RESUMEN
Thermally processed Buthus martensii Karsch scorpion is an important traditional Chinese medical material that has been widely used to treat various diseases in China for over one thousand years. Our recent work showed that thermally processed Buthus martensii Karsch scorpions contain many degraded peptides; however, the pharmacological activities of these peptides remain to be studied. Here, a new degraded peptide, BmTX4-P1, was identified from processed Buthus martensii Karsch scorpions. Compared with the venom-derived wild-type toxin peptide BmTX4, BmTX4-P1 missed some amino acids at the N-terminal and C-terminal regions, while containing six conserved cysteine residues, which could be used to form disulfide bond-stabilized α-helical and ß-sheet motifs. Two methods (chemical synthesis and recombinant expression) were used to obtain the BmTX4-P1 peptide, named sBmTX4-P1 and rBmTX4-P1. Electrophysiological experimental results showed that sBmTX4-P1 and rBmTX4-P1 exhibited similar activities to inhibit the currents of hKv1.2 and hKv1.3 channels. In addition, the experimental electrophysiological results of recombinant mutant peptides of BmTX4-P1 indicated that the two residues of BmTX4-P1 (Lys22 and Tyr31) were the key residues for its potassium channel inhibitory activity. In addition to identifying a new degraded peptide, BmTX4-P1, from traditional Chinese scorpion medicinal material with high inhibitory activities against the hKv1.2 and hKv1.3 channels, this study also provided a useful method to obtain the detailed degraded peptides from processed Buthus martensii Karsch scorpions. Thus, the study laid a solid foundation for further research on the medicinal function of these degraded peptides.
Asunto(s)
Venenos de Escorpión , Escorpiones , Animales , Secuencia de Aminoácidos , Péptidos/química , Proteínas Recombinantes/metabolismo , Venenos de Escorpión/química , Escorpiones/químicaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Inflammation plays pivotal role in the development of chronic diseases. Reducing chronic inflammation is an important strategy for preventing and managing many chronic diseases. In traditional Chinese medicine, the processed Buthus martensii Karsch (BmK) scorpion (also called "Quanxie") has been used to treat chronic inflammatory arthritis and spondylitis for hundreds of years suggests that "Quanxie" could potentially be utilized as a resource for identifying new anti-inflammatory compounds. However, the molecular basis and the underline mechanism for the anti-inflammatory effect of processed BmK scorpion are still unclear. AIM OF THE STUDY: The study aims to determine the potential involvement of macrophage-expressed Kv1.3 in the anti-inflammatory effect of processed BmK scorpion venom, as well as to identify new Kv1.3 blockers derived from processed BmK scorpion. MATERIALS AND METHODS: In this study, the in vivo and in vitro anti-inflammatory activities were determined using carrageenan-induced paw edema, LPS-induced sepsis mouse models and LPS-induced macrophage activation model respectively. The effect of processed BmK scorpion water extract, processed BmK venom and BmKK2 on different potassium channels were detected by whole-cell voltage-clamp recordings on transfected HEK293 cells or mouse BMDMs. The cytokines were detected using Q-PCR and competitive enzyme-linked immunosorbent assay. High performance liquid chromatography, SDS-PAGE and peptide Mass Spectrometry analysis were used to isolate and identify the BmKK2. SiRNA, western blotting and flow cytometry were used to analysis the anti-inflammatory mechanism of BmKK2. RESULTS: Here we demonstrate that BmKK2, a thermostable toxin targeting Kv1.3 is the critical anti-inflammatory component in the processed BmK scorpion. BmKK2 inhibits inflammation by targeting and inhibiting the activity of macrophage Kv1.3, thereby inhibiting the activation of NF-κB-NLRP3 pathway and the subsequent release of inflammatory factors. CONCLUSIONS: These findings provide new insights into the molecular basis of the anti-inflammatory effects of "Quanxie" and highlight the importance of targeting Kv1.3 expressed on macrophages as an anti-inflammatory approach.
Asunto(s)
FN-kappa B , Venenos de Escorpión , Ratones , Humanos , Animales , Escorpiones/química , Escorpiones/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Lipopolisacáridos , Células HEK293 , Macrófagos/metabolismo , Inflamación , Venenos de Escorpión/farmacología , Venenos de Escorpión/químicaRESUMEN
Evolution and natural selection have endowed animal venoms, including scorpion venoms, with a wide range of pharmacological properties. Consequently, scorpions, their venoms, and/or their body parts have been used since time immemorial in traditional medicines, especially in Africa and Asia. With respect to their pharmacological potential, bioactive peptides from scorpion venoms have become an important source of scientific research. With the rapid increase in the characterization of various components from scorpion venoms, a large number of peptides are identified with an aim of combating a myriad of emerging global health problems. Moreover, some scorpion venom-derived peptides have been established as potential scaffolds helpful for drug development. In this review, we summarize the promising scorpion venoms-derived peptides as drug candidates. Accordingly, we highlight the data and knowledge needed for continuous characterization and development of additional natural peptides from scorpion venoms, as potential drugs that can treat related diseases.
Asunto(s)
Venenos de Escorpión , Animales , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Péptidos/farmacología , Escorpiones , Desarrollo de Medicamentos , Medicina TradicionalRESUMEN
Mesobuthus martensii, a famous and important Traditional Chinese Medicine has a long medical history and unique functions. It is the first scorpion species whose whole genome was sequenced worldwide. In addition, it is the most widespread and infamous poisonous animal in northern China with complex habitats. It possesses several kinds of toxins that can regulate different ion channels and serve as crucial natural drug resources. Extensive and in-depth studies have been performed on the structures and functions of toxins of M. martensii. In this research, we compared the morphology of M. martensii populations from different localities and calculated the COI genetic distance to determine intraspecific variations. Transcriptome sequencing by RNA-sequencing of the venom glands of M. martensii from ten localities and M. eupeus from one locality was analyzed. The results revealed intraspecific variation in the expression of sodium channel toxin genes, potassium channel toxin genes, calcium channel toxin genes, chloride channel toxin genes, and defensin genes that could be related to the habitats in which these populations are distributed, except the genetic relationships. However, it is not the same in different toxin families. M. martensii and M. eupeus exhibit sexual dimorphism under the expression of toxin genes, which also vary in different toxin families. The following order was recorded in the difference of expression of sodium channel toxin genes: interspecific difference; differences among different populations of the same species; differences between sexes in the same population, whereas the order in the difference of expression of potassium channel toxin genes was interspecific difference; differences between both sexes of same populations; differences among the same sex in different populations of the same species. In addition, there existed fewer expressed genes of calcium channel toxins, chloride channel toxins, and defensins (no more than four members in each family), and their expression differences were not distinct. Interestingly, the expression of two calcium channel toxin genes showed a preference for males and certain populations. We found a difference in the expression of sodium channel toxin genes, potassium channel toxin genes, and chloride channel toxin genes between M. martensii and M. eupeus. In most cases, the expression of one member of the toxin gene clusters distributed in series on the genome were close in different populations and genders, and the members of most clusters expressed in same population and gender tended to be the different. Twenty-one toxin genes were found with the MS/MS identification evidence of M. martensii venom. Since scorpions were not subjected to electrical stimulation or other special treatments before conducting the transcriptome extraction experiment, the results suggested the presence of intraspecific variation and sexual dimorphism of toxin components which revealed the expression characteristics of toxin and defensin genes in M. martensii. We believe this study will promote further in-depth research and use of scorpions and their toxin resources, which in turn will be helpful in standardizing the identification and medical applications of Quanxie in traditional Chinese medicine.
Asunto(s)
Venenos de Escorpión , Escorpiones , Secuencia de Aminoácidos , Animales , Canales de Calcio/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Defensinas/genética , Femenino , Masculino , Canales de Potasio/genética , ARN/metabolismo , Venenos de Escorpión/química , Escorpiones/genética , Escorpiones/metabolismo , Homología de Secuencia de Aminoácido , Canales de Sodio/genética , Espectrometría de Masas en Tándem , TranscriptomaRESUMEN
Antimicrobial peptides (AMPs) are naturally occurring compounds which possess a rapid killing mechanism and low resistance potential. Consequently, they are being viewed as potential alternatives to traditional antibiotics. One of the major factors limiting further development of AMPs is off-target toxicity. Enhancements to antimicrobial peptides which can maximise antimicrobial activity whilst reducing mammalian cytotoxicity would make these peptides more attractive as future pharmaceuticals. We have previously characterised Smp24, an AMP derived from the venom of the scorpion Scorpio maurus palmatus. This study sought to better understand the relationship between the structure, function and bacterial selectivity of this peptide by performing single amino acid substitutions. The antimicrobial, haemolytic and cytotoxic activity of modified Smp24 peptides was determined. The results of these investigations were compared with the activity of native Smp24 to determine which modifications produced enhanced therapeutic indices. The structure-function relationship of Smp24 was investigated by performing N-terminal, mid-chain and C-terminal amino acid substitutions and determining the effect that they had on the antimicrobial and cytotoxic activity of the peptide. Increased charge at the N-, mid- and C-termini of the peptide resulted in increased antimicrobial activity. Increased hydrophobicity at the N-terminus resulted in reduced haemolysis and cytotoxicity. Reduced antimicrobial, haemolytic and cytotoxic activity was observed by increased hydrophobicity at the mid-chain. Functional improvements have been made to modified peptides when compared with native Smp24, which has produced peptides with enhanced therapeutic indices.
Asunto(s)
Antiinfecciosos , Venenos de Escorpión , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Bacterias Gramnegativas , Hemólisis , Mamíferos , Pruebas de Sensibilidad Microbiana , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Escorpiones , Índice TerapéuticoRESUMEN
Thermally processed Buthus martensii Karsch scorpions are a traditional Chinese medical material for treating various diseases. However, their pharmacological foundation remains unclear. Here, a new degraded peptide of scorpion toxin was identified in Chinese scorpion medicinal material by proteomics. It was named BmK86-P1 and has six conserved cysteine residues. Homology modeling and circular dichroism spectra experiments revealed that BmK86-P1 not only contained representative disulfide bond-stabilized α-helical and ß-sheet motifs but also showed remarkable stability at test temperatures from 20-95 °C. Electrophysiology experiments indicated that BmK86-P1 was a highly potent and selective inhibitor of the hKv1.2 channel with IC50 values of 28.5 ± 6.3 nM. Structural and functional dissection revealed that two residues of BmK86-P1 (i.e., Lys19 and Ile21) were the key residues that interacted with the hKv1.2 channel. In addition, channel chimeras and mutagenesis experiments revealed that three amino acids (i.e., Gln357, Val381 and Thr383) of the hKv1.2 channel were responsible for BmK86-P1 selectivity. This research uncovered a new bioactive peptide from traditional Chinese scorpion medicinal material that has desirable thermostability and Kv1.2 channel-specific activity, which strongly suggests that thermally processed scorpions are novel peptide resources for new drug discovery for the Kv1.2 channel-related ataxia and epilepsy diseases.
Asunto(s)
Canal de Potasio Kv.1.2/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Péptidos/toxicidad , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Venenos de Escorpión/toxicidad , Animales , China , Humanos , Medicina Tradicional China , Escorpiones/químicaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: As well-known medicinal materials in traditional Chinese medicine, scorpions, commonly called as Quanxie () in Chinese, have been widely used to treat several diseases such as rheumatoid arthritis, apoplexy, epilepsy and chronic pain for more than a thousand years. Not only in the ancient times, the scorpions have also been recorded nowadays in the Pharmacopoeia of the People's Republic of China since 1963. AIM OF STUDY: This study aims to explore the differences in composition of the venom of scorpions from different regions by using the method of transcriptomics and proteomics. MATERIALS AND METHODS: Whole de novo transcriptomes, proteomics and their bioinformatic analyses were performed on samples of the scorpion Mesobuthus martensii and their venoms from four different provinces with clear geographical boundaries, including Hebei, Henan, Shandong and Shanxi. RESULTS: The four captured samples had the same morphology, and the conserved CO-1 sequence matched that of M. martensii. A total of 141,003 of 174,653 transcripts were identified as unigenes, of which we successfully annotated 51,627 (36.61%), 21,970 (15.58%), 7,168 (5.08%), and 45,263 (32.10%) unigenes with the NR, GO, KEGG and SWISSPROT databases, respectively, while a total of 427 proteins were collected from the protein extracted from venoms. Both GO and KEGG annotations exhibited only slight differences among the four samples while the expression level of gene and protein was quite different. A total of 249 toxin-related unigenes were successfully screened, including 41 serine proteases and serine protease inhibitors, 39 potassium channel toxins, 38 phospholipases, 16 host defense peptides, 9 metalloproteases, and 50 other toxins. Although the toxin species were similar among the four samples, the gene expression of each toxin varied considerably, for example, the scorpion from HB province has the most abundant expression quality in sequences c48391_g1, c55239_g1 and c47749_g1 while the lowest expressions of c51178_g1, c62033_g3 and c63754_g2. CONCLUSION: The regional differences in the transcriptomes and proteomes of M. martensii are mainly from expression levels e.g. toxins rather than expression species, of which the method can be further extended to evaluate the qualities of traditional Chinese medicines obtained from different regions.
Asunto(s)
Proteómica , Venenos de Escorpión/toxicidad , Escorpiones , Transcriptoma , Animales , China , Biología Computacional , Expresión Génica , Perfilación de la Expresión Génica , Proteoma , Venenos de Escorpión/química , Venenos de Escorpión/genéticaRESUMEN
Only a few work have been done for peptides from non-venom gland tissues of venomous animals. Here, with the help of the whole body transcriptomic and the hemolymph proteomic data of the Chinese scorpion Buthus martensii Karsch, we identified the first Ascaris-type peptide BmHDP from scorpion hemolymph. The precursor of BmHDP has 80 residues, including a 16 residue signal peptide and a 64 residue mature peptide. The mature peptide has 10 conserved cysteines and adopts a conserved Ascaris-type fold. Using combined inclusion body refolding and biochemical identification strategies, recombinant BmHDP was obtained successfully. Protease inhibitory assays showed that BmHDP inhibited chymotrypsin apparently at a concentration of 8â¯nM. Patch-clamp experiments showed that BmHDP inhibited the Kv1.3 potassium channel apparently at a concentration of 1000â¯nM. Coagulation experiment assays showed that BmHDP inhibited intrinsic coagulation pathway apparently at a concentration of 500â¯nM. To the best of our knowledge, BmHDP is the first Ascaris-type peptide from scorpion hemolymph. Our work highlighted a functional link between scorpion non-venom gland peptides and venom gland toxin peptides, and suggested that scorpion hemolymph might be a new source of bioactive peptides.
Asunto(s)
Ascaris , Hemolinfa/química , Venenos de Escorpión/química , Escorpiones , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario , Biblioteca de Genes , Péptidos , ProteómicaRESUMEN
The neurotoxins of venomous scorpion act on ion channels. Whether these neurotoxins are retained in processed Buthus martensii Karsch scorpions used in traditional Chinese medicine materials is unknown. Comprehensive mass spectrometry-based proteomic characterization of functionally active toxins in the processed medicinal scorpion material revealed 22 full-length and 44 truncated thermostable potassium channel-modulatory toxins that preserved six conserved cysteine residues capable of forming the three disulfide bonds necessary for toxicity. Additionally, a broad spectrum of degraded toxin fragments was found, indicating their relative thermal instability which enabled toxicity reduction. Furthermore, the suppression of interleukin-2 (IL-2) production in Jurkat cells and the reduced delayed-type hypersensitivity (DTH) response demonstrated that the extracts have immunoregulatory activity both in vitro and in vivo. Our work describes the first "map" of functionally active scorpion toxins in processed scorpion medicinal material, which is helpful to unveil the pharmaceutical basis of the processed scorpion medicinal material in traditional Chinese medicine. BIOLOGICAL SIGNIFICANCE: Scorpions have been used as medicinal materials in China for more than one thousand years. This is an example of the well-known "Combat poison with poison" strategy common to traditional Chinese medicine. In the past 30â¯years, extensive investigations of Chinese scorpions have indicated that the neurotoxins in the scorpion venom are the main toxic components and they target various ion channels in cell membranes. However, whether these neurotoxins are retained in processed Buthus martensii Karsch scorpions used for traditional Chinese medicine remains unknown. Our study described the thermal stability and instability of potassium channel-modulatory neurotoxins in processed scorpions and helps to understand the pharmaceutical basis underling the strategy of "combat poison with poison to cure diseases".
Asunto(s)
Medicina Tradicional China , Neurotoxinas/análisis , Bloqueadores de los Canales de Potasio/análisis , Proteoma/análisis , Venenos de Escorpión/análisis , Animales , Estabilidad de Medicamentos , Femenino , Células HEK293 , Humanos , Células Jurkat , Neurotoxinas/metabolismo , Péptidos/análisis , Péptidos/metabolismo , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio/metabolismo , Estabilidad Proteica , Proteoma/metabolismo , Proteómica/métodos , Ratas , Ratas Endogámicas Lew , Venenos de Escorpión/química , Venenos de Escorpión/metabolismo , Escorpiones/química , Escorpiones/metabolismo , TemperaturaRESUMEN
Hydatidosis is an important zoonosis caused by a parasitic tapeworm, namely Echinococcus granulosus. This infection is distributed worldwide and affects the health as well as economic loss in both humans and animals. In most cases, the disease needs chemotherapy with or without surgery. Conventional drugs have some major problems, including drug complications, harmful side effects, and also progressive resistance. According to the importance of biological productions as alternative medicine, a large number of studies confirmed that whole venom and many peptide ingredients of the scorpion venom have various different medical benefits, including antimicrobial properties, due to the mechanism of blocking gated ion channel. In this study, the venom peptides of Mesobuthus eupeus scorpionwere purified using gel filtration chromatography and subsequently ion exchange chromatography, followed by the determination of the molecular weights of the proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) procedure. After collecting the hydatid cysts fluids from the liver of infected sheep, protoscolices were derived, washed, and encountered to the whole venom as well as eight different fractions of toxin 30, 60, 120, and 240 min after the exposure. In the next step, the viability of protoscolices was determined by eosin staining. The obtained results revealed that a venom fraction under 10 kDa killed all protoscolices after 30 min. Moreover, it was found that the scolicidal activity of fractions increases according to the time of exposure. As a result, it can be concluded that M. epeus venom peptides under its LD50 (1/2 LD50) can properly and quickly destroy the protoscolices of hydatid cysts at the level of applied concentrations and such components are good alternatives to treat hydatidosis.
Asunto(s)
Anticestodos/farmacología , Equinococosis/veterinaria , Echinococcus granulosus/efectos de los fármacos , Venenos de Escorpión/farmacología , Escorpiones/química , Enfermedades de las Ovejas/tratamiento farmacológico , Animales , Equinococosis/tratamiento farmacológico , Venenos de Escorpión/química , OvinosRESUMEN
Traditional Chinese Medicine (TCM) has been practiced in China for thousands of years. As a complementary and alternative treatment, herbal medicines that are frequently used in the TCM are the most accepted in the Western world. However, animal materials, which are equally important in the TCM practice, are not well-known in other countries. On the other hand, the Chinese doctors had documented the toxic profiles of hundreds of animals and plants thousand years ago. Furthermore, they saw the potential benefits of these materials and used their toxic properties to treat a wide variety of diseases, such as heavy pain and cancer. Since the 50s of the last century, efforts of the Chinese government and societies to modernize TCM have achieved tremendous scientific results in both laboratory and clinic. A number of toxic proteins have been isolated and their functions identified. Although most of the literature was written in Chinese, this review provide a summary, in English, regarding our knowledge of the clinical use of the toxic proteins isolated from a plant, Tian Hua Fen, and an animal, scorpion, both of which are famous toxic prescriptions in TCM.
Asunto(s)
Péptidos , Proteínas , Venenos de Escorpión/química , Tricosantina , Animales , Humanos , Medicina Tradicional China , Péptidos/química , Péptidos/farmacología , Péptidos/uso terapéutico , Plantas Medicinales , Proteínas/química , Proteínas/farmacología , Proteínas/uso terapéutico , Tricosantina/química , Tricosantina/farmacología , Tricosantina/uso terapéuticoRESUMEN
Scorpion, as an ancient species, has been widely used on dozens of human diseases in traditional Chinese Medicine. Although the scorpion venom from the Buthidae family with the potent toxicity attracts more interests, toxins from the non-Buthidae family draw great attention as well because of its abundance and complexity even without harm to mammals. Moreover, several toxic components of scorpion venom have been identified as valuable scaffolds for the drug design and development. Using the Next Generation Sequencing (NGS) technique, here we reported the transcriptome of the venomous glands of Heterometrus spinifer, a non-Buthidae scorpion that only a few toxic and complete components have been identified known-to-date. The total mRNA extracted from the venomous glands of H. spinifer was subjected to illumina sequencing with a strategy of de novo assembly, and a total of 54 189 transcripts were unigenes from a total of 88 311 600 determined reads. We annotated 18 567 (34.26%) unigenes from NR database, 12 258 (22.62%) from SWISSPROT database, 11 161 (20.60%) from GO database, 10 159 (18.75%) from COG database and 5059 (9.34%) from KEGG database, respectively. 2843 unigenes were further selected against the toxin-related sub-database of SWISSPROT. After removing the redundancy, 13 common toxin-related subfamilies with 62 unigenes were manually confirmed, including 8 K-toxins, 1 calcin, 3 Imperatoxin I-like, 2 La1-like, 1 scorpin-like, 3 antimicrobial peptides, two types of protease inhibitors such as 8 Kunitz-type protease inhibitors and 3 Ascaris-type protease inhibitors, and 33 proteases including 16 serine proteinases, 7 phospholipases, 5 metalloproteases, 3 hyaluronidases and 2 phosphatases. Our report is the first transcriptomic analyses of venomous glands from the scorpion H. spinifer, serving as a public information platform for the development of novel bio-therapeutics.
Asunto(s)
Proteínas de Artrópodos/análisis , Perfilación de la Expresión Génica , Venenos de Escorpión/química , Escorpiones/metabolismo , Animales , Proteínas de Artrópodos/metabolismo , Glándulas Exocrinas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Mensajero , Venenos de Escorpión/genética , Escorpiones/genéticaRESUMEN
Effector memory T lymphocytes (TEM cells) that lack expression of CCR7 are major drivers of inflammation in a number of autoimmune diseases, including multiple sclerosis and rheumatoid arthritis. The Kv1.3 potassium channel is a key regulator of CCR7- TEM cell activation. Blocking Kv1.3 inhibits TEM cell activation and attenuates inflammation in autoimmunity, and as such, Kv1.3 has emerged as a promising target for the treatment of TEM cell-mediated autoimmune diseases. The scorpion venom-derived peptide HsTX1 and its analog HsTX1[R14A] are potent Kv1.3 blockers and HsTX1[R14A] is selective for Kv1.3 over closely-related Kv1 channels. PEGylation of HsTX1[R14A] to create a Kv1.3 blocker with a long circulating half-life reduced its affinity but not its selectivity for Kv1.3, dramatically reduced its adsorption to inert surfaces, and enhanced its circulating half-life in rats. PEG-HsTX1[R14A] is equipotent to HsTX1[R14A] in preferential inhibition of human and rat CCR7- TEM cell proliferation, leaving CCR7+ naïve and central memory T cells able to proliferate. It reduced inflammation in an active delayed-type hypersensitivity model and in the pristane-induced arthritis (PIA) model of rheumatoid arthritis (RA). Importantly, a single subcutaneous dose of PEG-HsTX1[R14A] reduced inflammation in PIA for a longer period of time than the non-PEGylated HsTX1[R14A]. Together, these data indicate that HsTX1[R14A] and PEG-HsTX1[R14A] are effective in a model of RA and are therefore potential therapeutics for TEM cell-mediated autoimmune diseases. PEG-HsTX1[R14A] has the additional advantages of reduced non-specific adsorption to inert surfaces and enhanced circulating half-life.
Asunto(s)
Canal de Potasio Kv1.3/antagonistas & inhibidores , Péptidos/farmacología , Polietilenglicoles/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Venenos de Escorpión/farmacología , Adulto , Alérgenos/inmunología , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/patología , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/patología , Línea Celular , Células Cultivadas , Femenino , Humanos , Hipersensibilidad Tardía/inmunología , Inmunomodulación/efectos de los fármacos , Leucocitos Mononucleares , Ratones , Persona de Mediana Edad , Ovalbúmina/inmunología , Péptidos/química , Péptidos/farmacocinética , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacocinética , Ratas , Ratas Endogámicas Lew , Venenos de Escorpión/química , Venenos de Escorpión/farmacocinética , Bazo/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Terpenos , Adulto JovenRESUMEN
Prostate cancer is the second leading cause of death due to cancer in men. Owing to shortcomings in the current treatments, other therapies are being considered. Toxic gene delivery is one of the most effective methods for cancer therapy. Cationic polymers are able to form stable nanoparticles via interaction with nucleic acids electrostatically. Branched polyethylenimine that contains amine groups has notable buffering capacity and the ability to escape from endosome through the proton sponge effect. However, the cytotoxicity of this polymer is high, and modification is one of the applicable strategies to overcome this problem. In this study, PEI was targeted with chlorotoxin (CTX) via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) cross-linker. CTX can bind specifically to matrix metalloproteinase-2 that is overexpressed in certain cancers. Melittin as the major component of bee venom has been reported to have anti-cancer activity. This was thus selected to deliver to PC3 cell line. Flow cytometry analysis revealed that transfection efficiency of targeted nanoparticles is significantly higher compared to non-targeted nanoparticles. Targeted nanoparticles carrying the melittin gene also decreased cell viability of PC3 cells significantly while no toxic effects were observed on NIH3T3 cell line. Therefore, CTX-targeted nanoparticles carrying the melittin gene could serve as an appropriate gene delivery system for prostate and other MMP-2 positive cancer cells.
Asunto(s)
Meliteno/administración & dosificación , Meliteno/química , Nanopartículas/química , Neoplasias de la Próstata/terapia , Venenos de Escorpión/administración & dosificación , Venenos de Escorpión/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Células 3T3 NIH , Polietileneimina/química , Polímeros/química , Transfección/métodosRESUMEN
It is hypothesized that protease inhibitors play an essential role in survival of venomous animals through protecting peptide/protein toxins from degradation by proteases in their prey or predators. However, the biological function of protease inhibitors in scorpion venoms remains unknown. In the present study, a trypsin inhibitor was purified and characterized from the venom of scorpion Mesobuthus eupeus, which enhanced the biological activities of crude venom components in mice when injected in combination with crude venom. This protease inhibitor, named MeKTT-1, belonged to Kunitz-type toxins subfamily. Native MeKTT-1 selectively inhibited trypsin with a Kivalue of 130 nmol·L(-1). Furthermore, MeKTT-1 was shown to be a thermo-stable peptide. In animal behavioral tests, MeKTT-1 prolonged the pain behavior induced by scorpion crude venom, suggesting that protease inhibitors in scorpion venom inhibited proteases and protect the functionally important peptide/protein toxins from degradation, consequently keeping them active longer. In conclusion, this was the first experimental evidence about the natural existence of serine protease inhibitor in the venom of scorpion Mesobuthus eupeus, which preserved the activity of venom components, suggests that scorpions may use protease inhibitors for survival.
Asunto(s)
Inhibidores de Proteasas/química , Venenos de Escorpión/química , Escorpiones/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Cinética , Masculino , Ratones , Datos de Secuencia Molecular , Inhibidores de Proteasas/toxicidad , Venenos de Escorpión/genética , Venenos de Escorpión/toxicidad , Escorpiones/genética , Tripsina/químicaRESUMEN
Microbial resistance to conventional antibiotics is a public health problem worldwide, motivating the search for new therapeutic alternatives in varied natural sources. Cationic peptides without disulfide bridges from scorpions have been targeted in this context, mainly due to their multifunctional action and the limited ability of microorganisms to develop resistance against them. The present study was focused on Stigmurin and TsAP-2, cationic peptides found in the transcriptome of the venom gland from the scorpion Tityus stigmurus. The aims were: to assess the secondary structure of TsAP-2 and the structural stability of both peptides by circular dichroism; to evaluate their antiproliferative effect, and antimicrobial activities in vitro, ex vivo and in vivo; and to investigate their therapeutic potential in a murine model of polymicrobial sepsis. Stigmurin and TsAP-2 secondary structures responded similarly to environment polarity changes, and were stable to temperature and pH variation. Both peptides showed antiproliferative effect on tumor cells. TsAP-2 showed lower cytotoxicity to normal cells, and had a mitogenic activity on murine macrophages. Stigmurin demonstrated bactericidal and bacteriostatic activity, depending on the microorganism, whereas TsAP-2 had bactericidal action upon different bacterial strains analyzed. Both peptides were able to reduce leukocyte migration, TNF-α levels and microorganism load in the peritoneal cavity after induction of experimental sepsis, decreasing inflammation in the lung and cecum of septic animals. TsAP-2 also reduced the release of nitric oxide in the peritoneal cavity. Taken together, these data suggest that Stigmurin and TsAP-2 are structurally stable molecules and are efficient in the control of the infectious focus in polymicrobial sepsis, with potential use as a prototype for the rational design of novel therapeutic agents.
Asunto(s)
Venenos de Escorpión/química , Venenos de Escorpión/toxicidad , Sepsis/tratamiento farmacológico , Toxinas Biológicas/uso terapéutico , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Dicroismo Circular , Citocinas/metabolismo , Femenino , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Óxido Nítrico/metabolismo , Estructura Secundaria de Proteína , Sepsis/metabolismo , Sepsis/patología , Temperatura , Toxinas Biológicas/químicaRESUMEN
The scorpion Buthus martensii Karsch has been used in Traditional Chinese Medicine to treat neuronal diseases such as neuropathic pain, paralysis and epilepsy for thousands of years. Studies have demonstrated that scorpion venom is the primary active component. Although scorpion venom can effectively attenuate pain in the clinic, it also produces neurotoxic response. In this study, toxicity guided purification led to identify a mammalian toxin termed BmK NT1 comprising of 65 amino acid residues and an amidated C-terminus, a mature peptide encoded by the nucleotide sequence (GenBank No. AF464898). In contract to the recombinant product of the same nucleotide sequence, BmK AGAP, which displayed analgesic and anti-tumor effect, intravenous injection (i.v.) of BmK NT1 produced acute toxicity in mice with an LD50 value of 1.36 mg/kg. In primary cultured cerebellar granule cells, BmK NT1 produced a concentration-dependent cell death with an IC50 value of 0.65 µM (0.41-1.03 µM, 95% Confidence Intervals, 95% CI) which was abolished by TTX, a voltage-gated sodium channel (VGSC) blocker. We also demonstrated that BmK NT1 produced modest sodium influx in cerebellar granule cell cultures with an EC50 value of 2.19 µM (0.76-6.40 µM, 95% CI), an effect similar to VGSC agonist, veratridine. The sodium influx response was abolished by TTX suggesting that BmK NT1-induced sodium influx is solely through activation of VGSC. Considered these data together, we demonstrated that BmK NT1 activated VGSC and produced neurotoxicity in cerebellar granule cell cultures.
Asunto(s)
Medicina Tradicional China , Péptidos/química , Venenos de Escorpión/química , Secuencia de Aminoácidos , Animales , Células Cultivadas , Cromatografía en Gel , Ratones , Ratones Endogámicos ICR , Datos de Secuencia Molecular , Ratas , Ratas Sprague-DawleyRESUMEN
The scorpion Tityus serrulatus venom comprises a complex mixture of molecules that paralyzes and kills preys, especially insects. However, venom components also interact with molecules in humans, causing clinic envenomation. This cross-interaction may result from homologous molecular targets in mammalians and insects, such as (NEP)-like enzymes. In face of these similarities, we searched for peptides in Tityus serrulatus venom using human NEP as a screening tool. We found a NEP-inhibiting peptide with the primary sequence YLPT, which is very similar to that of the insect neuropeptide proctolin (RYLPT). Thus, we named the new peptide [des-Arg(1)]-proctolin. Comparative NEP activity assays using natural substrates demonstrated that [des-Arg(1)]-proctolin has high specificity for NEP and better inhibitory activity than proctolin. To test the initial hypothesis that molecular homologies allow Tityus serrulatus venom to act on both mammal and insect targets, we investigated the presence of a NEP-like in cockroaches, the main scorpion prey, that could be likewise inhibited by [des-Arg(1)]-proctolin. Indeed, we detected a possible NEP-like in a homogenate of cockroach heads whose activity was blocked by thiorphan and also by [des-Arg(1)]-proctolin. Western blot analysis using a human NEP monoclonal antibody suggested a NEP-like enzyme in the homogenate of cockroach heads. Our study describes for the first time a proctolin-like peptide, named [des-Arg(1)]-proctolin, isolated from Tityus serrulatus venom. The tetrapeptide inhibits human NEP activity and a NEP-like activity in a cockroach head homogenate, thus it may play a role in human envenomation as well as in the paralysis and death of scorpion preys.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Neuropéptidos/química , Neuropéptidos/farmacología , Oligopéptidos/química , Oligopéptidos/farmacología , Venenos de Escorpión/química , Animales , Western Blotting , Cucarachas/enzimología , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Cabeza , Humanos , Hidrólisis , Neprilisina/antagonistas & inhibidores , Escorpiones/química , Tiorfan/farmacologíaRESUMEN
Scorpion venom is a mixture of peptides, including antimicrobial, bradykinin-potentiating and anionic peptides and small to medium proteins, such as ion channel toxins, metalloproteinases and phospholipases that together cause severe clinical manifestation. Tityus bahiensis is the second most medically important scorpion species in Brazil and it is widely distributed in the country with the exception of the North Region. Here we sequenced and analyzed the transcripts from the venom glands of T. bahiensis, aiming at identifying and annotating venom gland expressed genes. A total of 116,027 long reads were generated by pyrosequencing and assembled in 2891 isotigs. An annotation process identified transcripts by similarity to known toxins, revealing that putative venom components represent 7.4% of gene expression. The major toxins identified are potassium and sodium channel toxins, whereas metalloproteinases showed an unexpected high abundance. Phylogenetic analysis of deduced metalloproteinases from T. bahiensis and other scorpions revealed a pattern of ancient and intraspecific gene expansions. Other venom molecules identified include antimicrobial, anionic and bradykinin-potentiating peptides, besides several putative new venom components. This report provides the first attempt to massively identify the venom components of this species and constitutes one of the few transcriptomic efforts on the genus Tityus.
Asunto(s)
Venenos de Escorpión/química , Escorpiones/genética , Transcriptoma , Secuencia de Aminoácidos , Animales , Brasil , Biología Computacional , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Biblioteca de Genes , Metaloproteasas/genética , Metaloproteasas/metabolismo , Datos de Secuencia Molecular , Filogenia , Canales de Potasio/toxicidad , Alineación de Secuencia , Análisis de Secuencia de ADN , Canales de Sodio/toxicidadRESUMEN
Scorpions are well known for their dangerous stings that can result in severe consequences for human beings, including death. Neurotoxins present in their venoms are responsible for their toxicity. Due to their medical relevance, toxins have been the driving force in the scorpion natural compounds research field. On the other hand, for thousands of years, scorpions and their venoms have been applied in traditional medicine, mainly in Asia and Africa. With the remarkable growth in the number of characterized scorpion venom components, several drug candidates have been found with the potential to tackle many of the emerging global medical threats. Scorpions have become a valuable source of biologically active molecules, from novel antibiotics to potential anticancer therapeutics. Other venom components have drawn attention as useful scaffolds for the development of drugs. This review summarizes the most promising candidates for drug development that have been isolated from scorpion venoms.