS-mutant CRC cells. The animal models including subcutaneous tumor and lung metastasis were performed to assess tumor response to therapy in vivo. RESULTS: Andrographolide was demonstrated to decrease the expression of PI3K and AKT through targeting PDGFRß and EGFR, and it enhanced cetuximab effect on KRAS-mutant CRC cells by this mechanism. Meanwhile, andrographolide helped cetuximab to inhibit Wnt/ß-catenin, CRC cell migration and reduced Vimentin expression, while increasing that of E-cadherin. Lastly, co-treatment with cetuximab and andrographolide reduced the growth of KRAS-mutant tumors and pulmonary metastases in vivo. CONCLUSIONS: Our findings suggest that andrographolide can overcome the KRAS-mutant CRC cells' resistance to cetuximab through inhibiting the EGFR/PI3K/AKT and PDGFRß /AKT signaling pathways. This research provided a possible theory that andrographolide sensitizes KRAS-mutant tumor to EGFR TKI.


Asunto(s)
Neoplasias Colorrectales , Diterpenos , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Cetuximab/farmacología , Cetuximab/genética , Cetuximab/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores ErbB/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral , Vía de Señalización Wnt , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación
7.
Wound Repair Regen ; 32(3): 279-291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38353052

RESUMEN

Pressure ulcer (PU) is a worldwide problem that is difficult to address because of the related inflammatory response, local hypoxia, and repeated ischaemia/reperfusion, causing great suffering and financial burden to patients. Traditional Chinese medicine turtle plate powder can treat skin trauma, but its composition is complex and inconvenient to use. Here, we combined cholesterol myristate (S8) with berberine (BBR), with anti-inflammatory and antibacterial effects, as a drug and used hydroxypropyl methylcellulose and polyvinylpyrrolidone K30 as carriers to construct a novel film-forming polymeric solution (S8 + BBR FFPS), comprehensively study its reparative effect on PU and explore the potential mechanism in rat PU models. The results showed that S8 + BBR FFPS inhibits excessive inflammatory response, promotes re-epithelialization, and promotes hair follicle growth during the healing process of PU, which may be related to the activation of the Wnt/ß-catenin signalling pathway by S8 + BBR FFPS to mediate hair follicle stem cell proliferation and maintain skin homeostasis. Therefore, S8 + BBR FFPS may be a potential candidate for the treatment of chronic skin injury, and its association with the Wnt/ß-catenin signalling pathway may provide new ideas to guide the design of biomaterial-based wound dressings for chronic wound repair.


Asunto(s)
Berberina , Modelos Animales de Enfermedad , Úlcera por Presión , Ratas Sprague-Dawley , Vía de Señalización Wnt , Cicatrización de Heridas , Animales , Úlcera por Presión/tratamiento farmacológico , Berberina/farmacología , Berberina/uso terapéutico , Ratas , Cicatrización de Heridas/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Masculino , Polímeros/farmacología , Proliferación Celular/efectos de los fármacos
8.
Phytother Res ; 38(3): 1313-1328, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38194947

RESUMEN

5-Fluorouracil is a commonly used chemotherapy drug for colorectal cancer. Resistance to 5-Fluorouracil remains a challenge. This research aimed to explore the mechanism of 5-Fluorouracil resistance in colorectal cancer. RT-qPCR and Western blot were used to determine the RNA and protein expression in both cells and exosome. Assays in vitro and in vivo were performed to measure the role of miR-149-5p in colorectal cancer cells. RIP, luciferase activity report, and RNA pulldown assay were applied to detect the association of PTOV1-AS1, SUV39H1, miR-149-5p, and FOXM1. MiR-149-5p was down-expressed in 5-Fluorouracil-resistant cells. MiR-149-5p enhanced the effectiveness of 5-Fluorouracil both in vitro and in vivo. Sensitive colorectal cancer cells released exosomal miR-149-5p to sensitize resistant cells to chemotherapy. Mechanistically, miR-149-5p targeted the FOXM1 to inactivate Wnt/ß-catenin pathway, and PTOV1-AS1 recruited SUV39H1 to suppress miR-149-5p transcription, in turn activating Wnt/ß-catenin pathway, and forming a positive feedback loop with FOXM1. PTOV1-AS1 inhibits miR-149-5p by a positive feedback loop with FOXM1-mediated Wnt/ß-catenin pathway, which provides insights into a potential novel target for enhancing the effectiveness of chemotherapy in colorectal cancer patients.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Retroalimentación , Proliferación Celular , Vía de Señalización Wnt , Fluorouracilo , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Proteínas de Neoplasias/metabolismo , Biomarcadores de Tumor/uso terapéutico
9.
Biol Pharm Bull ; 47(2): 486-498, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38199251

RESUMEN

Resina Draconis is a traditional Chinese medicine, with the in-depth research, its medicinal value in anti-tumor has been revealed. Loureirin A is extracted from Resina Draconis, however, research on the anti-tumor efficacy of Loureirin A is rare. Herein, we investigated the function of Loureirin A in melanoma. Our research demonstrated that Loureirin A inhibited the proliferation of and caused G0/G1 cell cycle arrest in melanoma cells in a concentration-dependent manner. Further study showed that the melanin content and tyrosinase activity was enhanced after Loureirin A treatment, demonstrated that Loureirin A promoted melanoma cell differentiation, which was accompanied with the reduce of WNT signaling pathway. Meanwhile, we found that Loureirin A suppressed the migration and invasion of melanoma cells through the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Taken together, this study demonstrated for the first time the anti-tumor effects of Loureirin A in melanoma cells, which provided a novel therapeutic strategy against melanoma.


Asunto(s)
Chalconas , Melanoma , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Melanoma/metabolismo , Diferenciación Celular , Vía de Señalización Wnt , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , Movimiento Celular , Línea Celular Tumoral
10.
J Tradit Chin Med ; 44(1): 78-87, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213242

RESUMEN

OBJECTIVE: To unmask the underlying mechanisms of Yisui granule (, YSG) for the treatment of Myelodysplastic syndromes (MDS). METHODS: Our study used an SKM-1 mouse xenograft model of MDS to explore the anti-tumor potential of YSG and its safety, assess its effect on overall survival (OS), and evaluate whether its mechanism is associated with the demethylation of the secreted frizzled related protein 5 (sFRP5) gene and suppressing Wnt/ß-catenin pathway. Bisulfite amplicon sequencing was applied to detect the level of methylation of the sFRP5 gene; western blotting, immunofluorescence staining, and real-time Polymerase Chain Reaction were performed to detect DNA methyltransferase 1 (DNMT1), sFRP5, and other Wnt/ß-catenin pathway-related mRNA and protein expression. RESULTS: The results showed that high-dosage YSG exerted an anti-tumor effect similar to that of decitabine, improved OS, and reduced long-term adverse effects in the long term. Mechanically, YSG reduced the expression of DNMT1 methyltransferase, decreased the methylation, and increased the expression of the Wnt/ß-catenin pathway antagonist-sFRP5. Furthermore, components of the Wnt/ß-catenin pathway, including Wnt3a, ß-catenin, c-Myc, and cyclinD1, were down-regulated in response to YSG, suggesting that YSG could treat MDS by demethylating the sFRP5 gene and suppressing the Wnt/ß-catenin pathway. CONCLUSIONS: Our findings demonstrated that YSG could be used alone or in combination with decitabine to improve outcomes in the MDS animal model, providing an alternative solution for treating MDS.


Asunto(s)
Síndromes Mielodisplásicos , Vía de Señalización Wnt , Humanos , Animales , Ratones , Metilación de ADN , Decitabina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Xenoinjertos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Modelos Animales de Enfermedad , Metiltransferasas/genética , Metiltransferasas/metabolismo
11.
J Agric Food Chem ; 72(5): 2411-2433, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38284360

RESUMEN

As an important signaling pathway in multicellular eukaryotes, the Wnt signaling pathway participates in a variety of physiological processes. Recent studies have confirmed that the Wnt signaling pathway plays an important role in neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. The regulation of Wnt signaling by natural compounds in herbal medicines and nutraceuticals has emerged as a potential strategy for the development of new drugs for neurological disorders. Purpose: The aim of this review is to evaluate the latest research results on the efficacy of natural compounds derived from herbs and nutraceuticals in the prevention and treatment of neurological disorders by regulating the Wnt pathway in vivo and in vitro. A manual and electronic search was performed for English articles available from PubMed, Web of Science, and ScienceDirect from the January 2010 to February 2023. Keywords used for the search engines were "natural products,″ "plant derived products,″ "Wnt+ clinical trials,″ and "Wnt+,″ and/or paired with "natural products″/″plant derived products", and "neurological disorders." A total of 22 articles were enrolled in this review, and a variety of natural compounds from herbal medicine and nutritional foods have been shown to exert therapeutic effects on neurological disorders through the Wnt pathway, including curcumin, resveratrol, and querctrin, etc. These natural products possess antioxidant, anti-inflammatory, and angiogenic properties, confer neurovascular unit and blood-brain barrier integrity protection, and affect neural stem cell differentiation, synaptic formation, and neurogenesis, to play a therapeutic role in neurological disorders. In various in vivo and in vitro studies and clinical trials, these natural compounds have been shown to be safe and tolerable with few adverse effects. Natural compounds may serve a therapeutic role in neurological disorders by regulating the Wnt pathway. This summary of the research progress of natural compounds targeting the Wnt pathway may provide new insights for the treatment of neurological disorders and potential targets for the development of new drugs.


Asunto(s)
Productos Biológicos , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Plantas Medicinales , Humanos , Vía de Señalización Wnt , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Suplementos Dietéticos , Productos Biológicos/farmacología
12.
J Nat Med ; 78(2): 370-381, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38265612

RESUMEN

The Wnt/ß-catenin signaling pathway plays important roles in several cancer cells, including cell proliferation and development. We previously succeeded in synthesizing a small molecule compound inhibiting the Wnt/ß-catenin signaling pathway, named LPD-01 (1), and 1 inhibited the growth of human colorectal cancer (HT-29) cells. In this study, we revealed that 1 inhibits the growth of HT-29 cells stronger than that of another human colorectal cancer (SW480) cells. Therefore, we have attempted to identify the target proteins of 1 in HT-29 cells. Firstly, we investigated the effect on the expression levels of the Wnt/ß-catenin signaling pathway-related proteins. As a result, 1 inhibited the expression of target proteins of Wnt/ß-catenin signaling pathway (c-Myc and Survivin) and their genes, whereas the amount of transcriptional co-activator (ß-catenin) was not decreased, suggesting that 1 inhibited the Wnt/ß-catenin signaling pathway without affecting ß-catenin. Next, we investigated the target proteins of 1 using magnetic FG beads. Chemical pull-down assay combined with mass spectrometry suggested that 1 directly binds to importin7. As expected, 1 inhibited the nuclear translocation of importin7 cargoes such as Smad2 and Smad3 in TGF-ß-stimulated HT-29 cells. In addition, the knockdown of importin7 by siRNA reduced the expression of target genes of Wnt/ß-catenin signaling pathway. These results suggest that importin7 is one of the target proteins of 1 for inhibition of the Wnt/ß-catenin signaling pathway.


Asunto(s)
Neoplasias Colorrectales , beta Catenina , Humanos , beta Catenina/metabolismo , Vía de Señalización Wnt , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Línea Celular Tumoral
13.
J Biomol Struct Dyn ; 42(2): 559-570, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37011015

RESUMEN

The wound-healing process is accelerated by inhibiting proteins that decelerate the wound-healing pathway. One of the active proteins involved in enhancing healing at the nuclear level and in gene expression is catenin. Inhibition of Glycogen Synthase Kinase 3ß (GSK3 ß) phosphorylates and degrades catenin via the downstream Wnt signalling pathway, thereby stabilizing catenin. A medicated wound dressing transdermal patch designed with fusion of bio wastes, viz. physiologically clotted fibrin, fish scale collagen, and the ethanolic extract of Mangifera indica (L.) and spider web, was analysed against GSK3ß to enhance healing. In our earlier studies, the compounds present in the transdermal patch were identified using GC-MS analysis; 12 compounds exhibiting the wound healing mechanism were analyzed using PASS software and filtered out. From these 12 compounds, 6 compounds that possessed drug-likeness were screened by SwissADME and vNN-ADMET to dock against GSK3ß in the present work. The PyRx results confirmed the binding of the six ligands to the active site of the target protein. Though the remaining filtered ligands also exhibited inhibitory activity, Molecular dynamics simulation studies were carried out with 100 ns on a complex of 10,12 Tricosadiyonic acid, Nopyl acetate and 2 Methyl 4 Heptanol as they showed binding affinity of -6.2Kcal/mol, -5.7Kcal/mol and -5.1Kcal/mol respectively. The stability of the complex was validated using MD simulation parameters RMSD, RMSF, Rg, and Number of Hydrogen bonds. These results implied that the transdermal patch would be efficient in accelerating the wound healing process through the inactivation of GSK3ß.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Extractos Vegetales , Animales , Extractos Vegetales/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Parche Transdérmico , beta Catenina/metabolismo , Cicatrización de Heridas , Vía de Señalización Wnt/fisiología , Simulación del Acoplamiento Molecular
14.
Eur J Med Chem ; 264: 116022, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086191

RESUMEN

Androgenetic alopecia (AGA) has become a widespread problem that leads to considerable impairment of the psyche and daily life. The currently approved medications for the treatment of AGA are associated with significant adverse effects, high costs, and prolonged treatment duration. Therefore, natural products are being considered as possible complementary or alternative treatments. This review aims to enhance comprehension of the mechanisms by which natural products treat AGA. To achieve this, pertinent studies were gathered and subjected to analysis. In addition, the therapeutic mechanisms associated with these natural products were organized and summarized. These include the direct modulation of signaling pathways such as the Wnt/ß-catenin pathway, the PI3K/AKT pathway, and the BMP pathway. Additionally, they exert effects on cytokine secretion, anti-inflammatory, and antioxidant capabilities, as well as apoptosis and autophagy. Furthermore, the review briefly discusses the relationship between signaling pathways and autophagy and apoptosis in the context of AGA, systematically presents the mechanisms of action of existing natural products, and analyzes the potential therapeutic targets based on the active components of these products. The aim is to provide a theoretical basis for the development of pharmaceuticals, nutraceuticals, or dietary supplements.


Asunto(s)
Alopecia , Fosfatidilinositol 3-Quinasas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Alopecia/tratamiento farmacológico , Alopecia/metabolismo , Vía de Señalización Wnt , Expresión Génica
15.
Altern Ther Health Med ; 30(1): 238-247, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37773683

RESUMEN

Lung cancer is currently the leading cause of cancer mortality and morbidity worldwide and greatly burdens humanity. Therefore, the prevention and treatment of lung cancer remains a serious global problem. The Wnt/ß-catenin signaling pathway also regulates tumor cell growth and invasion through epithelial-mesenchymal transition and tumor stem cells. In this review, we first summarise the role of the Wnt/ß-catenin signaling pathway in lung cancer, focusing on the reported links in the Wnt/ß-catenin signaling pathway that are relevant to lung cancer cell line growth, cell survival, and patient prognosis. Then describe the advances in the Wnt/ß-catenin signaling pathway in lung cancer therapy, the precise regulation of the Wnt/ß-catenin signaling pathway, that precise regulation of the Wnt/ß-catenin signaling pathway should be used to balance anti-tumor effects and adverse events.


Asunto(s)
Neoplasias Pulmonares , Vía de Señalización Wnt , Humanos , Transición Epitelial-Mesenquimal , Pulmón , Proliferación Celular , Línea Celular Tumoral
16.
J Nat Med ; 78(1): 226-235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37656375

RESUMEN

From the methanolic extract of the climbing stems and rhizomes of Sinomenium acutum, two new aporphine analogues, acutumalkaloids I and II, were isolated together with fifteen known compounds including lysicamine. The chemical structures of the isolated new compounds were elucidated based on chemical/physicochemical evidence such as NMR and MS spectra. For acutumalkaloids I and II, the absolute configurations were established by comparison of experimental and predicted electronic circular dichroism (ECD) data. We compared anti-proliferative activities of isolated compounds with reported naturally occurring Wnt/ß-catenin pathway inhibitor, nuciferine. Among the isolated compounds, we found lysicamine have anti-proliferative activity against both of HT-29 human colon cancer cell line and its cancer stem cells (CSCs). The IC50 values of lysicamine against non-CSCs and its CSCs were lower than that of nuciferine. In addition, the results of western blotting analysis suggested that lysicamine inhibited the expression of Wnt/ß-catenin pathway target protein such as survivin. These results suggested that lysicamine show cytotoxic activity via inhibition of Wnt/ß-catenin pathway.


Asunto(s)
Alcaloides , Antineoplásicos , Neoplasias , Humanos , Sinomenium/química , beta Catenina , Rizoma/química , Alcaloides/química , Antineoplásicos/farmacología , Vía de Señalización Wnt , Células Madre Neoplásicas , Línea Celular Tumoral
17.
Int J Biol Macromol ; 254(Pt 1): 127627, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37884243

RESUMEN

To develop an inhibitor targeting the Wnt/ß-catenin signaling pathway, flavonoid monomer that can interact with ß-catenin was isolated from Paulownia flowers. Luteolin may form stable hydrogen bonds with ß-catenin by molecular docking. Fluorescence quenching analysis determined the physical interaction between luteolin and ß-catenin. The binding of luteolin to ß-catenin caused a loss of α-helical structure and induced a conformational change through circular dichroism spectroscopy. Luteolin inhibits the activity of the Wnt signaling, causing cholangiocarcinoma (CCA) cell cycle arrest in the G2/M phase, leading to cell apoptosis and inhibition of cell migration. In addition, transcriptome and proteomics analysis showed that the differentially expressed proteins were significantly enriched in the Wnt/ß-catenin pathway. ß-catenin protein in the nucleus was significantly decreased, while C-Myc and cyclin D1 in the CCA cells were significantly decreased after luteolin treatment. Additionally, activation of the Wnt/ß-catenin signaling reversed the inhibitory effect of luteolin on the migration of CCA cells. Therefore, luteolin can directly interact with ß-catenin and act as an inhibitor of ß-catenin, inhibiting proliferation and reducing the migration ability of CCA cells by inhibiting the Wnt/ß-catenin pathway. This study provides a scientific basis for the development of Wnt/ß-catenin pathway inhibitors and the prevention and treatment of CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Luteolina/farmacología , Línea Celular Tumoral , beta Catenina/metabolismo , Simulación del Acoplamiento Molecular , Proliferación Celular , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Vía de Señalización Wnt , Apoptosis , Proteínas Wnt , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología
18.
Phytother Res ; 38(1): 280-304, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37871899

RESUMEN

This review focuses on the potential ameliorative effects of polyphenolic compounds derived from human diet on hepatic diseases. It discusses the molecular mechanisms and recent advancements in clinical applications. Edible polyphenols have been found to play a therapeutic role, particularly in liver injury, liver fibrosis, NAFLD/NASH, and HCC. In the regulation of liver injury, polyphenols exhibit anti-inflammatory and antioxidant effects, primarily targeting the TGF-ß, NF-κB/TLR4, PI3K/AKT, and Nrf2/HO-1 signaling pathways. In the regulation of liver fibrosis, polyphenolic compounds effectively reverse the fibrotic process by inhibiting the activation of hepatic stellate cells (HSC). Furthermore, polyphenolic compounds show efficacy against NAFLD/NASH by inhibiting lipid oxidation and accumulation, mediated through the AMPK, SIRT, and PPARγ pathways. Moreover, several polyphenolic compounds exhibit anti-HCC activity by suppressing tumor cell proliferation and metastasis. This inhibition primarily involves blocking Akt and Wnt signaling, as well as inhibiting the epithelial-mesenchymal transition (EMT). Additionally, clinical trials and nutritional evidence support the notion that certain polyphenols can improve liver disease and associated metabolic disorders. However, further fundamental research and clinical trials are warranted to validate the efficacy of dietary polyphenols.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Carcinoma Hepatocelular/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Cirrosis Hepática/tratamiento farmacológico , Hígado/metabolismo , Vía de Señalización Wnt , Dieta
19.
Chin J Integr Med ; 30(4): 322-329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37861963

RESUMEN

OBJECTIVE: To investigate the mechanistic basis for the anti-proliferation and anti-invasion effect of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) and celastrol combination treatment (TCCT) in glioblastoma cells. METHODS: Cell counting kit-8 was used to detect the effects of different concentrations of celastrol (0-16 µmol/L) and TRAIL (0-500 ng/mL) on the cell viability of glioblastoma cells. U87 cells were randomly divided into 4 groups, namely control, TRAIL (TRAIL 100 ng/mL), Cel (celastrol 0.5 µmol/L) and TCCT (TRAIL 100 ng/mL+ celastrol 0.5 µmol/L). Cell proliferation, migration, and invasion were detected by colony formation, wound healing, and Transwell assays, respectively. Quantitative reverse transcription polymerase chain reaction and Western blotting were performed to assess the levels of epithelial-mesenchymal transition (EMT) markers (zona occludens, N-cadherin, vimentin, zinc finger E-box-binding homeobox, Slug, and ß-catenin). Wnt pathway was activated by lithium chloride (LiCl, 20 mol/L) and the mechanism for action of TCCT was explored. RESULTS: Celastrol and TRAIL synergistically inhibited the proliferation, migration, invasion, and EMT of U87 cells (P<0.01). TCCT up-regulated the expression of GSK-3ß and down-regulated the expression of ß-catenin and its associated proteins (P<0.05 or P<0.01), including c-Myc, Cyclin-D1, and matrix metalloproteinase (MMP)-2. In addition, LiCl, an activator of the Wnt signaling pathway, restored the inhibitory effects of TCCT on the expression of ß-catenin and its downstream genes, as well as the migration and invasion of glioblastoma cells (P<0.05 or P<0.01). CONCLUSIONS: Celastrol and TRAIL can synergistically suppress glioblastoma cell migration, invasion, and EMT, potentially through inhibition of Wnt/ß-catenin pathway. This underlies a novel mechanism of action for TCCT as an effective therapy for glioblastoma.


Asunto(s)
Glioblastoma , Triterpenos Pentacíclicos , Vía de Señalización Wnt , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ligandos , Línea Celular Tumoral , Apoptosis , Factores de Necrosis Tumoral/farmacología , Proliferación Celular , Movimiento Celular , Transición Epitelial-Mesenquimal
20.
Biomed Pharmacother ; 170: 115913, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38154270

RESUMEN

The plant Justicia procumbens is traditionally used in Asia to treat fever, cough, and pain. Previous studies have reported its anticancer and anti-asthmatic properties. However, its potential for preventing androgenic alopecia (AGA) has not yet been reported. AGA is a widespread hair loss condition primarily caused by male hormones. In this study, we examined the hair loss-preventing effects of an aqueous extract of J. procumbens (JPAE) using human hair follicle dermal papilla cell (HFDPC) and a mouse model of testosterone-induced AGA. JPAE treatment increased HFDPC proliferation by activating the Wnt/ß-catenin signaling pathway. Additionally, JPAE increased the expression of Wnt targets, such as cyclin D1 and VEGF, by promoting the translocation of ß-catenin to the nucleus. Administration of JPAE reduced hair loss, increased hair thickness, and enhanced hair shine in an AGA mouse model. Furthermore, it increased the expression of p-GSK-3ß and ß-catenin in the dorsal skin of the mice. These findings imply that JPAE promotes the proliferation of HFDPC and prevents hair loss in an AGA mouse model. JPAE can therefore be used as a functional food and natural treatment option for AGA to prevent hair loss.


Asunto(s)
Género Justicia , beta Catenina , Humanos , Ratones , Animales , beta Catenina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Alopecia/inducido químicamente , Alopecia/prevención & control , Alopecia/metabolismo , Cabello/metabolismo , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA