Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.859
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114059, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602873

RESUMEN

Thalamocortical loops have a central role in cognition and motor control, but precisely how they contribute to these processes is unclear. Recent studies showing evidence of plasticity in thalamocortical synapses indicate a role for the thalamus in shaping cortical dynamics through learning. Since signals undergo a compression from the cortex to the thalamus, we hypothesized that the computational role of the thalamus depends critically on the structure of corticothalamic connectivity. To test this, we identified the optimal corticothalamic structure that promotes biologically plausible learning in thalamocortical synapses. We found that corticothalamic projections specialized to communicate an efference copy of the cortical output benefit motor control, while communicating the modes of highest variance is optimal for working memory tasks. We analyzed neural recordings from mice performing grasping and delayed discrimination tasks and found corticothalamic communication consistent with these predictions. These results suggest that the thalamus orchestrates cortical dynamics in a functionally precise manner through structured connectivity.


Asunto(s)
Aprendizaje , Tálamo , Tálamo/fisiología , Animales , Ratones , Aprendizaje/fisiología , Corteza Cerebral/fisiología , Memoria a Corto Plazo/fisiología , Vías Nerviosas/fisiología , Sinapsis/fisiología , Ratones Endogámicos C57BL , Masculino
2.
Nat Commun ; 15(1): 3529, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664415

RESUMEN

The feedback projections from cortical layer 6 (L6CT) to the sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventral posteromedial nucleus of the thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.


Asunto(s)
Optogenética , Corteza Somatosensorial , Tálamo , Vibrisas , Vigilia , Animales , Vigilia/fisiología , Corteza Somatosensorial/fisiología , Ratones , Tálamo/fisiología , Vibrisas/fisiología , Neuronas/fisiología , Masculino , Vías Nerviosas/fisiología , Núcleos Talámicos Ventrales/fisiología , Potenciales de Acción/fisiología , Femenino , Ratones Endogámicos C57BL
3.
Eur Neuropsychopharmacol ; 82: 72-81, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503084

RESUMEN

Mindfulness-based cognitive therapy (MBCT) stands out as a promising augmentation psychological therapy for patients with obsessive-compulsive disorder (OCD). To identify potential predictive and response biomarkers, this study examines the relationship between clinical domains and resting-state network connectivity in OCD patients undergoing a 3-month MBCT programme. Twelve OCD patients underwent two resting-state functional magnetic resonance imaging sessions at baseline and after the MBCT programme. We assessed four clinical domains: positive affect, negative affect, anxiety sensitivity, and rumination. Independent component analysis characterised resting-state networks (RSNs), and multiple regression analyses evaluated brain-clinical associations. At baseline, distinct network connectivity patterns were found for each clinical domain: parietal-subcortical, lateral prefrontal, medial prefrontal, and frontal-occipital. Predictive and response biomarkers revealed significant brain-clinical associations within two main RSNs: the ventral default mode network (vDMN) and the frontostriatal network (FSN). Key brain nodes -the precuneus and the frontopolar cortex- were identified within these networks. MBCT may modulate vDMN and FSN connectivity in OCD patients, possibly reducing symptoms across clinical domains. Each clinical domain had a unique baseline brain connectivity pattern, suggesting potential symptom-based biomarkers. Using these RSNs as predictors could enable personalised treatments and the identification of patients who would benefit most from MBCT.


Asunto(s)
Imagen por Resonancia Magnética , Atención Plena , Trastorno Obsesivo Compulsivo , Humanos , Trastorno Obsesivo Compulsivo/terapia , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/fisiopatología , Masculino , Femenino , Adulto , Atención Plena/métodos , Descanso/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Adulto Joven , Persona de Mediana Edad , Terapia Cognitivo-Conductual/métodos , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología , Resultado del Tratamiento , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen
4.
Cell Stem Cell ; 31(3): 283-284, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458174

RESUMEN

Dissecting the role of the thalamus in neuropsychiatric disorders requires new models to analyze complex genetic interactions. In this issue of Cell Stem Cell, Shin et al. use patient-derived thalamocortical organoids to investigate 22q11.2 microdeletion impact on thalamic development, revealing significant transcriptional dysregulation linked to psychiatric disorders.


Asunto(s)
Corteza Cerebral , Trastornos Mentales , Humanos , Vías Nerviosas , Trastornos Mentales/genética , Tálamo , Organoides
5.
Nature ; 628(8009): 826-834, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538787

RESUMEN

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Asunto(s)
Tronco Encefálico , Células Ependimogliales , Conducta Alimentaria , Calor , Hipotálamo , Vías Nerviosas , Neuronas , Animales , Femenino , Masculino , Ratones , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/citología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Dopamina/metabolismo , Ingestión de Alimentos/fisiología , Células Ependimogliales/citología , Células Ependimogliales/fisiología , Conducta Alimentaria/fisiología , Ácido Glutámico/metabolismo , Hipotálamo/citología , Hipotálamo/fisiología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiología , Sensación Térmica/fisiología , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/líquido cefalorraquídeo , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Brain Connect ; 14(3): 182-188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38343360

RESUMEN

Background: This study investigated alterations in the intrinsic thalamic network of patients with juvenile myoclonic epilepsy (JME) based on an electroencephalography (EEG) source-level analysis. Materials and Methods: We enrolled patients newly diagnosed with JME as well as healthy controls. The assessments were conducted in the resting state. We computed sources based on the scalp electrical potentials using a minimum-norm imaging method and a standardized, low-resolution, brain electromagnetic tomography approach. To create a functional connectivity matrix, we used the Talairach atlas to define thalamic nodes and applied the coherence method to measure brain synchronization as edges. We then calculated the intrinsic thalamic network using graph theory. We compared the intrinsic thalamic network of patients with JME with those of healthy controls. Results: This study included 67 patients with JME and 66 healthy controls. EEG source-level analysis revealed significant differences in the intrinsic thalamic networks between patients with JME and healthy controls. The measures of functional connectivity (radius, diameter, and characteristic path length) were significantly lower in patients with JME than in healthy controls (radius: 2.769 vs. 3.544, p = 0.015; diameter: 4.464 vs. 5.443, p = 0.024; and characteristic path length: 2.248 vs. 2.616, p = 0.046). Conclusions: We demonstrated alterations in the intrinsic thalamic network in patients with JME compared with those in healthy controls based on the EEG source-level analysis. These findings indicated increased thalamic connectivity in the JME group. These intrinsic thalamic network changes may be related to the pathophysiology of JME.


Asunto(s)
Electroencefalografía , Epilepsia Mioclónica Juvenil , Tálamo , Humanos , Epilepsia Mioclónica Juvenil/fisiopatología , Epilepsia Mioclónica Juvenil/diagnóstico por imagen , Tálamo/fisiopatología , Tálamo/diagnóstico por imagen , Masculino , Femenino , Electroencefalografía/métodos , Adulto , Adulto Joven , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Adolescente , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
7.
Cell Rep ; 43(3): 113829, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421871

RESUMEN

The nature of spinal output pathways that convey nociceptive information to the brain has been the subject of controversy. Here, we provide anatomical, molecular, and functional characterizations of two distinct anterolateral pathways: one, ascending in the lateral spinal cord, triggers nociceptive behaviors, and the other one, ascending in the ventral spinal cord, when inhibited, leads to sensorimotor deficits. Moreover, the lateral pathway consists of at least two subtypes. The first is a contralateral pathway that extends to the periaqueductal gray (PAG) and thalamus; the second is a bilateral pathway that projects to the bilateral parabrachial nucleus (PBN). Finally, we present evidence showing that activation of the contralateral pathway is sufficient for defensive behaviors such as running and freezing, whereas the bilateral pathway is sufficient for attending behaviors such as licking and guarding. This work offers insight into the complex organizational logic of the anterolateral system in the mouse.


Asunto(s)
Núcleos Parabraquiales , Médula Espinal , Ratones , Animales , Médula Espinal/fisiología , Tálamo/fisiología , Sustancia Gris Periacueductal/fisiología , Vías Nerviosas/fisiología
8.
CNS Neurosci Ther ; 30(2): e14616, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334027

RESUMEN

AIMS: To evaluate microstructural impairment in the thalamus and thalamocortical connectivity using neurite orientation dispersion and density imaging (NODDI) in amyotrophic lateral sclerosis (ALS). METHODS: This study included 47 healthy controls and 43 ALS patients, whose structural and diffusion-weighted data were collected. We used state-of-the-art parallel transport tractography to identify thalamocortical pathways in individual spaces. Thalamus was then parcellated into six subregions based on its connectivity pattern with the priori defined cortical (i.e., prefrontal/motor/somatosensory/temporal/posterior-parietal/occipital) regions. For each of the thalamic and cortical subregions and thalamo-cortical tracts, we compared the following NODDI metrics between groups: orientation dispersion index (ODI), neurite density index (NDI), and isotropic volume fraction (ISO). We also used these metrics to conduct receiver operating characteristic curve (ROC) analyses and Spearman correlation. RESULTS: In ALS patients, we found decreased ODI and increased ISO in the thalamic subregion connecting the left motor cortex and other extramotor (e.g., somatosensory and occipital) cortex (Bonferroni-corrected p < 0.05). NDI decreased in the bilateral thalamo-motor and thalamo-somatosensory tracts and in the right thalamo-posterior-parietal and thalamo-occipital tracts (Bonferroni-corrected p < 0.05). NDI reduction in the bilateral thalamo-motor tract (p = 0.017 and 0.009) and left thalamo-somatosensory tract (p = 0.029) was correlated with disease severity. In thalamo-cortical tracts, NDI yielded a higher effect size during between-group comparisons and a greater area under ROC (p < 0.05) compared with conventional diffusion tensor imaging metrics. CONCLUSIONS: Microstructural impairment in the thalamus and thalamocortical connectivity is the hallmark of ALS. NODDI improved the detection of disrupted thalamo-cortical connectivity in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neuritas , Humanos , Imagen de Difusión Tensora/métodos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen
9.
J Neurosci Methods ; 405: 110080, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369027

RESUMEN

BACKGROUND: The thalamic reuniens (Re) and rhomboid (Rh) nuclei are bidirectionally connected with the medial prefrontal cortex (mPFC) and the hippocampus (Hip). Fiber-sparing N-methyl-D-aspartate lesions of the ReRh disrupt cognitive functions, including persistence of certain memories. Because such lesions irremediably damage neurons interconnecting the ReRh with the mPFC and the Hip, it is impossible to know if one or both pathways contribute to memory persistence. Addressing such an issue requires selective, pathway-restricted and direction-specific disconnections. NEW METHOD: A recent method associates a retrograde adeno-associated virus (AAV) expressing Cre recombinase with an anterograde AAV expressing a Cre-dependent caspase, making such disconnection feasible by caspase-triggered apoptosis when both constructs meet intracellularly. We injected an AAVrg-Cre-GFP into the ReRh and an AAV5-taCasp into the mPFC. As expected, part of mPFC neurons died, but massive neurotoxicity of the AAVrg-Cre-GFP was found in ReRh, contrasting with normal density of DAPI staining. Other stainings demonstrated increasing density of reactive astrocytes and microglia in the neurodegeneration site. COMPARISON WITH EXISTING METHODS: Reducing the viral titer (by a 4-fold dilution) and injection volume (to half) attenuated toxicity substantially, still with evidence for partial disconnection between mPFC and ReRh. CONCLUSIONS: There is an imperative need to verify potential collateral damage inherent in this type of approach, which is likely to distort interpretation of experimental data. Therefore, controls allowing to distinguish collateral phenotypic effects from those linked to the desired disconnection is essential. It is also crucial to know for how long neurons expressing the Cre-GFP protein remain operational post-infection.


Asunto(s)
Dependovirus , Tálamo , Ratas , Animales , Dependovirus/genética , Tálamo/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Hipocampo/fisiología , Corteza Prefrontal/fisiología , Neuronas , Caspasas/farmacología , Vías Nerviosas/fisiología
10.
Nat Commun ; 15(1): 1036, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310109

RESUMEN

Social recognition encompasses encoding social information and distinguishing unfamiliar from familiar individuals to form social relationships. Although the medial prefrontal cortex (mPFC) is known to play a role in social behavior, how identity information is processed and by which route it is communicated in the brain remains unclear. Here we report that a ventral midline thalamic area, nucleus reuniens (Re) that has reciprocal connections with the mPFC, is critical for social recognition in male mice. In vivo single-unit recordings and decoding analysis reveal that neural populations in both mPFC and Re represent different social stimuli, however, mPFC coding capacity is stronger. We demonstrate that chemogenetic inhibitions of Re impair the mPFC-Re neural synchronization and the mPFC social coding. Projection pathway-specific inhibitions by optogenetics reveal that the reciprocal connectivity between the mPFC and the Re is necessary for social recognition. These results reveal an mPFC-thalamic circuit for social information processing.


Asunto(s)
Núcleos Talámicos de la Línea Media , Tálamo , Masculino , Ratones , Animales , Reconocimiento en Psicología , Corteza Prefrontal , Vías Nerviosas
12.
Nature ; 626(7998): 347-356, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267576

RESUMEN

To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.


Asunto(s)
Agresión , Reacción de Prevención , Hipotálamo , Vías Nerviosas , Neuronas , Oxitocina , Aprendizaje Social , Animales , Ratones , Agresión/fisiología , Reacción de Prevención/fisiología , Señales (Psicología) , Miedo/fisiología , Hipotálamo/citología , Hipotálamo/metabolismo , Vías Nerviosas/fisiología , Neuronas/metabolismo , Oxitocina/metabolismo , Receptores de Oxitocina/metabolismo , Conducta Social , Aprendizaje Social/fisiología , Núcleo Supraóptico/citología , Núcleo Supraóptico/metabolismo , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo , Plasticidad Neuronal
13.
Neuron ; 112(6): 893-908, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38295791

RESUMEN

Executive control, the ability to organize thoughts and action plans in real time, is a defining feature of higher cognition. Classical theories have emphasized cortical contributions to this process, but recent studies have reinvigorated interest in the role of the thalamus. Although it is well established that local thalamic damage diminishes cognitive capacity, such observations have been difficult to inform functional models. Recent progress in experimental techniques is beginning to enrich our understanding of the anatomical, physiological, and computational substrates underlying thalamic engagement in executive control. In this review, we discuss this progress and particularly focus on the mediodorsal thalamus, which regulates the activity within and across frontal cortical areas. We end with a synthesis that highlights frontal thalamocortical interactions in cognitive computations and discusses its functional implications in normal and pathological conditions.


Asunto(s)
Función Ejecutiva , Tálamo , Función Ejecutiva/fisiología , Vías Nerviosas/fisiología , Tálamo/fisiología , Cognición/fisiología , Lóbulo Frontal , Corteza Prefrontal/fisiología
14.
Neurotherapeutics ; 21(1): e00295, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38237402

RESUMEN

Essential tremor DBS targeting the ventral intermediate nucleus (Vim) of the thalamus and its input, the dentato-rubro-thalamic tract (DRTt), has proven to be an effective treatment strategy. We examined thalamo-cortical evoked potentials (TCEPs) and cortical dynamics during stimulation of the DRTt. We recorded TCEPs in primary motor cortex during clinical and supra-clinical stimulation of the DRTt in ten essential tremor patients. Stimulation was varied over pulse amplitude (2-10 â€‹mA) and pulse width (30-250 â€‹µs) to allow for strength-duration testing. Testing at clinical levels (3 â€‹mA, 60 â€‹µs) for stimulation frequencies of 1-160 â€‹Hz was performed and phase amplitude coupling (PAC) of beta phase and gamma power was calculated. Primary motor cortex TCEPs displayed two responses: early and all-or-none (<20 â€‹ms) or delayed and charge-dependent (>50 â€‹ms). Strength-duration curve approximation indicates that the chronaxie of the neural elements related to the TCEPs is <200 â€‹µs. At the range of clinical stimulation (amplitude 2-5 â€‹mA, pulse width 30-60 â€‹µs), TCEPs were not noted over primary motor cortex. Decreased pathophysiological phase-amplitude coupling was seen above 70 â€‹Hz stimulation without changes in power spectra and below the threshold of TCEPs. Our findings demonstrate that DRTt stimulation within normal clinical bounds does not excite fibers directly connected with primary motor cortex but that supra-clinical stimulation can excite a direct axonal tract. Both clinical efficacy and phase-amplitude coupling were frequency-dependent, favoring a synaptic filtering model as a possible mechanism of action.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Humanos , Temblor Esencial/terapia , Vías Nerviosas , Tálamo , Potenciales Evocados
15.
Artículo en Inglés | MEDLINE | ID: mdl-38167425

RESUMEN

Conscious perception in mammals depends on precise circuit connectivity between cerebral cortex and thalamus; the evolution and development of these structures are closely linked. During the wiring of reciprocal thalamus-cortex connections, thalamocortical axons (TCAs) first navigate forebrain regions that had undergone substantial evolutionary modifications. In particular, the organization of the pallial-subpallial boundary (PSPB) diverged significantly between mammals, reptiles, and birds. In mammals, transient cell populations in internal capsule and early corticofugal projections from subplate neurons closely interact with TCAs to guide pathfinding through ventral forebrain and PSPB crossing. Prior to thalamocortical axon arrival, cortical areas are initially patterned by intrinsic genetic factors. Thalamocortical axons then innervate cortex in a topographically organized manner to enable sensory input to refine cortical arealization. Here, we review the mechanisms underlying the guidance of thalamocortical axons across forebrain boundaries, the implications of PSPB evolution for thalamocortical axon pathfinding, and the reciprocal influence between thalamus and cortex during development.


Asunto(s)
Neuronas , Tálamo , Animales , Axones/fisiología , Corteza Cerebral , Mamíferos , Vías Nerviosas/fisiología
16.
Headache ; 64(1): 55-67, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38238974

RESUMEN

OBJECTIVE: To evaluate the feasibility and prophylactic effect of psilocybin as well as its effects on hypothalamic functional connectivity (FC) in patients with chronic cluster headache (CCH). BACKGROUND: CCH is an excruciating and difficult-to-treat disorder with incompletely understood pathophysiology, although hypothalamic dysfunction has been implicated. Psilocybin may have beneficial prophylactic effects, but clinical evidence is limited. METHODS: In this small open-label clinical trial, 10 patients with CCH were included and maintained headache diaries for 10 weeks. Patients received three doses of peroral psilocybin (0.14 mg/kg) on the first day of weeks five, six, and seven. The first 4 weeks served as baseline and the last 4 weeks as follow-up. Hypothalamic FC was determined using functional magnetic resonance imaging the day before the first psilocybin dose and 1 week after the last dose. RESULTS: The treatment was well tolerated. Attack frequency was reduced by mean (standard deviation) 31% (31) from baseline to follow-up (pFWER = 0.008). One patient experienced 21 weeks of complete remission. Changes in hypothalamic-diencephalic FC correlated negatively with a percent change in attack frequency (pFWER = 0.03, R = -0.81), implicating this neural pathway in treatment response. CONCLUSION: Our results indicate that psilocybin may have prophylactic potential and implicates the hypothalamus in possible treatment response. Further clinical studies are warranted.


Asunto(s)
Cefalalgia Histamínica , Psilocibina , Humanos , Cefalalgia Histamínica/tratamiento farmacológico , Hipotálamo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Psilocibina/efectos adversos
17.
Proc Natl Acad Sci U S A ; 121(4): e2313048121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38241439

RESUMEN

The thalamus provides the principal input to the cortex and therefore understanding the mechanisms underlying cortical integration of sensory inputs requires to characterize the thalamocortical connectivity in behaving animals. Here, we propose tangential insertions of high-density electrodes into mouse cortical layer 4 as a method to capture the activity of thalamocortical axons simultaneously with their synaptically connected cortical neurons. This technique can reliably monitor multiple parallel thalamic synaptic inputs to cortical neurons, providing an efficient approach to map thalamocortical connectivity in both awake and anesthetized mice.


Asunto(s)
Neuronas , Tálamo , Ratones , Animales , Neuronas/fisiología , Tálamo/fisiología , Axones/fisiología , Corteza Cerebral/fisiología , Vías Nerviosas/fisiología
18.
Neuroscientist ; 30(1): 132-147, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38279699

RESUMEN

Schizophrenia is a brain disorder that profoundly perturbs cognitive processing. Despite the success in treating many of its symptoms, the field lacks effective methods to measure and address its impact on reasoning, inference, and decision making. Prefrontal cortical abnormalities have been well documented in schizophrenia, but additional dysfunction in the interactions between the prefrontal cortex and thalamus have recently been described. This dysfunction may be interpreted in light of parallel advances in neural circuit research based on nonhuman animals, which show critical thalamic roles in maintaining and switching prefrontal activity patterns in various cognitive tasks. Here, we review this basic literature and connect it to emerging innovations in clinical research. We highlight the value of focusing on associative thalamic structures not only to better understand the very nature of cognitive processing but also to leverage these circuits for diagnostic and therapeutic development in schizophrenia. We suggest that the time is right for building close bridges between basic thalamic research and its clinical translation, particularly in the domain of cognition and schizophrenia.


Asunto(s)
Esquizofrenia , Animales , Tálamo , Corteza Prefrontal , Cognición , Vías Nerviosas
19.
CNS Neurosci Ther ; 30(2): e14354, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37452488

RESUMEN

BACKGROUND: The thalamus is an important relay station for the motor circuit of human. Levodopa can reverse the clinical manifestations by modulating the function of motor circuits, but its detailed mechanisms are still not fully understood. We aimed to explore (1) the mechanism by which levodopa modulates the functional connectivity (FC) in the subregions of the thalamus; (2) the relationship between the changed FC and the improvement of motor symptoms in Parkinson's disease (PD) patients. METHODS: Resting-state functional MRI was used to scan 36 PD patients and 37 healthy controls. The FC between the subregions in the thalamus and the whole brain was measured and compared under different medication states of PD patients. The correlation between the improvement of motor symptoms and changes in FC in the thalamus subregions was examined. RESULTS: The PD on state exhibited decreased FC between the right pre-motor thalamus and the right postcentral gyrus, as well as the right lateral pre-frontal thalamus and the right postcentral gyrus. These decreases were positively correlated with the improvement of resting tremor. The PD on state also exhibited decreased FC between the left lateral pre-frontal thalamus and right paracentral lobule, which was positively correlated with the improvement of bradykinesia. CONCLUSIONS: This study demonstrates that levodopa treats PD by decreasing the FC between the thalamus subregions and pre/post-central cortex. Our results provide a basis for further exploration of the functional activity of thalamic subregions and offer new insights into the precision treatment in PD patients.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Levodopa/uso terapéutico , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Tálamo/diagnóstico por imagen
20.
Neuroscience ; 537: 151-164, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38056620

RESUMEN

The paraventricular nucleus of the thalamus (PVT) sends dense projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and the lateral region of central nucleus of the amygdala (CeL). Projection specific modulation of these pathways has been shown to regulate appetitive and aversive behavioral responses. The present investigation applied an intersectional monosynaptic rabies tracing approach to quantify the brain-wide sources of afferent input to PVT neurons that primarily project to the NAcSh, BSTDL and CeL. The results demonstrate that these projection neurons receive monosynaptic input from similar brain regions. The prefrontal cortex and the ventral subiculum of the hippocampus were major sources of input to the PVT projection neurons. In addition, the lateral septal nucleus, thalamic reticular nucleus and the hypothalamic medial preoptic area, dorsomedial, ventromedial, and arcuate nuclei were sources of input. The subfornical organ, parasubthalamic nucleus, periaqueductal gray matter, lateral parabrachial nucleus, and nucleus of the solitary tract were consistent but lesser sources of input. This input-output relationship is consistent with recent observations that PVT neurons have axons that bifurcate extensively to divergently innervate the NAcSh, BSTDL and CeL.


Asunto(s)
Núcleo Amigdalino Central , Núcleo Accumbens , Núcleo Hipotalámico Paraventricular , Hipotálamo , Neuronas , Vías Nerviosas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA