Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Auton Neurosci ; 190: 10-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25854799

RESUMEN

The major goals of this present study were 1) to further clarify which parasympathetic ganglion sends postganglionic fibers to the lower gingiva and lip that may be involved in the inflammatory processes besides the local factors; 2) to separately examine the central pathways regulating sympathetic and parasympathetic innervation; and 3) to examine the distribution of central premotor neurons on both sides. A retrogradely transported green fluorescent protein conjugated pseudorabies virus was injected into the lower gingiva and lip of intact and sympathectomized adult female rats. Some animals received virus in the adrenal medulla which receive only preganglionic sympathetic fibers to separately clarify the sympathetic nature of premotor neurons. After 72-120h of survival and perfusion, the corresponding thoracic part of the spinal cord, brainstem, hypothalamus, cervical, otic, submandibular and trigeminal ganglia were harvested. Frozen sections were investigated under a confocal microscope. Green fluorescence indicated the presence of the virus. The postganglionic sympathetic neurons related to both organs are located in the three cervical ganglia, the preganglionic neurons in the lateral horn of the spinal cord on ipsilateral side; premotor neurons were found in the ventrolateral medulla, locus ceruleus, gigantocellular and paraventricular nucleus and perifornical region in nearly the same number on both sides. The parasympathetic postganglionic neurons related to the gingiva are present in the otic and related to the lip are present in the otic and submandibular ganglia and the preganglionic neurons are in the salivatory nuclei. Third order neurons were found in the gigantocellular reticular and hypothalamic paraventricular nuclei and perifornical area.


Asunto(s)
Vías Autónomas/anatomía & histología , Encía/inervación , Labio/inervación , Animales , Tronco Encefálico/anatomía & histología , Recuento de Células , Femenino , Lateralidad Funcional , Proteínas Fluorescentes Verdes , Herpesvirus Suido 1 , Hipotálamo/anatomía & histología , Inmunohistoquímica , Microscopía Confocal , Técnicas de Trazados de Vías Neuroanatómicas , Trazadores del Tracto Neuronal , Neuronas/citología , Fotomicrografía , Ratas Wistar , Médula Espinal/anatomía & histología
2.
J Chem Neuroanat ; 38(3): 166-75, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19790285

RESUMEN

The intermedius nucleus of the medulla (InM) is a small perihypoglossal brainstem nucleus, which receives afferent information from the neck musculature and also descending inputs from the vestibular nuclei, the gustatory portion of the nucleus of the solitary tract (NTS) and cortical areas involved in movements of the tongue. The InM sends monosynaptic projections to both the NTS and the hypoglossal nucleus. It is likely that the InM acts to integrate information from the head and neck and relays this information on to the NTS where suitable autonomic responses can be generated, and also to the hypoglossal nucleus to influence movements of the tongue and upper airways. Central to the integratory role of the InM is its neurochemical diversity. Neurones within the InM utilise the amino acid transmitters glutamate, GABA and glycine. A proportion of these excitatory and inhibitory neurones also use nitric oxide as a neurotransmitter. Peptidergic transmitters have also been found within InM neurones, although as yet the extent of the pattern of co-localisation between peptidergic and amino acid transmitters in neurones has not been established. The calcium binding proteins calretinin and parvalbumin are found within the InM in partially overlapping populations. Parvalbumin and calretinin appear to have complementary distributions within the InM, with parvalbumin being predominantly found within GABAergic neurones and calretinin being predominantly found within glutamatergic neurones. Neurones in the InM receive inputs from glutamatergic sensory afferents. This glutamatergic transmission is conducted through both NMDA and AMPA ionotropic glutamate receptors. In summary the InM contains a mixed pool of neurones including glutamatergic and GABAergic in addition to peptidergic neurones. Neurones within the InM receive inputs from the upper cervical region, descending inputs from brain regions involved in tongue movements and those involved in the coordination of the autonomic nervous system. Outputs from the InM to the NTS and hypoglossal nucleus suggest a possible role in the coordination of tongue movements and autonomic responses to changes in posture.


Asunto(s)
Vías Autónomas/fisiología , Bulbo Raquídeo/fisiología , Lengua/fisiología , Aferentes Viscerales/fisiología , Animales , Vías Autónomas/anatomía & histología , Retroalimentación Sensorial/fisiología , Nervio Hipogloso/anatomía & histología , Nervio Hipogloso/fisiología , Bulbo Raquídeo/anatomía & histología , Ratones , Neurotransmisores/fisiología , Ratas , Lengua/inervación , Nervio Vago/anatomía & histología , Nervio Vago/fisiología , Núcleos Vestibulares/anatomía & histología , Núcleos Vestibulares/fisiología , Aferentes Viscerales/anatomía & histología
3.
J Chem Neuroanat ; 38(3): 185-96, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19505570

RESUMEN

Oestrogen is considered beneficial to cardiovascular health through protective effects not only on the heart and vasculature, but also on the autonomic nervous system via actions on oestrogen receptors. A plethora of evidence supports a role for the hormone within the central nervous system in modulating the pathways regulating cardiovascular function. A complex interaction of several brainstem, spinal and forebrain nuclei is required to receive, integrate and co-ordinate inputs that contribute appropriate autonomic reflex responses to changes in blood pressure and other cardiovascular parameters. Central effects of oestrogen and oestrogen receptors have already been demonstrated in many of these areas. In addition to the classical nuclear oestrogen receptors (ERalpha and ERbeta) a recently discovered G-protein coupled receptor, GPR30, has been shown to be a novel mediator of oestrogenic action. Many anatomical and molecular studies have described a considerable overlap in the regional expression of these receptors; however, the receptors do exhibit specific characteristics and subtype specific expression is found in many autonomic brain areas, for example ERbeta appears to predominate in the hypothalamic paraventricular nucleus, whilst ERalpha is important in the nucleus of the solitary tract. This review provides an overview of the available information on the localisation of oestrogen receptor subtypes and their multitude of possible modulatory actions in different groups of neurochemically and functionally defined neurones in autonomic-related areas of the brain.


Asunto(s)
Vías Autónomas/fisiología , Fenómenos Fisiológicos Cardiovasculares , Sistema Nervioso Central/fisiología , Receptores de Estrógenos/fisiología , Animales , Vías Autónomas/anatomía & histología , Sistema Nervioso Central/anatomía & histología , Estrógenos/fisiología , Humanos , Hipotálamo/anatomía & histología , Hipotálamo/fisiología , Neurotransmisores/fisiología , Receptores Acoplados a Proteínas G/fisiología , Núcleo Solitario/anatomía & histología , Núcleo Solitario/fisiología
4.
Headache ; 49(6): 912-4, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19562827

RESUMEN

SUNA is a trigeminal autonomic cephalalgia (TAC) characterized by short unilateral attacks centered on the ophthalmic trigeminal distribution, and accompanied by at least one of a number of cranial autonomic symptoms that can include lacrimation, redness of the ipsilateral eye, nasal congestion, rhinorrhea, and eyelid edema. It exists in episodic and chronic form. We have described an atypical case of episodic SUNA with an exclusive seasonal pattern as previously reported in other trigeminal autonomic cephalalgia, commonly known as TACs.


Asunto(s)
Trastornos Cronobiológicos/fisiopatología , Hipotálamo/fisiopatología , Síndrome SUNCT/diagnóstico , Síndrome SUNCT/fisiopatología , Estaciones del Año , Vías Autónomas/anatomía & histología , Vías Autónomas/fisiopatología , Encéfalo/anatomía & histología , Encéfalo/fisiopatología , Humanos , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Órbita/inervación , Órbita/patología , Órbita/fisiopatología , Nervio Trigémino/anatomía & histología , Nervio Trigémino/fisiopatología
5.
Headache ; 49(6): 909-12, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19220497
6.
Int J Psychophysiol ; 72(1): 24-33, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18824047

RESUMEN

Does feeling an emotion require changes in autonomic responses, as William James proposed? Can feelings and autonomic responses be dissociated? Findings from cognitive neuroscience have identified brain structures that subserve feelings and autonomic response, including those induced by emotional music. In the study reported here, we explored whether feelings and autonomic responses can be dissociated by using music, a stimulus that has a strong capacity to induce emotional experiences. We tested two brain regions predicted to be differentially involved in autonomic responsivity (the ventromedial prefrontal cortex) and feeling (the right somatosensory cortex). Patients with damage to the ventromedial prefrontal cortex were impaired in their ability to generate skin-conductance responses to music, but generated normal judgments of their subjective feelings in response to music. Conversely, patients with damage to the right somatosensory cortex were impaired in their self-rated feelings in response to music, but generated normal skin-conductance responses to music. Control tasks suggested that neither impairment was due to basic defects in hearing the music or in cognitively recognizing the intended emotion of the music. The findings provide evidence for a double dissociation between feeling emotions and autonomic responses to emotions, in response to music stimuli.


Asunto(s)
Percepción Auditiva/fisiología , Mapeo Encefálico , Corteza Cerebral/fisiología , Emociones/fisiología , Música , Estimulación Acústica/métodos , Adulto , Anciano , Análisis de Varianza , Umbral Auditivo , Vías Autónomas/anatomía & histología , Vías Autónomas/patología , Vías Autónomas/fisiología , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Corteza Cerebral/patología , Femenino , Respuesta Galvánica de la Piel/fisiología , Humanos , Masculino , Persona de Mediana Edad , Psicolingüística
8.
J Neuroimmunol ; 190(1-2): 18-27, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17716748

RESUMEN

Mast cells accessing the brain parenchyma through the blood-brain barrier in healthy animals are limited to pre-cortical sensory relays - the olfactory bulb and the thalamus. We have demonstrated that unilateral repetitive stimulation of the abdominal wall generates asymmetry in midline thalamic mast cell (TMC) distribution in cyclophosphamide-injected rats, consisting of contralateral side-prevalence with respect to the abdominal wall stimulation. TMC asymmetry 1) was generated in strict relation with cystitis, and was absent in disease-free and mesna-treated animals, 2) was restricted to the anterior portion of the paraventricular pars anterior and reuniens nuclei subregion, i.e., the rostralmost part of the paraventricular thalamic nucleus, the only thalamic area associated with viscero-vagal and somatic inputs, via the nucleus of the solitary tract, and via the medial contingent of the spinothalamic tract, respectively, and 3) originated from somatic tissues, i.e., the abdominal wall where bladder inflammation generates secondary somatic hyperesthesia leading to referred pain in humans. Present data suggest that TMCs may be involved in thalamic sensory processes, including some aspects of visceral pain and abnormal visceral/somatic interactions.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Cistitis/inmunología , Mastocitos/inmunología , Dolor/inmunología , Tálamo/inmunología , Aferentes Viscerales/inmunología , Vías Aferentes/anatomía & histología , Vías Aferentes/inmunología , Vías Aferentes/fisiopatología , Animales , Vías Autónomas/anatomía & histología , Vías Autónomas/inmunología , Vías Autónomas/fisiopatología , Barrera Hematoencefálica/inmunología , Encéfalo/anatomía & histología , Encéfalo/inmunología , Encéfalo/fisiopatología , Ciclofosfamida/efectos adversos , Cistitis/fisiopatología , Modelos Animales de Enfermedad , Lateralidad Funcional/fisiología , Inmunosupresores/efectos adversos , Masculino , Mastocitos/citología , Mesna/farmacología , Nociceptores/efectos de los fármacos , Nociceptores/inmunología , Nociceptores/fisiopatología , Dolor/fisiopatología , Sustancias Protectoras/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Tálamo/citología , Tálamo/fisiopatología , Aferentes Viscerales/anatomía & histología , Aferentes Viscerales/fisiopatología
9.
Neurol Sci ; 28 Suppl 2: S198-202, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17508170

RESUMEN

The hypothalamus forms part of the central autonomic network, regulating body homeostasis and controlling pain. To this effect, it is strongly wired to more rostral and caudal areas, in particular the brainstem periaqueductal grey, the locus coeruleus and the median raphe nuclei, all involved in autonomic and sleep mechanisms and also in the descending control of pain perception. The hypothalamus, especially its posterior regions, becomes activated during attacks of the trigeminal autonomic cephalalgias (TACs), while brainstem, especially dorsal pontine, activity shows up during migraine attacks. The hypothalamus and interconnected brainstem areas likely represent the neural sites responsible for the chronobiological features of some headaches, in particular the sleep-related attacks typical of the TACs, migraines and the hypnic headaches.


Asunto(s)
Vías Autónomas/fisiopatología , Trastornos de Cefalalgia/fisiopatología , Hipotálamo/fisiopatología , Vías Autónomas/anatomía & histología , Tronco Encefálico/anatomía & histología , Tronco Encefálico/fisiopatología , Ritmo Circadiano/fisiología , Humanos , Hipotálamo/anatomía & histología , Trastornos Migrañosos/fisiopatología , Trastornos del Sueño-Vigilia/complicaciones , Trastornos del Sueño-Vigilia/fisiopatología , Sueño REM/fisiología , Cefalalgia Autónoma del Trigémino/fisiopatología
10.
Anat Rec A Discov Mol Cell Evol Biol ; 280(1): 808-20, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15382020

RESUMEN

After receiving information from afferent nerves, the hypothalamus sends signals to peripheral organs, including the liver, to keep homeostasis. There are two ways for the hypothalamus to signal to the peripheral organs: by stimulating the autonomic nerves and by releasing hormones from the pituitary gland. In order to reveal the involvement of the autonomic nervous system in liver function, we focus in this study on autonomic nerves and neuroendocrine connections between the hypothalamus and the liver. The hypothalamus consists of three major areas: lateral, medial, and periventricular. Each area has some nuclei. There are two important nuclei and one area in the hypothalamus that send out the neural autonomic information to the peripheral organs: the ventromedial hypothalamic nucleus (VMH) in the medial area, the lateral hypothalamic area (LHA), and the periventricular hypothalamic nucleus (PVN) in the periventricular area. VMH sends sympathetic signals to the liver via the celiac ganglia, the LHA sends parasympathetic signals to the liver via the vagal nerve, and the PVN integrates information from other areas of the hypothalamus and sends both autonomic signals to the liver. As for the afferent nerves, there are two pathways: a vagal afferent and a dorsal afferent nerve pathway. Vagal afferent nerves are thought to play a role as sensors in the peripheral organs and to send signals to the brain, including the hypothalamus, via nodosa ganglia of the vagal nerve. On the other hand, dorsal afferent nerves are primary sensory nerves that send signals to the brain via lower thoracic dorsal root ganglia. In the liver, many nerves contain classical neurotransmitters (noradrenaline and acetylcholine) and neuropeptides (substance P, calcitonin gene-related peptide, neuropeptide Y, vasoactive intestinal polypeptide, somatostatin, glucagon, glucagon-like peptide, neurotensin, serotonin, and galanin). Their distribution in the liver is species-dependent. Some of these nerves are thought to be involved in the regulation of hepatic function as well as of hemodynamics. In addition to direct neural connections, the hypothalamus can affect metabolic functions by neuroendocrine connections: the hypothalamus-pancreas axis, the hypothalamus-adrenal axis, and the hypothalamus-pituitary axis. In the hypothalamus-pancreas axis, autonomic nerves release glucagon and insulin, which directly enter the liver and affect liver metabolism. In the hypothalamus-adrenal axis, autonomic nerves release catecholamines such as adrenaline and noradrenaline from the adrenal medulla, which also affects liver metabolism. In the hypothalamus-pituitary axis, release of glucocorticoids and thyroid hormones is stimulated by pituitary hormones. Both groups of hormones modulate hepatic metabolism. Taken together, the hypothalamus controls liver functions by neural and neuroendocrine connections.


Asunto(s)
Vías Autónomas/anatomía & histología , Hipotálamo/anatomía & histología , Hígado/inervación , Vías Nerviosas/anatomía & histología , Sistemas Neurosecretores/anatomía & histología , Glándulas Suprarrenales/fisiología , Vías Autónomas/fisiología , Glucosa/metabolismo , Humanos , Hipotálamo/fisiología , Hígado/anatomía & histología , Neuropéptidos/fisiología , Sistemas Neurosecretores/fisiología , Páncreas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA