Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 661
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Front Biosci (Landmark Ed) ; 29(2): 47, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38420828

RESUMEN

BACKGROUND: The leaves of Origanum majorana (O. majorana) are traditionally renowned for treating diarrhea and gut spasms. This study was therefore planned to evaluate its methanolic extract. METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to identify the phytochemicals, and Swiss albino mice were used for an in vivo antidiarrheal assay. Isolated rat ileum was used as an ex vivo assay model to study the possible antispasmodic effect and its mechanism(s). RESULTS: The GC-MS analysis of O. majorana detected the presence of 21 compounds, of which alpha-terpineol was a major constituent. In the antidiarrheal experiment, O. majorana showed a substantial inhibitory effect on diarrheal episodes in mice at an oral dosage of 200 mg/kg, resulting in 40% protection. Furthermore, an oral dosage of 400 mg/kg provided even greater protection, with 80% effectiveness. Similarly, loperamide showed 100% protection at oral doses of 10 mg/kg. O. majorana caused complete inhibition of carbachol (CCh, 1 µM) and high K+ (80 mM)-evoked spasms in isolated ileal tissues by expressing significantly higher potency (p < 0.05) against high K+ compared to CCh, similar to verapamil, a Ca++ antagonist. The verapamil-like predominant Ca++ ion inhibitory action of O. majorana was further confirmed in the ileal tissues that were made Ca++-free by incubating the tissues in a physiological salt solution having ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The preincubation of O. majorana at increasing concentrations (0.3 and 1 mg/mL) shifted towards the right of the CaCl2-mediated concentration-response curves (CRCs) with suppression of the maximum contraction. Similarly, verapamil also caused non-specific suppression of Ca++ CRCs towards the right, as expected. CONCLUSIONS: Thus, this study conducted an analysis to determine the chemical constituents of the leaf extract of O. majorana and provided a detailed mechanistic basis for the medicinal use of O. majorana in hyperactive gut motility disorders.


Asunto(s)
Antidiarreicos , Origanum , Ratas , Ratones , Animales , Antidiarreicos/farmacología , Antidiarreicos/uso terapéutico , Antidiarreicos/química , Yeyuno , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Aceite de Ricino/farmacología , Aceite de Ricino/uso terapéutico , Diarrea/tratamiento farmacológico , Verapamilo/farmacología , Verapamilo/uso terapéutico , Canales de Calcio , Espasmo/tratamiento farmacológico
2.
J Pharm Pharmacol ; 76(1): 57-63, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-37978932

RESUMEN

OBJECTIVES: To investigate the effect of blackseed oil (BSO) single dose on prednisolone pharmacokinetics via p-gp inhibition. METHODS: Three groups of rats (n = 5) were orally administered the vehicle, verapamil (50 mg/kg) or BSO (5 ml/kg) 15 min prior to prednisolone (5 mg/kg) administration. Blood samples were collected over 24 h and quantified. Non-compartmental analysis was employed to calculate maximum plasma concentration (Cmax), area under the curve (AUC0-last), time to reach Cmax (Tmax), apparent clearance (CL/F), and half-life (t1/2). Statistical significance was considered at p<0.05. RESULTS: Prednisolone Cmax and AUC0-last decreased by 65% and 25% in the BSO group compared to the negative control (P < .0001, .0029, respectively) while they increased by 1.75-folds and 8-folds in verapamil group (P < .0001). Tmax was achieved at 0.16, 0.5, and 0.25 h in the negative control, verapamil, and BSO-treated groups, respectively. CL/F in the treatment group was 1.3-fold and 10-fold higher compared to the negative and positive control, respectively, whereas the t1/2 remained comparable. CONCLUSION: Administration of BSO decreased prednisolone Cmax and AUC0-last in rats indicating that there is a herb-drug interaction; however, p-gp inhibition cannot be concluded. Patients relying on folk medicine in chronic illnesses treatment might need to avoid combining BSO with prednisolone.


Asunto(s)
Interacciones de Hierba-Droga , Prednisolona , Humanos , Ratas , Animales , Área Bajo la Curva , Verapamilo/farmacología , Aceites de Plantas/farmacología , Administración Oral
3.
PLoS One ; 18(10): e0293194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37883448

RESUMEN

Tuberculosis stands as a prominent cause of mortality in developing countries. The treatment of tuberculosis involves a complex procedure requiring the administration of a panel of at least four antimicrobial drugs for the duration of six months. The occurrence of treatment failure after the completion of a standard treatment course presents a serious medical problem. The purpose of this study was to evaluate antimicrobial drug resistant features of Mycobacterium tuberculosis associated with treatment failure. Additionally, it aimed to evaluate the effectiveness of second line drugs such as amikacin, linezolid, moxifloxacin, and the efflux pump inhibitor verapamil against M. tuberculosis isolates associated with treatment failure. We monitored 1200 tuberculosis patients who visited TB centres in Lahore and found that 64 of them were not cured after six months of treatment. Among the M. tuberculosis isolates recovered from the sputum of these 64 patients, 46 (71.9%) isolates were simultaneously resistant to rifampicin and isoniazid (MDR), and 30 (46.9%) isolates were resistant to pyrazinamide, Resistance to amikacin was detected in 17 (26,5%) isolates whereas resistance to moxifloxacin and linezolid was detected in 1 (1.5%) and 2 (3.1%) isolates respectively. Among MDR isolates, the additional resistance to pyrazinamide, amikacin, and linezolid was detected in 15(23.4%), 4(2.6%) and 1(1.56%) isolates respectively. One isolate simultaneously resistant to rifampicin, isoniazid, amikacin, pyrazinamide, and linezolid was also identified. In our investigations, the most frequently mutated amino acid in the treatment failure group was Serine 315 in katG. Three novel mutations were detected at codons 99, 149 and 154 in pncA which were associated with pyrazinamide resistance. The effect of verapamil on the minimum inhibitory concentration of isoniazid and rifampicin was observed in drug susceptible isolates but not in drug resistant isolates. Rifampicin and isoniazid enhanced the transcription of the efflux pump gene rv1258 in drug susceptible isolates collected from the treatment failure patients. Our findings emphasize a high prevalence of MDR isolates linked primarily to drug exposure. Moreover, the use of amikacin as a second line drug may not be the most suitable choice in such cases.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Isoniazida/uso terapéutico , Pirazinamida/uso terapéutico , Rifampin/uso terapéutico , Linezolid/farmacología , Linezolid/uso terapéutico , Amicacina/farmacología , Amicacina/uso terapéutico , Moxifloxacino/uso terapéutico , Moxifloxacino/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Pruebas de Sensibilidad Microbiana , Verapamilo/farmacología , Mutación
4.
Analyst ; 148(20): 5133-5143, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37695027

RESUMEN

Proper regulation of the in vitro cell culture environment is essential for disease modelling and drug toxicity screening. The main limitation of well plates used for cell culture is that they cannot accurately maintain energy sources and compounds needed during cell growth. Herein, to understand the importance of perfusion in cardiomyocyte culture, changes in contractile force and heart rate during cardiomyocyte growth are systematically investigated, and the results are compared with those of a perfusion-free system. The proposed perfusion system consists of a Peltier refrigerator, a peristaltic pump, and a functional well plate. A functional well plate with 12 wells is made through injection moulding, with two tubes integrated in the cover for each well to continuously circulate the culture medium. The contractile force of cardiomyocytes growing on the cantilever surface is analysed through changes in cantilever displacement. The maturation of cardiomyocytes is evaluated through fluorescence staining and western blot; cardiomyocytes cultured in the perfusion system show greater maturity than those cultured in a manually replaced culture medium. The pH of the culture medium manually replaced at intervals of 3 days decreases to 6.8, resulting in an abnormal heartbeat, while cardiomyocytes cultured in the perfusion system maintained at pH 7.4 show improved contractility and a uniform heart rate. Two well-known ion channel blockers, verapamil and quinidine, are used to measure changes in the contractile force of cardiomyocytes from the two systems. Cardiomyocytes in the perfusion system show greater stability during drug toxicity screening, proving that the perfusion system provides a better environment for cell growth.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Miocitos Cardíacos , Humanos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Técnicas de Cultivo de Célula , Verapamilo/farmacología , Evaluación Preclínica de Medicamentos , Células Cultivadas
5.
J Ethnopharmacol ; 317: 116696, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37315649

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa webbiana (Family: Rosaceae) is used by South Asian herbalists to treat gastrointestinal and respiratory disorders. AIM OF THE STUDY: This research aimed at multiple targets to verify R. webbiana for treating diarrhea and asthma. In vitro, in vivo, and in silico experiments were planned to demonstrate the antispasmodic and bronchodilator potential of R. webbiana. MATERIALS AND METHODS: The bioactive compounds of R. webbiana were identified and quantified through LC ESI-MS/MS and HPLC. These compounds were predicted for muti-mechanisms of bronchodilator and antispasmodic potential in network pharmacology and molecular docking. In vitro methods (isolated rabbit trachea, bladder, and jejunum tissues) confirmed these multi-mechanisms for antispasmodic and bronchodilator effects. Antiperistalsis, antidiarrheal, and antisecretory experiments were conducted in in-vivo experiments. RESULTS: The phytochemical analysis indicates the presence of rutin (742.91 µg/g), kaempferol (726.32 µg/g), and quercitrin (688.20 µg/g) in Rw. EtOH. These bioactive compounds in network pharmacology interfere with the pathogenic genes of diarrhea and asthma, which are the members of calcium-mediated signaling pathways and showed the stronger binding affinity towards voltage-gated L-type calcium channels, myosin light chain-kinase, Calcium calmodulin-dependent-kinase, Phosphodiesterase-4, and phosphoinositide phospholipase-C in molecular docking. Rw. EtOH elicited a spasmolytic response in isolated jejunum, trachea, and urine preparations by relaxing K+ (80 mM) and CCh (1 µM) spastic contractions. Additionally, it suppressed calcium concentration-response curves to the right, like verapamil. Like dicyclomine, it caused a rightward parallel shift of the CCh curves, followed by a non-parallel shift at higher concentrations with suppression of the maximal response. Like papaverine, it also caused isoprenaline-induced inhibitory CRCs to shift to the left. Verapamil did not potentiate isoprenaline-induced inhibitory CRCs, although it was more efficacious against K+ (80 mM) than CCh (1 µM)-induced contractions. R. webbiana EtOH extract exhibited complete antiperistalsis (21.55%), antidiarrheal (80.33%), and antisecretory (82.59±0.60) activities in vivo experiments at the dose of 300 mg/kg. CONCLUSION: Thus, Rw. EtOH modulated multiple pathways, produced calcium antagonistic, anticholinergic, and phosphodiesterase inhibitory actions, and had antidiarrheal and bronchodilator effects.


Asunto(s)
Asma , Rosa , Animales , Conejos , Antidiarreicos/farmacología , Antidiarreicos/uso terapéutico , Antidiarreicos/química , Parasimpatolíticos/uso terapéutico , Broncodilatadores/farmacología , Isoproterenol , Simulación del Acoplamiento Molecular , Calcio/metabolismo , Estudios Prospectivos , Espectrometría de Masas en Tándem , Extractos Vegetales/efectos adversos , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Verapamilo/farmacología , Yeyuno , Fármacos Gastrointestinales/farmacología , Canales de Calcio , Asma/tratamiento farmacológico
6.
Pak J Pharm Sci ; 36(1): 17-22, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36967492

RESUMEN

Platanus orientalis is traditionally used to treat diarrhea and spasm. However, studies are lacking on its mechanism of action in diarrhea and spasm. Pharmacological in-vivo activities were performed. In-vitro activities were carried out to explore the underlying mechanism(s) of action in isolated tissue preparations of mice jejunum and ileum. Crude extract of Platanus orientalis, loperamide and verapamil were used. The crude extract provided dose-dependent protection in castor oil diarrhea like verapamil and reduced the intestinal fluid accumulation and charcoal meal transit distance. In-vitro studies produced spasmolytic effect on the spontaneous (EC50 value=0.21mg/mL), high K+ (EC50 value=0.37mg/mL) and carbachol (CCh)-induced contractions 5.35mg/mL (3.88-6.85) respectively. The quiescent ileum responded well to the high K+ and carbachol (CCh)-induced contractions when tested against crude extract. It caused inhibition of the induced contraction with EC50 values of 0.20mg/mL (0.10-0.30) and 3.25mg/mL (2-4.5) respectively and showed potent effect against CCh-induced contractions. Calcium response curves produced a similar effect to verapamil. The crude extract of Platanus orientalis remained safe up to 5g/kg dose.


Asunto(s)
Antidiarreicos , Extractos Vegetales , Ratones , Animales , Antidiarreicos/farmacología , Antidiarreicos/uso terapéutico , Carbacol/farmacología , Extractos Vegetales/uso terapéutico , Yeyuno , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Parasimpatolíticos/farmacología , Verapamilo/farmacología , Músculo Liso , Espasmo/tratamiento farmacológico
7.
Phytomedicine ; 113: 154689, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36921428

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) at low level promotes cell survival through lysosome induced autophagy induction. Glucose stress induced acidosis, hypoxia, ROS, upregulates markers related to cancer stemness and multidrug resistance. Also, lysosomal upregulation is proposed to be one of the important indicators of cell survival under ROS induced stress. Studies supported that, stimulation of Lysosome-TFEB-Ca2+ cascade has important role in induction of chemoresistance and survival of cancerous cells. PURPOSE: To observe the effect of synergistic drug combination, Kaempferol and Verapamil on markers regulating chemoevasion, tumor stemness & acidosis as well as lysosome upregulation pathways, under low as well as high glucose conditions. HYPOTHESIS: Based on our earlier observation as well as previous reports, we hypothesized, our drug combination Kaempferol with Verapamil could attenuate markers related to chemoevasion, tumor stemness & acidosis as well as lysosome-TFEB-Ca2+ pathway, all of which have indispensable association and role in chemoresistance. METHODS: RNA and protein expression of candidate genes, along with ROS production and Ca2+ concentrations were measured in ex vivo models in altered glucose conditions upon treatment with KV. Also, computational approaches were utilized to hypothesize the mechanism of action of the drug combination. PCR, IHC, western blotting and molecular docking approaches were used in this study. RESULTS: The overproduction of ROS by our candidate drugs KV, downregulated the chemoresistance and tumor acidosis markers along with ATP1B1 and resulted in lysosomal disruption with reduction of Ca2+ release, diminishing TFEB expression under low glucose condition. An anomalous outcome was observed in high glucose conditions. We also observed KV promoted the overproduction of ROS levels thereby inducing autophagy-mediated cell death through the upregulation of LC3-II and p62 in low glucose conditions. The ex vivo studies also corroborate with in silico study that exhibited the parallel outcome. CONCLUSION: Our ex-vivo and in-silico studies revealed that our candidate drug combination KV, could effectively target several pathways regulating chemoresistance, that were not hitherto studied in the same experimental setup and thus may be endorsed for therapeutic purposes.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama/patología , Verapamilo/farmacología , Calcio/metabolismo , Quempferoles/farmacología , Quempferoles/metabolismo , Simulación del Acoplamiento Molecular , Autofagia , Glucosa/metabolismo , Lisosomas
8.
Mol Med ; 28(1): 139, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435759

RESUMEN

BACKGROUND: Neuroinflammation is a major mechanism in neurodegenerative diseases such as Alzheimer's disease (AD), which is a major healthcare problem. Notwithstanding of ample researches figured out possible molecular mechanisms underlying the pathophysiology of AD, there is no definitive therapeutics that aid in neuroprotection. Therefore, searching for new agents and potential targets is a critical demand. We aimed to investigate the neuroprotective effect of verapamil (VRP) against lipopolysaccharide (LPS)-induced neuroinflammation in mice and whether the time of VRP administration could affect its efficacy. METHODS: Forty male albino mice were used and were divided into normal control, LPS only, morning VRP, and evening VRP. Y-maze and pole climbing test were performed as behavioral tests. Hematoxylin and eosin together with Bielschowsky silver staining were done to visualize neuroinflammation and phosphorylated tau protein (pTAU); respectively. Additionally, the state of mitochondria, the levels of microglia-activation markers, inflammatory cytokines, intracellular Ca2+, pTAU, and Ca2+-dependent genes involving Ca2+/ calmodulin dependent kinase II (CAMKII) isoforms, protein kinase A (PKA), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF), with the level of VRP in the brain tissue were measured. RESULTS: LPS successfully induced neuroinflammation and hyperphosphorylation of tau protein, which was indicated by elevated levels of microglia markers, inflammatory cytokines, and intracellular Ca2+ with compromised mitochondria and downregulated CAMKII isoforms, PKA, CREB and BDNF. Pretreatment with VRP showed significant enhancement in the architecture of the brain and in the behavioral tests as indicated by the measured parameters. Moreover, morning VRP exhibited better neuroprotective profile compared to the evening therapy. CONCLUSIONS: VRP highlighted a multilevel of neuroprotection through anti-inflammatory activity, Ca2+ blockage, and regulation of Ca2+-dependent genes. Furthermore, chronotherapy of VRP administration should be consider to achieve best therapeutic efficacy.


Asunto(s)
Lipopolisacáridos , Fármacos Neuroprotectores , Animales , Ratones , Masculino , Lipopolisacáridos/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio , Proteínas tau , Verapamilo/farmacología , Enfermedades Neuroinflamatorias , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cronoterapia de Medicamentos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico , Citocinas
9.
Pak J Pharm Sci ; 35(4(Special)): 1201-1208, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36218098

RESUMEN

The aim of this study was to analyze gastrointestinal, respiratory and vascular pharmacological effects of 70% hydro-alcoholic extract of Calligonum polygonoides (Cp. Cr) in animal models. All the procedures were carried-out as per previous literature with slight modification where necessary. It was found that Cp. Cr affected significant relaxation of spontaneous and K+ (80 mM) induced contractions. The results showed a corresponding shift of calcium concentration response curves. Similarly Cp. Cr showed relaxant effect on trachea in carbachol (Cch) induced tracheal contractions. Moreover, contractions induced by phenylephrine (1µM) in quarantine rabbit aortic preparations causes Cp. Cr induced relaxation of aortal contractions. Verapamil was used as a standard calcium channel blocker. The findings of this study suggested vasodilator, bronchodilator and spasmolytic effects of Cp. Cr.


Asunto(s)
Parasimpatolíticos , Polygonaceae , Animales , Broncodilatadores/farmacología , Calcio , Bloqueadores de los Canales de Calcio/farmacología , Carbacol/farmacología , Yeyuno , Modelos Animales , Parasimpatolíticos/farmacología , Fenilefrina/farmacología , Extractos Vegetales/farmacología , Conejos , Tráquea , Vasodilatadores/farmacología , Verapamilo/farmacología
10.
Molecules ; 27(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36144661

RESUMEN

This present study aimed to delineate Rumex hastatus D. Don crude extract (Rh.Cr), n-Hexane, ethyl acetate, aqueous fractions (Rh.n-Hex, Rh.ETAC, Rh.Aq) and rutin for antidiarrheal, antisecretory effects, anti-spasmodic, gastrointestinal transient time, anti H. pylori, antiulcer effects, and toxicology. The preliminary phytochemical analysis of Rumex hastatus showed different phytoconstituents and shows different peaks in GC-MC chromatogram. Rumex hastatus crude extract (Rh.Cr), fractions, and rutin attributed dose-dependent (50-300 mg/kg) protection (0-100%) against castor oil-induced diarrhea and dose-dependently inhibited intestinal fluid secretions in mice. They decreased the distance traversed by charcoal in the gastrointestinal transit model in rats. In rabbit jejunum preparations, Rh.Cr and Rh.ETAC caused a concentration-dependent relaxation of both spontaneous and K+ (80 mM)-induced contractions at a similar concentration range, whereas Rh.n-Hex, rutin, and verapamil were relatively potent against K+-induced contractions and shifted the Ca2+ concentration-response curves (CRCs) to the right, Rh.Cr (0.3-1 mg/mL) and Rh.ETAC (0.1-0.3 mg/mL) shifted the isoprenaline-induced inhibitory CRCs to the left. Rh.n-Hex, Rh.ETAC and rutin showed anti-H. pylori effect, also shows an inhibitory effect against H+/K+-ATPase. Rumex hastatus showed gastroprotective and antioxidant effects. Histopathological evaluation showed improvement in cellular architecture and a decrease in the expression of inflammatory markers such as, cyclooxygenase (COX-2), tumor necrosis factor (TN,F-α) and phosphorylated nuclear factor kappa B (p-NFƙB), validated through immunohistochemistry and ELISA techniques. In RT-PCR it decreases H+/K+-ATPase mRNA levels. Rumex hastatus was found to be safe to consume up to a dose of 2000 mg/kg in a comprehensive toxicity profile. Docking studies revealed that rutin against H+/K+-ATPase pump and voltage-gated L-type calcium channel showed E-values of -8.7 and -9.4 Kcal/mol, respectively. MD simulations Molecular Mechanics Poisson Boltzmann surface area and molecular mechanics Generalized Born surface area (MMPBSA/GBSA) findings are consistent with the in-vitro, in-vivo and docking results.


Asunto(s)
Enfermedades Gastrointestinales , Rumex , Animales , Ratones , Conejos , Ratas , Adenosina Trifosfatasas , Antidiarreicos/química , Antioxidantes/farmacología , Canales de Calcio Tipo L , Aceite de Ricino , Carbón Orgánico/farmacología , Ciclooxigenasa 2 , Enfermedades Gastrointestinales/tratamiento farmacológico , Isoproterenol/farmacología , Yeyuno , FN-kappa B/farmacología , Parasimpatolíticos/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , ARN Mensajero , Rumex/química , Rutina/farmacología , Factores de Necrosis Tumoral , Verapamilo/farmacología
11.
Cells ; 11(16)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36010573

RESUMEN

Congenital long QT syndrome is a type of inherited cardiovascular disorder characterized by prolonged QT interval. Patient often suffer from syncopal episodes, electrocardiographic abnormalities and life-threatening arrhythmia. Given the complexity of the root cause of the disease, a combination of clinical diagnosis and drug screening using patient-derived cardiomyocytes represents a more effective way to identify potential cures. We identified a long QT syndrome patient carrying a heterozygous KCNQ1 c.656G>A mutation and a heterozygous TRPM4 c.479C>T mutation. Implantation of implantable cardioverter defibrillator in combination with conventional medication demonstrated limited success in ameliorating long-QT-syndrome-related symptoms. Frequent defibrillator discharge also caused deterioration of patient quality of life. Aiming to identify better therapeutic agents and treatment strategy, we established a patient-specific iPSC line carrying the dual mutations and differentiated these patient-specific iPSCs into cardiomyocytes. We discovered that both verapamil and lidocaine substantially shortened the QT interval of the long QT syndrome patient-specific cardiomyocytes. Verapamil treatment was successful in reducing defibrillator discharge frequency of the KCNQ1/TRPM4 dual mutation patient. These results suggested that verapamil and lidocaine could be alternative therapeutic agents for long QT syndrome patients that do not respond well to conventional treatments. In conclusion, our approach indicated the usefulness of the in vitro disease model based on patient-specific iPSCs in identifying pharmacological mechanisms and drug screening. The long QT patient-specific iPSC line carrying KCNQ1/TRPM4 dual mutations also represents a tool for further understanding long QT syndrome pathogenesis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Canales Catiónicos TRPM , Arritmias Cardíacas/patología , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/patología , Canal de Potasio KCNQ1/genética , Lidocaína/farmacología , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Mutación/genética , Miocitos Cardíacos/patología , Medicina de Precisión , Calidad de Vida , Canales Catiónicos TRPM/genética , Verapamilo/farmacología
12.
J Ethnopharmacol ; 298: 115651, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998784

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Since pre-Columbian era, the resin of Araucaria araucana tree has been used traditionally for the treatment of ulcers and wounds. Araucaria species have also been used to treat inflammation, respiratory problems, viral infections, ulcers, and rheumatoid, cardiovascular, and neurological disorders. AIMS AND OBJECTIVE: Due to its popular use, the authors aimed to scrutinize the potential of this plant as an antispasmodic and an antiemetic agent. Furthermore broncho- and vasodilatory effects of this plant was explored to rationalize its folkloric uses. MATERIALS AND METHODS: Araucaria araucana crude extract (Aa.Cr) was evaluated in isolated preparations of rabbit jejunum, trachea, aorta, and atria to investigate the antispasmodic, bronchodilator, and vasodilator effects. The potential mechanistic approaches were compared with the standard drug 'verapamil'. The antiemetic activity was determined and compared with the standard drug 'domperidone' via chick emesis model. RESULTS: Aa.Cr dose-dependently relaxed both spontaneous and K+-induced contractions in the isolated jejunum preparations of rabbits. In concentration-response curves of calcium (Ca++), Aa.Cr also triggered the rightward shift like verapamil. Applying carbachol and phenylephrine (1 µM) and K+ (80 mM) to the isolated tracheal and aortic tissue preparation, respectively, resulted in broncho- and vasodilatory activities, respectively which may be due to the inhibition of Ca++ channels. Aa.Cr inhibited atrial force and spontaneous contractions in the rabbit's right atria. Aa.Cr exhibited significant antiemetic activity (P < 0.001 vs. saline) in dose-dependent (50-150 mg/kg) manner like domperidone. In silico molecular docking was performed to investigate the biological targets of purified components of Aa.Cr which revealed that cadinol dominantly targets ß2 receptors to cause bronchodilation, however, eudesmin binds non-specifically to all the selected targets, while secoisolariciresinol mediated high hydrogen bonding with muscarinic receptors (M1 and M3) and Ca++ channels, thus shows the suggested mechanistic pathways of targeted activities. CONCLUSIONS: The results of this study indicates that Aa.Cr may exhibit antispasmodic activity, bronchodilation, and vasodilation by inhibiting voltage-dependent Ca++ channels and release of subcellular calcium. This explains its folkloric use in hypertension, bronchospasms, gastrointestinal spasms, and emesis.


Asunto(s)
Antieméticos , Parasimpatolíticos , Animales , Antieméticos/farmacología , Araucaria araucana , Broncodilatadores/farmacología , Broncodilatadores/uso terapéutico , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio , Fármacos Gastrointestinales/farmacología , Yeyuno , Simulación del Acoplamiento Molecular , Parasimpatolíticos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Conejos , Tráquea , Úlcera/tratamiento farmacológico , Vasodilatadores/farmacología , Vasodilatadores/uso terapéutico , Verapamilo/farmacología , Vómitos/tratamiento farmacológico
13.
Pharm Biol ; 60(1): 1317-1330, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35811507

RESUMEN

CONTEXT: Solanaceae glycoalkaloids (SGAs) possess cardiomodulatory activity. OBJECTIVE: This study investigated the potential interaction between verapamil and glycoalkaloids. MATERIAL AND METHODS: The cardioactivity of verapamil and glycoalkaloids (α-solanine and α-chaconine) was tested in adult beetle (Tenebrio molitor) myocardium in vitro using microdensitometric methods. The myocardium was treated with pure substances and mixtures of verapamil and glycoalkaloids for 9 min with saline as a control. Two experimental variants were used: simultaneous application of verapamil and glycoalkaloids or preincubation of the myocardium with one of the compounds followed by perfusion with a verapamil solution. We used 9 × 10-6-5 × 10-5 M and 10-9-10-5 M concentration for verapamil and glycoalkaloids, respectively. RESULTS: Verapamil, α-solanine and α-chaconine showed cardioinhibitory activity with IC50 values equal to 1.69 × 10-5, 1.88 × 10-7 and 7.48 × 10-7 M, respectively. When the glycoalkaloids were applied simultaneously with verapamil, an antagonistic effect was observed with a decrease in the maximal inhibitory effect and prolongation of t50 and the recovery time characteristic of verapamil. We also confirmed the expression of two transcript forms of the gene that encodes the α1 subunit of L-type calcium channels in the myocardium and brain with equal transcription levels of both forms in the myocardium and significant domination of the shorter form in the brain of the insect species tested. DISCUSSION AND CONCLUSIONS: The results show that attention to the composition of the daily diet during therapy with various drugs is particularly important. In subsequent studies, the nature of interaction between verapamil and SGAs on the molecular level should be checked, and whether this interaction decreases the efficiency of cardiovascular therapy with verapamil in humans.


Asunto(s)
Solanaceae , Solanina , Solanum tuberosum , Solanina/análogos & derivados , Solanina/farmacología , Verapamilo/farmacología
14.
Clin Biomech (Bristol, Avon) ; 98: 105719, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35882095

RESUMEN

BACKGROUND: Type 2 diabetes mellitus is a global epidemic disease, which leads to a severe complication named increased bone fracture risk. This study aimed to explore if verapamil treatment could improve bone quality of type 2 diabetes mellitus. METHODS: Rat models of control, diabetes and verapamil treatment with 4/12/24/48 mg/kg/d were established, respectively. Blood glucose was monitored during 12-week treatment, and bilateral tibiae were collected. Microstructural images of bilateral metaphyseal cancellous bone and high-resolution images of cortical bone of left tibial shafts were obtained by micro-computed tomography. Fatigue properties of bone were evaluated via cyclic compressive tests of right tibial shafts. FINDINGS: Verapamil treatment had no significant effect on blood glucose, but blood glucose tended to decline with the increase of verapamil-treated time and dose. Compared with controls, osteocyte lacunar and canal porosities in diabetes and verapamil-treated groups were significantly decreased (P < 0.05), trabecular separation and degree of anisotropy were significantly increased (P < 0.05), while trabecular tissue mineral density, trabecular bone volume fraction and trabecular number in verapamil-treated (48 mg/kg/d) group were significantly higher than those in diabetes (P < 0.05). Compared with diabetes, initial compressive elastic moduli in verapamil-treated (12/24/48 mg/kg/d) groups were significantly increased (P < 0.05), while secant modulus degradations in verapamil-treated (24/48 mg/kg/d) groups were significantly decreased (P < 0.05). INTERPRETATION: Verapamil could improve bone microstructure and fatigue properties in type 2 diabetic rats; and high-dose verapamil presented a significant effect on improving bone quality. These findings provided a new possibility for preventing the high bone fracture risk of type 2 diabetes mellitus in clinics.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Fracturas Óseas , Animales , Glucemia , Densidad Ósea , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratas , Verapamilo/farmacología , Verapamilo/uso terapéutico , Microtomografía por Rayos X
15.
J Nat Med ; 76(4): 796-802, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35614289

RESUMEN

The pharmacological activities of C19-diterpenoid alkaloids are related to their basic skeletons (e.g., aconitine-type or lycoctonine-type). Also, few studies have been reported on the chemosensitizing effects of diterpenoid alkaloids. Consequently, this study was aimed at determining the chemosensitizing effects of synthetic derivatives of lycoctonine-type C19-diterpenoid alkaloids on a P-glycoprotein (P-gp)-overexpressing multidrug-resistant (MDR) cancer cell line KB-VIN. The acyl-derivatives of delpheline and delcosine showed moderate cytotoxicity against chemosensitive cancer cell lines. Among non-cytotoxic synthetic analogs (1-14), several derivatives effectively and significantly sensitized MDR cells by interfering with the drug transport function of P-gp to three anticancer drugs, vincristine, paclitaxel, and doxorubicin. The chemosensitizing effect of derivatives 2, 4, and 6 on KB-VIN cells against vincristine were more potent than 5 µM verapamil, and derivatives 4 and 13 were more effective than 5 µM verapamil for paclitaxel. Among them, 2 in particular increased the sensitivity of KB-VIN cells to vincristine by 253-fold.


Asunto(s)
Alcaloides , Diterpenos , Neoplasias , Alcaloides/farmacología , Diterpenos/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Paclitaxel/farmacología , Verapamilo/farmacología , Vincristina/farmacología
16.
Nat Prod Res ; 36(16): 4238-4242, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34652246

RESUMEN

The antidiarrheal effect of methanolic extract of Trillium govanianum Wall. ex D. Don (Melanthiaceae alt. Trilliaceae) was studied at doses of 12.5, 25, and 50 mg/kg in different animal models of diarrhea including castor oil (6 mL/kg), magnesium sulfate (2 gm/kg), sodium picosulfate (2 mL/kg) and lactitol (0.25 mL/kg). The antispasmodic effect of T. govanianum was studied on isolated rabbit's jejunum, using acetylcholine as tissue stabiliser and verapamil as calcium channel blocker. T. govanianum attenuated the diarrhea by producing a significant decrease in the number and weight of stool, and an increase in stool latency time. T. govanianum completely inhibited both spontaneous as well as high potassium induced contractions of isolated rabbit's jejunum, which was analogous to verapamil. Moreover, T. govanianum produced a right shift in calcium concentration response curve, confirming its calcium channel blocking activity. These findings provide scientific ground to its medicinal use in diarrhea and gut spasms.


Asunto(s)
Antidiarreicos , Trillium , Animales , Antidiarreicos/farmacología , Calcio , Canales de Calcio/farmacología , Canales de Calcio/uso terapéutico , Diarrea/tratamiento farmacológico , Yeyuno/fisiología , Parasimpatolíticos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Conejos , Rizoma , Verapamilo/farmacología , Verapamilo/uso terapéutico
17.
Molecules ; 26(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361789

RESUMEN

Isobavachalcone (IBC) is an active substance from the medicinal plant Psoralea corylifolia. This prenylated chalcone was reported to possess antioxidative, anti-inflammatory, antibacterial, and anticancer activities. Multidrug resistance (MDR) associated with the over-expression of the transporters of vast substrate specificity such as ABCB1 (P-glycoprotein) belongs to the main causes of cancer chemotherapy failure. The cytotoxic, MDR reversing, and ABCB1-inhibiting potency of isobavachalcone was studied in two cellular models: human colorectal adenocarcinoma HT29 cell line and its resistant counterpart HT29/Dx in which doxorubicin resistance was induced by prolonged drug treatment, and the variant of MDCK cells transfected with the human gene encoding ABCB1. Because MDR modulators are frequently membrane-active substances, the interaction of isobavachalcone with model phosphatidylcholine bilayers was studied by means of differential scanning calorimetry. Molecular modeling was employed to characterize the process of membrane permeation by isobavachalcone. IBC interacted with ABCB1 transporter, being a substrate and/or competitive inhibitor of ABCB1. Moreover, IBC intercalated into model membranes, significantly affecting the parameters of their main phospholipid phase transition. It was concluded that isobavachalcone interfered both with the lipid phase of cellular membrane and with ABCB1 transporter, and for this reason, its activity in MDR cancer cells was presumptively beneficial.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Chalconas/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Psoralea/química , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Unión Competitiva , Línea Celular Tumoral , Chalconas/química , Chalconas/aislamiento & purificación , Perros , Combinación de Medicamentos , Resistencia a Antineoplásicos/genética , Expresión Génica , Células HT29 , Humanos , Concentración 50 Inhibidora , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Células de Riñón Canino Madin Darby , Membranas Artificiales , Modelos Moleculares , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Extractos Vegetales/química , Plantas Medicinales , Unión Proteica , Transgenes , Verapamilo/farmacología
18.
Plant Signal Behav ; 16(10): 1929732, 2021 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-34024248

RESUMEN

Rice, a most salt-sensitive cereal plant, adopts diverse pathways to withstand sodium chloride-induced salinity-related adversities. During the present study, attempt was made to understand the role of calcium on metabolite profile of the leaves of salt tolerant rice seedlings of variety of Nonabokra under sodium chloride induced salinity, by Gas Chromatography-Mass Spectrometry-based metabolomics approach. Calcium availability in the seedlings was reduced or enhanced applying inhibitors (vanadyl sulfate, lanthanum chloride, and verapamil) or promoters of calcium influx (calcimycin also known as calcium ionophore A23187) in the sodium chloride (100 mM) supplemented growth medium. Growth medium of ten-day-old seedlings was replaced by sodium chloride supplemented hydroponic solution with promotor or inhibitors of calcium channel. Fifteen days old seedlings were harvested. It was observed that depletion of calcium availability increased the level of serotonin and gentisic acid whereas increased calcium level decreased these metabolites. It was concluded from the results that production of the signaling molecules serotonin and gentisic acids was elevated in calcium-deficient seedlings under salt stress the condition that was considered as control during the experiment. The two signaling molecules probably help this tolerant rice variety Nonabokra to withstand the salt-induced adversities.


Asunto(s)
Canales de Calcio/metabolismo , Gentisatos/metabolismo , Oryza/metabolismo , Fenoles/metabolismo , Hojas de la Planta/metabolismo , Serotonina/metabolismo , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Lantano/farmacología , Oryza/efectos de los fármacos , Tolerancia a la Sal , Plantones/metabolismo , Compuestos de Vanadio/farmacología , Verapamilo/farmacología
19.
J Ethnopharmacol ; 276: 114168, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33932511

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: In folkloric medicine of many cultures, one of the medical uses of Valeriana officinalis Linn is to treat heart-related disease. Recently, it was shown that the ethanol extracts from V. officinalis could effectively prevent auricular fibrillation, and 8-hydroxypinoresinol-4-O-ß-D-glucoside (HPG) from the extracts is one of the two active compounds showing antiarrhythmia activities. AIM OF THE STUDY: The human Kv1.5 channel (hKv1.5) has potential antiarrhythmia activities, and this study arms at investigating the current blocking effects of HPG on hKv1.5 channel. MATERIAL AND METHODS: HPG was obtained from V. officinalis extracts, and hKv1.5 channels were expressed in HEK 293 cells. HPG was perfused while recording the current through hKv1.5 channels. Patch-clamp recording techniques were used to study the effects of HPG at various concentrations (10 µM, 30 µM, and 50 µM) on hKv1.5 channels. RESULTS: The present study demonstrated that HPG inhibited hKv1.5 channel current in a concentration-dependent manner; the higher the concentration, the greater is the inhibition at each depolarization potential. During washout, the channels did not full recover indicating that the un-coupling between HPG and hKv1.5 channels is a slow process. CONCLUSION: HPG may be an effective and safe active ingredient for AF having translational potential.


Asunto(s)
Antiarrítmicos/farmacología , Canal de Potasio Kv1.5/antagonistas & inhibidores , Extractos Vegetales/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Valeriana/química , Potenciales de Acción/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Canal de Potasio Kv1.5/genética , Técnicas de Placa-Clamp , Factores de Tiempo , Verapamilo/farmacología
20.
Phytomedicine ; 85: 153528, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33735724

RESUMEN

BACKGROUND: P-glycoprotein (P-gp) over-expression plays a vital role in not only systemic drug bioavailability but also cancer multi-drug resistance (MDR). Develop functional inhibitors of P-gp can conquer both problems. PURPOSE AND STUDY DESIGN: The aim of the present study was to research the P-gp modulating effects and MDR reversing ability of a novel flavonoid from Fissistigma cupreonitens, the underlying inhibitory mechanisms were further elucidated as well. METHODS: Calcein-AM, rhodamine 123, and doxorubicin were fluorescent substrates for the evaluation of P-gp inhibitory function and detailed drug binding modes. Docking simulation was performed to reveal the in silico molecular bonding. ATPase assay and MDR1 shift assay were adopted to reveal the ATP consumption and conformational change of P-gp. The MDR reversing effects were demonstrated through cytotoxicity, cell cycle, and apoptosis analyses. RESULTS: 5­hydroxy­7,8­dimethoxyflavanone inhibited the efflux of rhodamine 123 and doxorubicin in a competitive manner, and increased the intracellular fluorescence of calcein at a concentration as low as 2.5 µg/ml. 5­hydroxy­7,8­dimethoxyflavanone slightly changed P-gp's conformation and only stimulated ATPase at very high concentration (100 µg/ml). The docking results showed that 5­hydroxy­7,8­dimethoxyflavanone and verapamil exhibited similar binding affinity to P-gp. The MDR reversing effects were prominent in the vincristine group, the reversal folds were 23.01 and 13.03 when combined with 10 µg/ml 5­hydroxy­7,8­dimethoxyflavanone in the P-gp over-expressing cell line (ABCB1/Flp-In™-293) and MDR cancer cell line (KB/VIN), respectively. CONCLUSION: The present study demonstrated that 5­hydroxy­7,8­dimethoxyflavanone was a novel effective flavonoid in the P-gp efflux inhibition and in vitro cancer MDR reversion.


Asunto(s)
Annonaceae/química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Flavonoides/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/metabolismo , Fluoresceínas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Rodamina 123/metabolismo , Verapamilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA