Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.418
Filtrar
Más filtros

Intervalo de año de publicación
1.
High Blood Press Cardiovasc Prev ; 31(2): 113-126, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38630421

RESUMEN

INTRODUCTION: Coenzyme Q10 (CoQ10) has gained attention as a potential therapeutic agent for improving endothelial function. Several randomized clinical trials have investigated CoQ10 supplementation's effect on endothelial function. However, these studies have yielded conflicting results, therefore this systematic review and meta-analysis were conducted. AIM: This systematic review and meta-analysis were conducted to assess the effects of CoQ10 supplementation on endothelial factors. METHODS: A comprehensive search was done in numerous databases until July 19th, 2023. Quantitative data synthesis was performed using a random-effects model, with weight mean difference (WMD) and 95% confidence intervals (CI). Standard methods were used for the assessment of heterogeneity, meta-regression, sensitivity analysis, and publication bias. RESULTS: 12 studies comprising 489 subjects were included in the meta-analysis. The results demonstrated significant increases in Flow Mediated Dilation (FMD) after CoQ10 supplementation (WMD: 1.45; 95% CI: 0.55 to 2.36; p < 0.02), but there is no increase in Vascular cell adhesion protein (VCAM), and Intercellular adhesion molecule (ICAM) following Q10 supplementation (VCAM: SMD: - 0.34; 95% CI: - 0.74 to - 0.06; p < 0.10) (ICAM: SMD: - 0.18; 95% CI: - 0.82 to 0.46; p < 0.57). The sensitivity analysis showed that the effect size was robust in FMD and VCAM. In meta-regression, changes in FMD percent were associated with the dose of supplementation (slope: 0.01; 95% CI: 0.004 to 0.03; p = 0.006). CONCLUSIONS: CoQ10 supplementation has a positive effect on FMD in a dose-dependent manner. Our findings show that CoQ10 has an effect on FMD after 8 weeks of consumption. Additional research is warranted to establish the relationship between CoQ10 supplementation and endothelial function.


Asunto(s)
Suplementos Dietéticos , Endotelio Vascular , Ubiquinona , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Molécula 1 de Adhesión Celular Vascular/sangre , Molécula 1 de Adhesión Celular Vascular/metabolismo , Vasodilatación/efectos de los fármacos
2.
Food Funct ; 15(8): 4180-4192, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38506030

RESUMEN

Until now, the beneficial vascular properties of Hop reported in the literature have been mainly attributed to specific compound classes, such as tannins and phenolic acids. However, the potential vascular action of a Hop subfraction containing a high amount of α or ß acids remains completely understood. Therefore, this study aims to investigate the vascular effects of the entire Hop extract and to fraction the Hop extract to identify the main bioactive vascular compounds. A pressure myograph was used to perform vascular reactivity studies on mouse resistance arteries. Phytocomplex fractionation was performed on a semi-prep HPLC system and characterized by UHPLC-PDA-MS/MS coupled to mass spectrometry. Western blot analysis was performed to characterize the phosphorylation site enrolled. The entire Hop extract exerts a direct dose-dependent endothelial vascular action. The B1 subfraction, containing a high concentration of α acids, recapitulates the vascular effect of the crude extract. Its vasorelaxant action is mediated by the opening of Transient Receptor Potential Vanilloid type 4 (TRPV4), potentiated by PKCα, and subsequent involvement of endothelial small-conductance calcium-activated potassium channels (SKCa) and intermediate-conductance calcium-activated potassium channels (IKCa) that drives endothelium-dependent hyperpolarization (EDH) through heterocellular myoendothelial gap junctions (MEGJs). This is the first comprehensive investigation of the vascular function of Hop-derived α acids in resistance arteries. Overall, our data suggest that the B1 subfraction from Hop extracts, containing only α acids, has great potential to be translated into the useful armamentarium of natural bioactive compounds with cardiovascular benefits.


Asunto(s)
Humulus , Extractos Vegetales , Proteína Quinasa C-alfa , Canales Catiónicos TRPV , Vasodilatadores , Humulus/química , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteína Quinasa C-alfa/metabolismo , Canales Catiónicos TRPV/metabolismo , Ratones , Vasodilatadores/farmacología , Vasodilatadores/química , Masculino , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Vasodilatación/efectos de los fármacos , Ratones Endogámicos C57BL
3.
Chin J Integr Med ; 30(5): 387-397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38302647

RESUMEN

OBJECTIVE: To develop an interference-free and rapid method to elucidate Guanxin II (GX II)'s representative vasodilator absorbed bioactive compounds (ABCs) among enormous phytochemicals. METHODS: The contents of ferulic acid, tanshinol, and hydroxysafflor yellow A (FTA) in GX II/rat serum after the oral administration of GX II (30 g/kg) were detected using ultra-performance liquid chromatography-mass spectrometry. Totally 18 rats were randomly assigned to the control group (0.9% normal saline), GX II (30 g/kg) and FTA (5, 28 and 77 mg/kg) by random number table method. Diastolic coronary flow velocity-time integral (VTI), i.e., coronary flow or coronary flow-mediated dilation (CFMD), and endothelium-intact vascular tension of isolated aortic rings were measured. After 12 h of exposure to blank medium or 0.5 mmol/L H2O2, endothelial cells (ECs) were treated with post-dose GX II of supernatant from deproteinized serum (PGSDS, 300 µL PGSDS per 1 mL of culture medium) or FTA (237, 1539, and 1510 mg/mL) for 10 min as control, H2O2, PGSDS and FTA groups. Nitric oxide (NO), vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), superoxide dismutase (SOD), malondialdehyde (MDA) and phosphorylated phosphoinositide 3 kinase (p-PI3K), phosphorylated protein kinase B (p-AKT), phosphorylated endothelial nitric oxide synthase (p-eNOS) were analyzed. PGSDS was developed as a GX II proxy of ex vivo herbal crude extracts. RESULTS: PGSDS effectively eliminates false responses caused by crude GX II preparations. When doses equaled the contents in GX II/its post-dose serum, FTA accounted for 98.17% of GX II -added CFMD and 92.99% of PGSDS-reduced vascular tension. In ECs, FTA/PGSDS was found to have significant antioxidant (lower MDA and higher SOD, P<0.01) and endothelial function-protective (lower VEGF, ET-1, P<0.01) effects. The increases in aortic relaxation, endothelial NO levels and phosphorylated PI3K/Akt/eNOS protein induced by FTA/PGSDS were markedly abolished by NG-nitro-L-arginine methyl ester (L-NA, eNOS inhibitor) and wortmannin (PI3K/AKT inhibitor), respectively, indicating an endothelium-dependent vasodilation via the PI3K/AKT-eNOS pathway (P<0.01). CONCLUSION: This study provides a strategy for rapidly and precisely elucidating GX II's representative in/ex vivo cardioprotective absorbed bioactive compounds (ABCs)-FTA, suggesting its potential in advancing precision ethnomedicine.


Asunto(s)
Endotelio Vascular , Vasodilatación , Animales , Vasodilatación/efectos de los fármacos , Masculino , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Ratas Sprague-Dawley , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Óxido Nítrico/metabolismo , Vasodilatadores/farmacología , Vasodilatadores/farmacocinética , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/farmacocinética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo
4.
J Ethnopharmacol ; 328: 117855, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38346524

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tea (Camellia sinensis) is a favorite drink worldwide. Tea extracts and green tea main component (-)-epigallocatechin gallate (EGCG) are recommended for various vascular diseases. Anji white tea is a very popular green tea. Its vascular effect profile, the mechanisms, and the contribution of EGCG to its integrated effect need elucidation. AIM: To characterize the vasomotion effects of Anji white tea and EGCG, and to explore possible involvement of voltage-gated Ca2+ channels (VGCCs) and voltage-gated K+ (Kv) channels in their vasomotion effects. MATERIALS AND METHODS: Anji white tea water soaking solution (AJWT) was prepared as daily tea-making process and concentrated to a concentration amounting to 200 mg/ml of dry tea leaves. The tension of rat arteries including aorta, coronary artery (RCA), cerebral basilar artery (CBA), intrarenal artery (IRA), intrapulmonary artery (IPA) and mesenteric artery (MA) was recorded with myographs. In arterial smooth muscle cells (ASMCs) freshly isolated from RCA, the levels of intracellular Ca2+ were measured with Ca2+-sensitive fluorescent probe fluo 4-AM, and Kv currents were recorded with patch clamp. The expressions of VGCCs and Kv channels were assayed with RT-qPCR and immunofluorescence staining. RESULTS: At 0.4-12.8 mg/ml of dry tea leaves, AJWT profoundly relaxed all tested arteries precontracted with various vasoconstrictors about half with a small transient potentiation on the precontractions before the relaxation. KCl-induced precontraction was less sensitive than precontractions induced by phenylephrine (PE), U46619 and serotonin (5-HT). IPA was less sensitive to the relaxation compared with other arteries. AJWT pretreatment for 1 h, 24 h and 72 h time-dependently inhibited the contractile responses of RCAs. In sharp contrast, at equivalent concentrations according to its content in AJWT, EGCG intensified the precontractions in most small arteries, except that it induced relaxation in PE-precontracted aorta and MA, U46619-precontracted aorta and CBA. EGCG pretreatment for 1 h and 24 h did not significantly affect RCA contractile responses. In RCA ASMCs, AJWT reduced, while EGCG enhanced, intracellular Ca2+ elevation induced by depolarization which activates VGCCs. Patch clamp study showed that both AJWT and EGCG reduced Kv currents. RT-qPCR and immunofluorescence staining demonstrated that both AJWT and EGCG reduced the expressions of VGCCs and Kv channels. CONCLUSION: AJWT, but not EGCG, consistently induces vasorelaxation. The vasomotion effects of either AJWT or EGCG vary with arterial beds and vasoconstrictors. Modulation of VGCCs, but not Kv channels, contributes to AJWT-induced vasorelaxation. It is suggested that Anji white tea water extract instead of EGCG may be a promising food supplement for vasospastic diseases.


Asunto(s)
Catequina/análogos & derivados , Miocitos del Músculo Liso , , Ratas , Animales , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Vasodilatación , Vasos Coronarios , Arterias Mesentéricas , Vasoconstrictores/farmacología , Agua/farmacología
5.
Zhongguo Zhong Yao Za Zhi ; 49(2): 487-497, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403324

RESUMEN

This study aims to explore the anti-inflammatory, vasodilation, and cardioprotective effects of the intestinal absorption liquids containing Xinshubao Tablets or single herbs, and to elucidate the potential mechanism based on network pharmacology. Western blot was then conducted to validate the expression changes of core proteins. Lipopolysaccharide(LPS)-stimulated RAW264.7 cells were used to observe the anti-inflammatory effect. The vasodilation activity was examined by the microvessel relaxation assay in vitro. Oxygen-glucose deprivation(OGD)-induced H9c2 cells were used to investigate the cardioprotective effect. The chemical components were retrieved from Herb databases and composition of Xinshubao Tablets drug-containing intestinal absorption solution. Drug targets were retrieved from SwissTargetPrediction databases. GeneCards was searched for the targets associated with the anti-inflammatory, vasodilation, and cardioprotective effects. The common targets shared by the drug and the effects were used to establish the protein-protein interaction(PPI) network, from which the core targets were obtained. Finally, the core targets were imported into Cytoscape 3.9.1 for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) analyses. The anti-inflammatory experiment showed that both Xinshubao Tablets and the single herbs constituting this formula had anti-inflammatory effects. Curcumae Radix had the strongest inhibitory effect on the production of tumor necrosis factor-α(TNF-α), and Salviae Miltiorrhizae Radix et Rhizoma had the strongest inhibitory effect on the generation of interleukin-6(IL-6). Xinshubao Tablets, Curcumae Radix, and Crataegi Fructus had vasodilation effect, and Crataegi Fructus had the strongest effect. Xinshubao Tablets, Salviae Miltiorrhizae Radix et Rhizoma, Acanthopanacis Senticosi Radix et Rhizoma seu Caulis, and Paeoniae Radix Alba had cardioprotective effects, and Salviae Miltiorrhizae Radix et Rhizoma had the strongest cardioprotective effect. Network pharmacology results demonstrated that except the whole formula, Salviae Miltiorrhizae Radix et Rhizoma had the most components with anti-inflammatory effect, and Curcumae Radix had the most components with vasodilation and cardioprotective effects, followed by Salviae Miltiorrhizae Radix et Rhizoma. The nitric oxide synthase 3(NOS3) was predicted as the core target for the anti-inflammatory, vasodilation, and cardioprotective effects. Western blot results showed that Xinshubao Tablets significantly up-regulated the expression of NOS3 in OGD-induced H9c2 cells. GO enrichment analysis showed that the effects were mainly related to lipid exported from cell, regulation of blood pressure, and inflammatory response. KEGG pathway enrichment predicted AGE-RAGE and HIF-1 signaling pathways as the key pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/química , Farmacología en Red , Vasodilatación , Rizoma/química , Raíces de Plantas/química , Factor de Necrosis Tumoral alfa , Medicina Tradicional China
6.
J Appl Physiol (1985) ; 136(3): 573-582, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271083

RESUMEN

Sauna has been linked to a reduction of cardiovascular disease risk and is a promising nonpharmacological treatment for populations at risk of cardiovascular disease. This study examined the vascular response to an acute bout of sauna heating in young and middle-aged individuals. Ten young (25 ± 4 yr, 6 males and 4 females) and eight middle-aged adults (56 ± 4 yr, 4 males and 4 females) underwent 40 min of sauna exposure at 80°C. Esophageal and intramuscular temperatures, brachial and superficial femoral artery blood flow, artery diameter, and shear rates were recorded at baseline and following heat exposure. Brachial artery flow-mediated dilation (FMD) was measured at baseline and following 90 min of recovery. Esophageal and muscle temperatures increased similarly in the young and middle-aged adults by 1.5 ± 0.53 and 1.95 ± 0.70°C, respectively (P < 0.05). The shear rate increased by 170-200% (P < 0.001), while blood flow increased by 180-390% (P < 0.001) in the superficial femoral and brachial arteries, respectively, and did not differ between age groups (P = 0.190-0.899). Systolic blood pressure was reduced from 135 ± 17 to 122 ± 20 mmHg (P = 0.017) in middle-aged participants. These data indicate that young and middle-aged adults have similar vascular responses to acute sauna heating.NEW & NOTEWORTHY Sauna therapy has been shown to improve cardiovascular health and function in older adults and individuals with cardiovascular disease risk factors. Specifically, improvements in vascular function have been reported and have been attributed to the increased hemodynamic stimuli on the vasculature associated with thermal stress. The present study quantified this hemodynamic response to a sauna protocol associated with improved cardiovascular health across the lifespan. Our data show that middle-aged adults have the same shear rate and blood flow response to sauna as young adults.


Asunto(s)
Enfermedades Cardiovasculares , Baño de Vapor , Masculino , Persona de Mediana Edad , Femenino , Adulto Joven , Humanos , Anciano , Calefacción , Vasodilatación/fisiología , Hemodinámica/fisiología , Arteria Braquial/fisiología , Endotelio Vascular/fisiología , Flujo Sanguíneo Regional/fisiología , Velocidad del Flujo Sanguíneo/fisiología
7.
Planta Med ; 90(4): 276-285, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38272038

RESUMEN

Cuphea carthagenensis (Jacq.) J. F. Macbr. is a popular plant in Brazilian folk medicine owing to its hypotensive and central nervous system depressant effects. This study aimed to validate the hypotensive effect of the plant's aqueous extract (AE) in rats and examine the vascular actions of three hydrolyzable tannins, oenothein B, woodfordin C, and eucalbanin B, isolated from AE. Systolic blood pressure in unanesthetized rats was determined using the non-invasive tail-cuff method. Oral treatment of normotensive rats with 0.5 and 1.0 g/kg/day AE induced a dose-related hypotensive effect after 1 week. In rat aortic rings pre-contracted with noradrenaline, all ellagitannins (20 - 180 µM) induced a concentration-related vasorelaxation. This effect was blocked by either removing the endothelium or pre-incubating with NG-nitro-l-arginine methyl ester (10 µM), an inhibitor of nitric oxide (NO) synthase. In KCl-depolarized rat portal vein preparations, the investigated compounds did not affect significantly the maximal contractile responses and pD2 values of the concentration-response curves to CaCl2. Our results demonstrated the hypotensive effect of C. carthagenensis AE in unanesthetized rats. All isolated ellagitannins induced vasorelaxation in vitro via activating NO synthesis/NO release from endothelial cells, without altering the Ca2+ influx in vascular smooth muscle preparations. Considering the low oral bioavailability of ellagitannins, the determined in vitro actions of these compounds are unlikely to account for the hypotensive effect of AE in vivo. It remains to be determined the role of the bioactive ellagitannin-derived metabolites in the hypotensive effect observed after oral treatment of unanesthetized rats with the plant extract.


Asunto(s)
Cuphea , Hipotensión , Ratas , Animales , Vasodilatadores/farmacología , Cuphea/metabolismo , Taninos Hidrolizables/farmacología , Ratas Wistar , Células Endoteliales , Vasodilatación , Endotelio Vascular , Óxido Nítrico/metabolismo , Aorta Torácica/metabolismo , NG-Nitroarginina Metil Éster/farmacología
8.
Ann Pharm Fr ; 82(1): 84-95, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37572955

RESUMEN

OBJECTIVES: To investigate the antihypertensive effect of crude extract of Chenopodium album (Ca.Cr), based on its medicinal use in hypertension. METHODS: Ca.Cr and its fractions were tested in-vivo in normotensive anesthetized rats for blood pressure-lowering effect. In-vitro experiments were performed on isolated rat aortae to explore the vascular mechanism(s). RESULTS: In normotensive anesthetized rats, Ca.Cr produced a dose-dependent (1-300mg/kg) fall (30%mmHg) in mean arterial pressure (MAP). Among the fractions, nHexane was the most potent (46% fall). In rat aortic rings precontracted with phenylephrine (PE), Ca.Cr and its fractions (except Ca.Aq) produced endothelium-dependent vasorelaxation, which was partially reversed with endothelium removal and by pretreating intact aortic rings with L-NAME (10µM) and atropine (1µM). This relaxation to Ca.Cr and fractions (nHexane, ethylacetate and chloroform) was also eliminated with indomethacin pretreatment, however, it unmasked a vasoconstriction effect with Ca.Cr only. Surprisingly, the aqueous fraction produced a calcium sensitive strong vasoconstriction instead of vasorelaxation. The crude extract and its fractions (except Ca.Aq) also antagonized vasoconstriction induced with high K+ (80mM), suggesting calcium antagonistic effect. The aqueous fraction produced mild vasorelaxation against high K+. This effect was further confirmed when pretreatment of the aortic rings with different concentrations of crude extract and fractions suppressed CaCl2 concentration response curves, similar to verapamil. In acute toxicity test, Ca.Cr extract was found safe up to 5g/kg body weight in mice. CONCLUSION: These findings suggest that crude extract and fractions of C. album produced vasorelaxant effect through muscarinic receptors linked-NO pathway, prostaglandin (endothelium-dependent) and calcium antagonism (endothelium-independent), which explains the blood pressure lowering effect of C. album in rats.


Asunto(s)
Chenopodium album , Vasodilatación , Ratas , Animales , Ratones , Presión Sanguínea , Chenopodium album/metabolismo , Calcio/metabolismo , Calcio/farmacología , Extractos Vegetales/farmacología , Ratas Sprague-Dawley , Vasodilatadores/farmacología , Bloqueadores de los Canales de Calcio , Endotelio/metabolismo , Endotelio Vascular/metabolismo
9.
Cardiovasc Ther ; 2023: 9948707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38024105

RESUMEN

Plectranthus barbatus, popularly known as Brazilian boldo, is used in Brazilian folk medicine to treat cardiovascular disorders including hypertension. This study investigated the chemical profile by UFLC-DAD-MS and the relaxant effect by using an isolated organ bath of the hydroethanolic extract of P. barbatus (HEPB) leaves on the aorta of spontaneously hypertensive rats (SHR). A total of nineteen compounds were annotated from HEPB, and the main metabolite classes found were flavonoids, diterpenoids, cinnamic acid derivatives, and organic acids. The HEPB promoted an endothelium-dependent vasodilator effect (~100%; EC50 ~347.10 µg/mL). Incubation of L-NAME (a nonselective nitric oxide synthase inhibitor; EC50 ~417.20 µg/mL), ODQ (a selective inhibitor of the soluble guanylate cyclase enzyme; EC50 ~426.00 µg/mL), propranolol (a nonselective α-adrenergic receptor antagonist; EC50 ~448.90 µg/mL), or indomethacin (a nonselective cyclooxygenase enzyme inhibitor; EC50 ~398.70 µg/mL) could not significantly affect the relaxation evoked by HEPB. However, in the presence of atropine (a nonselective muscarinic receptor antagonist), there was a slight reduction in its vasorelaxant effect (EC50 ~476.40 µg/mL). The addition of tetraethylammonium (a blocker of Ca2+-activated K+ channels; EC50 ~611.60 µg/mL) or 4-aminopyridine (a voltage-dependent K+ channel blocker; EC50 ~380.50 µg/mL) significantly reduced the relaxation effect of the extract without the interference of glibenclamide (an ATP-sensitive K+ channel blocker; EC50 ~344.60 µg/mL) or barium chloride (an influx rectifying K+ channel blocker; EC50 ~360.80 µg/mL). The extract inhibited the contractile response against phenylephrine, CaCl2, KCl, or caffeine, similar to the results obtained with nifedipine (voltage-dependent calcium channel blocker). Together, the HEPB showed a vasorelaxant effect on the thoracic aorta of SHR, exclusively dependent on the endothelium with the participation of muscarinic receptors and K+ and Ca2+ channels.


Asunto(s)
Hipertensión , Peumus , Plectranthus , Ratas , Animales , Vasodilatadores/farmacología , Vasodilatación , Brasil , Ratas Endogámicas SHR , Inhibidores Enzimáticos/farmacología , Endotelio Vascular
10.
Nutrients ; 15(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37960162

RESUMEN

Hypertension requires proper management because of the increased risk of cardiovascular disease and death. For this purpose, functional foods containing tannins have been considered an effective treatment. Sanguisorbae radix (SR) also contains various tannins; however, there have been no studies on its vasorelaxant or antihypertensive effects. In this study, the vasorelaxant effect of the ethanol extract of SR (SRE) was investigated in the thoracic aorta of Sprague Dawley rats. SRE (1, 3, 10, 30, and 100 µg/mL) showed this effect in a dose-dependent manner, and its mechanisms were related to the NO/cGMP pathway and voltage-gated K+ channels. Concentrations of 300 and 1000 µg/mL blocked the influx of extracellular Ca2+ and inhibited vasoconstriction. Moreover, 100 µg/mL of SRE showed a relaxing effect on blood vessels constricted by angiotensin II. The hypotensive effect of SRE was investigated in spontaneously hypertensive rats (SHR) using the tail-cuff method. Blood pressure significantly decreased 4 and 8 h after 1000 mg/kg of SRE administration. Considering these hypotensive effects and the vasorelaxant mechanisms of SRE, our findings suggests that SRE can be used as a functional food to prevent and treat hypertension. Further studies are needed for identifying the active components and determining the optimal dosage.


Asunto(s)
Hipertensión , Vasodilatadores , Ratas , Animales , Ratas Sprague-Dawley , Etanol/farmacología , Extractos Vegetales , Vasodilatación , Antihipertensivos/uso terapéutico , Presión Sanguínea , Ratas Endogámicas SHR , Taninos/farmacología , Aorta Torácica
11.
Nutrients ; 15(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686823

RESUMEN

Recent studies showed that Codonopsis lanceolata (CL) has antihypertensive effects. However, to date, no study has examined the effects of CL on vascular tone under a high extracellular K+ concentration ([K+]o). Thus, the present study examined the effect of an extract of Codonopsis lanceolata (ECL) on the vascular tension of rat carotid arteries exposed to high [K+]o. We used myography to investigate the effect of an ECL on the vascular tension of rat carotid arteries exposed to high [K+]o and the underlying mechanism of action. In arteries with intact endothelia, the ECL (250 µg/mL) had no effect on vascular tension in arteries exposed to normal or high [K+]o. In contrast, the ECL significantly increased vasorelaxation in endothelium-impaired arteries exposed to a physiologically normal or high [K+]o compared with control arteries exposed to the same [K+]o conditions in the absence of ECL. This vasorelaxing action was unaffected by a broad-spectrum K+ channel blocker and an ATP-sensitive K+ channel blocker. The ECL significantly inhibited the vasoconstriction induced by Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs) but not Ca2+ influx induced via receptor-operated Ca2+ channels or the release of Ca2+ from the sarcoplasmic reticulum in the vascular smooth muscle. In summary, our study reveals that the ECL acts through VDCCs in vascular smooth muscle to promote the recovery of vasorelaxation even in arteries exposed to high [K+]o in the context of endothelial dysfunction and provides further evidence of the vascular-protective effects of ECL.


Asunto(s)
Ascomicetos , Codonopsis , Animales , Ratas , Vasodilatación , Músculo Liso Vascular , Canales de Calcio , Arterias Carótidas , Extractos Vegetales/farmacología
12.
Cardiovasc Res ; 119(12): 2190-2201, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37401647

RESUMEN

AIMS: Enhancing SIRT1 activity exerts beneficial cardiovascular effects. In diabetes, plasma SIRT1 levels are reduced. We aimed to investigate the therapeutic potential of chronic recombinant murine SIRT1 (rmSIRT1) supplementation to alleviate endothelial and vascular dysfunction in diabetic mice (db/db). METHODS AND RESULTS: Left internal mammary arteries obtained from patients undergoing coronary artery bypass grafting with or without a diagnosis of diabetes were assayed for SIRT1 protein levels. Twelve-week-old male db/db mice and db/+ controls were treated with vehicle or rmSIRT1 intraperitoneally for 4 weeks, after which carotid artery pulse wave velocity (PWV) and energy expenditure/activity were assessed by ultrasound and metabolic cages, respectively. Aorta, carotid, and mesenteric arteries were isolated to determine endothelial and vascular function using the myograph system.Arteries obtained from diabetic patients had significantly lower levels of SIRT1 relative to non-diabetics. In line, aortic SIRT1 levels were reduced in db/db mice compared to db/+ mice, while rmSIRT1 supplementation restored SIRT1 levels. Mice receiving rmSIRT1 supplementation displayed increased physical activity and improved vascular compliance as reflected by reduced PWV and attenuated collagen deposition. Aorta of rmSIRT1-treated mice exhibited increased endothelial nitric oxide (eNOS) activity, while endothelium-dependent contractions of their carotid arteries were significantly decreased, with mesenteric resistance arteries showing preserved hyperpolarization. Ex vivo incubation with reactive oxygen species (ROS) scavenger Tiron and NADPH oxidase inhibitor apocynin revealed that rmSIRT1 leads to preserved vascular function by suppressing NADPH oxidase (NOX)-related ROS synthesis. Chronic rmSIRT1 treatment resulted in reduced expression of both NOX1 and NOX4, in line with a reduction in aortic protein carbonylation and plasma nitrotyrosine levels. CONCLUSIONS: In diabetic conditions, arterial SIRT1 levels are significantly reduced. Chronic rmSIRT1 supplementation improves endothelial function and vascular compliance by enhancing eNOS activity and suppressing NOX-related oxidative stress. Thus, SIRT1 supplementation may represent novel therapeutic strategy to prevent diabetic vascular disease.


Asunto(s)
Diabetes Mellitus Experimental , Humanos , Ratones , Masculino , Animales , Especies Reactivas de Oxígeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Vasodilatación , Sirtuina 1/metabolismo , Análisis de la Onda del Pulso , Endotelio Vascular/metabolismo , Estrés Oxidativo , NADPH Oxidasas/metabolismo , Suplementos Dietéticos , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo
13.
Pharm Biol ; 61(1): 1000-1012, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37410551

RESUMEN

CONTEXT: Hyperoside (Hyp), one of the active flavones from Rhododendron (Ericaceae), has beneficial effects against cerebrovascular disease. However, the effect of Hyp on vasodilatation has not been elucidated. OBJECTIVE: To explore the effect of Hyp on vasodilatation in the cerebral basilar artery (CBA) of Sprague-Dawley (SD) rats suffering with ischaemic-reperfusion (IR) injury. MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into sham, model, Hyp, Hyp + channel blocker and channel blocker groups. Hyp (50 mg/kg, IC50 = 18.3 µg/mL) and channel blocker were administered via tail vein injection 30 min before ischaemic, followed by 20 min of ischaemic and 2 h of reperfusion. The vasodilation, hyperpolarization, ELISA assay, haematoxylin-eosin (HE), Nissl staining and channel-associated proteins and qPCR were analysed. Rat CBA smooth muscle cells were isolated to detect the Ca2+ concentration and endothelial cells were isolated to detect apoptosis rate. RESULTS: Hyp treatment significantly ameliorated the brain damage induced by IR and evoked endothelium-dependent vasodilation rate (47.93 ± 3.09% vs. 2.99 ± 1.53%) and hyperpolarization (-8.15 ± 1.87 mV vs. -0.55 ± 0.42 mV) by increasing the expression of IP3R, PKC, transient receptor potential vanilloid channel 4 (TRPV4), IKCa and SKCa in the CBA. Moreover, Hyp administration significantly reduced the concentration of Ca2+ (49.08 ± 7.74% vs. 83.52 ± 6.93%) and apoptosis rate (11.27 ± 1.89% vs. 23.44 ± 2.19%) in CBA. Furthermore, these beneficial effects of Hyp were blocked by channel blocker. DISCUSSION AND CONCLUSIONS: Although Hyp showed protective effect in ischaemic stroke, more clinical trial certification is needed due to the difference between animals and humans.


Asunto(s)
Antineoplásicos , Isquemia Encefálica , Daño por Reperfusión , Accidente Cerebrovascular , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Canales Catiónicos TRPV/metabolismo , Células Endoteliales , Isquemia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Vasodilatación , Antineoplásicos/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo
14.
Fitoterapia ; 169: 105623, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37500018

RESUMEN

Alpinia zerumbet is a plant from the Zingiberaceae family, popularly used for hypertension treatment. Several studies have demonstrated Alpinia zerumbet vasodilator effect on conductance vessels but not on resistance vessels. Thereby, the aim of this study was to verify the vasodilator effect of the essential oil of Alpinia zerumbet (EOAz) on isolated rat resistance arteries and characterize its mechanism of action. Therefore, the effect of EOAz (3 to 3000 µg/mL) was verified in second-order branches of the mesenteric artery (SOBMA) pre-contracted by KCl and U46619. To study the mechanism of action, the influence of several inhibitors (TEA, 4-AP, Glibenclamide, Atropine, L-NAME, ODQ and indomethacin) on the vasodilator effect of EOAz was evaluated. Some protocols were also performed aiming to study the effect of EOAz on Ca2+ influx and release from intracellular storage. Furthermore, the binding energy of the main constituents with calcium channels were evaluated by molecular docking. Results showed an endothelium-independent vasorelaxant effect of EOAz on SOBMA, and only ODQ and L-NAME produced significant alteration on its pEC50. Regarding the calcium assays, contraction reduction caused by incubation with EOAz was observed in all three protocols. Hence, our results suggest that EOAz has a vasodilator effect mediated by inhibition of Ca2+ influx and release from intracellular storage, as well as an activation of the NOS/sGC pathway.


Asunto(s)
Alpinia , Aceites Volátiles , Ratas , Animales , Vasodilatadores/farmacología , Aceites Volátiles/farmacología , Alpinia/química , Calcio , NG-Nitroarginina Metil Éster/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Arterias , Vasodilatación , Endotelio Vascular
15.
Physiol Res ; 72(S1): S1-S9, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294113

RESUMEN

During phototherapy of jaundiced newborns, vasodilation occurs in the skin circulation compensated by vasoconstriction in the renal and mesenteric circulation. Furthermore, there is a slight decrease in cardiac systolic volume, and blood pressure, as well as an increase in heart rate and discrete changes in the heart rate variability (HRV). The primary change during phototherapy is the skin vasodilation mediated by multiple mechanisms: 1) Passive vasodilation induced by direct skin heating effect of the body surface and subcutaneous blood vessels, modified by myogenic autoregulation. 2) Active vasodilation mediated via the mechanism provided by axon reflexes through nerve C-fibers and humoral mechanism via nitric oxide (NO) and endothelin 1 (ET-1). During and after phototherapy is a rise in the NO:ET-1 ratio. 3) Regulation of the skin circulation through the sympathetic nerves is unique, but their role in skin vasodilation during phototherapy was not studied. 4) Special mechanism is a photorelaxation independent of the skin heating. Melanopsin (opsin 4) - is thought to play a major role in systemic vascular photorelaxation. Signalling cascade of the photorelaxation is specific, independent of endothelium and NO. The increased skin blood flow during phototherapy is enabled by the restriction of blood flow in the renal and mesenteric circulation. An increase in heart rate indicates activation of the sympathetic system as is seen in the measures of the HRV. High-pressure, as well as low-pressure baroreflexes, may play important role in these adaptation responses. The integrated complex and specific mechanism responsible for the hemodynamic changes during phototherapy confirm adequate and functioning regulation of the neonatal cardiovascular system, including baroreflexes.


Asunto(s)
Corazón , Hiperbilirrubinemia , Recién Nacido , Humanos , Corazón/fisiología , Fototerapia , Piel/irrigación sanguínea , Vasodilatación/fisiología , Óxido Nítrico
16.
Nutrients ; 15(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299535

RESUMEN

The endothelial glycocalyx (eGC) is a dynamic hair-like layer expressed on the apical surface of endothelial cells throughout the vascular system. This layer serves as an endothelial cell gatekeeper by controlling the permeability and adhesion properties of endothelial cells, as well as by controlling vascular resistance through the mediation of vasodilation. Pathogenic destruction of the eGC could be linked to impaired vascular function, as well as several acute and chronic cardiovascular conditions. Defining the precise functions and mechanisms of the eGC is perhaps the limiting factor of the missing link in finding novel treatments for lifestyle-related diseases such as atherosclerosis, type 2 diabetes, hypertension, and metabolic syndrome. However, the relationship between diet, lifestyle, and the preservation of the eGC is an unexplored territory. This article provides an overview of the eGC's importance for health and disease and describes perspectives of nutritional therapy for the prevention of the eGC's pathogenic destruction. It is concluded that vitamin D and omega-3 fatty acid supplementation, as well as healthy dietary patterns such as the Mediterranean diet and the time management of eating, might show promise for preserving eGC health and, thus, the health of the cardiovascular system.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Glicocálix , Diabetes Mellitus Tipo 2/metabolismo , Endotelio Vascular/metabolismo , Vasodilatación
17.
Nutrients ; 15(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37299579

RESUMEN

Pathophysiological conditions such as endothelial dysfunction and arterial stiffness, characterized by low nitric oxide bioavailability, deficient endothelium-dependent vasodilation and heart effort, predispose individuals to atherosclerotic lesions and cardiac events. Nitrate (NO3-), L-arginine, L-citrulline and potassium (K+) can mitigate arterial dysfunction and stiffness by intensifying NO bioavailability. Dietary compounds such as L-arginine, L-citrulline, NO3- and K+ exert vasoactive effects as demonstrated in clinical interventions by noninvasive flow-mediated vasodilation (FMD) and pulse-wave velocity (PWV) prognostic techniques. Daily L-arginine intakes ranging from 4.5 to 21 g lead to increased FMD and reduced PWV responses. Isolated L-citrulline intake of at least 5.6 g has a better effect compared to watermelon extract, which is only effective on endothelial function when supplemented for longer than 6 weeks and contains at least 6 g of L-citrulline. NO3- supplementation employing beetroot at doses greater than 370 mg promotes hemodynamic effects through the NO3--NO2-/NO pathway, a well-documented effect. A potassium intake of 1.5 g/day can restore endothelial function and arterial mobility, where decreased vascular tone takes place via ATPase pump/hyperpolarization and natriuresis, leading to muscle relaxation and NO release. These dietary interventions, alone or synergically, can ameliorate endothelial dysfunction and should be considered as adjuvant therapies in cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Rigidez Vascular , Humanos , Citrulina/farmacología , Factores de Riesgo , Vasodilatación , Factores de Riesgo de Enfermedad Cardiaca , Arginina/farmacología , Endotelio Vascular , Óxido Nítrico/farmacología
18.
Food Funct ; 14(10): 4824-4835, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37128985

RESUMEN

Background: The transradial approach for coronary angiography is associated with fewer complications and preferred over the femoral approach. Injury to the radial artery (RA) endothelium elicits intimal hyperplasia, possibly resulting in total occlusion and limb functional decline. Flavanols are known to improve endothelial function. Effects on arterial remodeling after mechanical injury are unknown. Objective: To investigate the effects of cocoa flavanols on (a) intimal hyperplasia and (b) endothelial functional recovery after mechanical vascular wall injury through transradial coronary angiography (TCA). Methods: Primary endpoint in this double-blind, randomized, controlled trial was RA intima-media thickness (IMT) after 6 months follow-up (FU). Secondary endpoints were RA flow-mediated vasodilation (FMD) and fractional diameter change (Fdc). Further luminal diameter and circulating endothelial microparticles (EMP) were assessed. Thirty-six male patients undergoing elective TCA were included. Flavanol or matched placebo supplementation started 7 days prior TCA (cocoa flavanol 1000 mg day-1) for 14 days. Four measurements spanned three periods over 6-moths-FU. Results: TCA induced sustained intimal hyperplasia in the placebo-, but not in the flavanol-group (IMT 0.44 ± 0.01 vs. 0.37 ± 0.01 mm, p = 0.01). FMD decreased after TCA in both groups, but recovered to baseline after 6 months in the flavanol group only. Fdc acutely decreased, EMPs increased in the placebo-, not in the flavanol -group. Luminal diameter remained unchanged in both groups. Conclusion: Peri-interventional cocoa flavanol supplementation prevents long-term intima media thickening and endothelial dysfunction 6 months after TCA opening the perspective for dietary interventions to mitigate endothelial cell damage and intimal hyperplasia after mechanical injury.


Asunto(s)
Cacao , Arteria Radial , Animales , Grosor Intima-Media Carotídeo , Hiperplasia , Polifenoles/farmacología , Endotelio Vascular , Vasodilatación , Suplementos Dietéticos , Cateterismo
19.
Microvasc Res ; 148: 104536, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024072

RESUMEN

Among females in the U.S., Black females suffer the most from cardiovascular disease and stroke. While the reasons for this disparity are multifactorial, vascular dysfunction likely contributes. Chronic whole-body heat therapy (WBHT) improves vascular function, but few studies have examined its acute effect on peripheral or cerebral vascular function, which may help elucidate chronic adaptative mechanisms. Furthermore, no studies have investigated this effect in Black females. We hypothesized that Black females would have lower peripheral and cerebral vascular function relative to White females and that one session of WBHT would mitigate these differences. Eighteen young, healthy Black (n = 9; 21 ± 3 yr; BMI: 24.7 ± 4.5 kg/m2) and White (n = 9; 27 ± 3 yr; BMI: 24.8 ± 4.1 kg/m2) females underwent one 60 min session of WBHT (49 °C water via a tube-lined suit). Pre- and 45 min post-testing measures included post-occlusive forearm reactive hyperemia (peripheral microvascular function, RH), brachial artery flow-mediated dilation (peripheral macrovascular function, FMD), and cerebrovascular reactivity (CVR) to hypercapnia. Prior to WBHT, there were no differences in RH, FMD, or CVR (p > 0.05 for all). WBHT improved peak RH in both groups (main effect of WBHT: 79.6 ± 20.1 cm/s to 95.9 ± 30.0 cm/s; p = 0.004, g = 0.787) but not Δ blood velocity (p > 0.05 for both groups). WBHT improved FMD in both groups (6.2 ± 3.4 % to 8.8 ± 3.7 %; p = 0.016, g = 0.618) but had no effect on CVR in either group (p = 0.077). These data indicate that one session of WBHT acutely improves peripheral micro- and macrovascular but not cerebral vascular function in Black and White females.


Asunto(s)
Hiperemia , Hipertermia Inducida , Humanos , Femenino , Calor , Blanco , Arteria Braquial , Endotelio Vascular , Vasodilatación
20.
Nutrients ; 15(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37049437

RESUMEN

OBJECTIVE: The present study aimed to evaluate the effects of enriched hen egg consumption on endothelium-dependent vasodilation (EDV) and the role of cyclooxygenases in EDV in the microcirculation of young healthy individuals. This study hypothesizes that Nutri4 eggs will improve endothelial function, which will be manifested by changes in microcirculatory flow measured by a laser Doppler flowmeter (LDF) during reactive hyperemia in response to vascular occlusion, in which n-3 PUFA plays an important role as well as its degradation pathway by cyclooxygenases. MATERIALS AND METHODS: Participants consumed three eggs per day for three weeks: The control group (CTRL, n = 14) consumed regular hen eggs (approximately 0.330 mg of lutein, 1.785 mg of vitamin E, 0.054 mg of selenium and 438 mg of n-3 PUFAs daily) and Nutri4 group (n = 20) consumed enriched eggs (approximately 1.85 mg of lutein, 0.06 mg of selenium, 3.29 mg of vitamin E, and 1026 mg of n-3 PUFAs daily). Skin microvascular blood flow in response to EDV (post-occlusive reactive hyperemia (PORH) and iontophoresis of acetylcholine (AChID)) and sodium nitroprusside (SNPID; endothelium-independent) was assessed by laser Doppler flowmetry before and after dietary protocol and in a separate group of participants who were administered perorally 100 mg of indomethacin before microvascular response assessment. Arterial blood pressure, heart rate, serum lipid, and liver enzymes, anthropometric measurements, protein expression of cyclooxygenase 1 (COX-1), cyclooxygenase 2 (COX-2), neuronal nitric oxide synthases (nNOS), inducible nitric oxide synthases (iNOS), and endothelial nitric oxide synthases (eNOS) were measured before and after dietary protocol. RESULTS: PORH and AChID were significantly enhanced, and SNPID remained unchanged in the Nutri4 group, while none was changed in the CTRL following a respective diet. PORH decreased after administration of indomethacin in Nutri4 after dietary protocol. Protein expression of COX-2 was significantly higher in the Nutri4 group compared to the CTRL after the dietary protocol. CONCLUSION: Consumption of enriched eggs improves microvascular EDV in healthy young subjects. Results suggest an element of n-3 PUFAs metabolites via the cyclooxygenases pathway in enhanced reactive hyperemia.


Asunto(s)
Huevos , Conducta Alimentaria , Microcirculación , Vasodilatación , Acetilcolina/metabolismo , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Endotelio , Endotelio Vascular , Hiperemia , Indometacina , Luteína/farmacología , Óxido Nítrico/metabolismo , Selenio/metabolismo , Piel , Voluntarios Sanos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA