Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Med Sci ; 43(6): 1173-1182, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38153628

RESUMEN

BACKGROUND AND OBJECTIVE: Although drugs are powerful therapeutic agents, they have a range of side effects. These side effects are sometimes cellular and not clinically noticeable. Vildagliptin/metformin hydrochloride is one of the most widely used oral antidiabetic drugs with two active ingredients. In this study, we investigated its harmful effects on the metabolic activation system in healthy human pancreatic cells "hTERT-HPNE", and we aimed to improve these harmful effects by natural products. To benefit from the healing effect, we used the unique natural products produced by the bees of the Anzer Plateau in the Eastern Black Sea Region of Turkey. METHODS: Cytotoxic and genotoxic effects of the drug were investigated by different tests, such as MTT, flow cytometry-apoptosis and comet assays. Anzer honey, pollen and propolis were analyzed by gas chromatography/mass spectrometry (G/C-MS). A total of 19 compounds were detected, constituting 99.9% of the samples. RESULTS: The decrease in cell viability at all drug concentrations was statistically significant compared to the negative control (P<0.05). A statistically significant decrease was detected in the apoptosis caused by vildagliptin/metformin hydrochloride with the supplementation of Anzer honey, pollen and propolis in hTERT-HPNE cells (P<0.05). CONCLUSION: This study can contribute to other studies testing the healing properties of natural products against the side effects of oral antidiabetics in human cells. In particular, Anzer honey, pollen and propolis can be used as additional foods to maintain cell viability and improve heal damage and can be evaluated against side effects in other drug studies.


Asunto(s)
Antineoplásicos , Productos Biológicos , Miel , Metformina , Própolis , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología , Vildagliptina/farmacología , Própolis/farmacología , Daño del ADN , Polen
2.
Life Sci ; 322: 121645, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37001804

RESUMEN

Benign prostatic hyperplasia (BPH) is a prevalent illness in older adults. It is well-recognized that testosterone is essential in the onset of BPH. Vildagliptin (Vilda), a dipeptidyl peptidase-IV inhibitor, has been shown to have anti-inflammatory and antioxidant effects. In this study, we studied the effects of vildagliptin on testosterone-induced BPH in rats and its underlying mechanisms. Forty male Wistar rats were allocated into four groups (n = 10): CTRL, Vilda, BPH, and BPH + Vilda groups. Our results revealed that vildagliptin treatment considerably lessened the prostate weight, prostate index, serum levels of prostate-specific antigen, 5α-reductase activity, and DHT levels compared to the testosterone group. Furthermore, vildagliptin treatment inhibited the expression of HMGB1, PI3K/Akt/NF-κB, and TNF-α signaling pathways in the prostate tissue of diseased rats. Additionally, vildagliptin treatment increased the expression of Nrf-2 and HO-1, reduced GSH levels, and lowered MDA levels. Besides, vildagliptin noticeably scaled up the level of cleaved caspase-3 enzyme and, conversely, the protein expression of proliferating cell nuclear antigen (PCNA). Correspondingly, vildagliptin counteracts testosterone-induced histological irregularities in rats' prostates. These findings suggest that vildagliptin may be a potential prophylactic approach to avoid BPH.


Asunto(s)
Proteína HMGB1 , Hiperplasia Prostática , Humanos , Ratas , Masculino , Animales , Hiperplasia Prostática/inducido químicamente , Hiperplasia Prostática/tratamiento farmacológico , Testosterona/metabolismo , Próstata/patología , FN-kappa B/metabolismo , Vildagliptina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína HMGB1/metabolismo , Hiperplasia/patología , Ratas Sprague-Dawley , Ratas Wistar , Extractos Vegetales/farmacología , Transducción de Señal
3.
Life Sci ; 266: 118870, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310040

RESUMEN

AIM: Betel-nut, a popular masticatory among Southeast Asian populations is a class I carcinogen, previously associated with dyslipidemia and aberrant lipid metabolism, and is reported to be used more frequently by females, than males. This study investigates the potential of repurposing the anti-diabetic drug, vildagliptin, a dipeptidyl peptidase-4 inhibitor, for alleviating the oncogenic condition in female Swiss Albino mice administered an aqueous extract of betel-nut (AEBN) orally (2 mg ml-1) for 24 weeks. MAIN METHODS: Tissues were investigated by histopathological, immunohistochemical and apoptosis assays. Biochemical analyses of oxidative stress markers and lipid profile were performed using different tissues and sera. The expressions of different proteins involved in lipid metabolism and oncogenic pathways were evaluated by Western blotting. KEY FINDINGS: AEBN induced carcinogenesis primarily in the liver by significantly impairing AMPK signaling, inducing oxidative stress, activating Akt/mTOR signaling, increasing Ki-67 immunoreactivity and cyclin D1 expression, and significantly diminishing apoptosis. Co-administration of AEBN with vildagliptin (10 mg kg-1 body weight) for 8 weeks reduced liver dysplasia, and significantly decreased free palmitic acid, increased free oleic acid, normalized lipid profile, decreased oxidative stress, cyclin D1 expression, Ki-67 immunoreactivity, and Bcl2 expression, and increased the ratio of apoptotic/non-apoptotic cells. Mechanistically, vildagliptin elicited these physiological and molecular alterations by restoring normal AMPK signaling and reducing the cellular expressions of FASN and HMGCR, restoring AMPK-dependent phosphorylation of p53 at Ser-15 and reducing Akt/mTOR signaling. SIGNIFICANCE: These results indicate that vildagliptin may alleviate betel-nut induced carcinogenesis in the liver of female mice.


Asunto(s)
Areca/toxicidad , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Neoplasias Hepáticas Experimentales/prevención & control , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/toxicidad , Vildagliptina/farmacología , Animales , Carcinogénesis , Dislipidemias/inducido químicamente , Dislipidemias/patología , Dislipidemias/prevención & control , Femenino , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/patología , Ratones , Transducción de Señal
4.
Molecules ; 25(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322431

RESUMEN

Diabetes is a major health problem that is associated with high risk of various complications. Medicinal plants hold great promise against diabetes. The traditional use of Cleome droserifolia as an antidiabetic agent was correlated to its flavonol glycosides content. In the current study, five major flavonol glycosides appeared on the RP-HPLC chromatogram of the aqueous extract namely; quercetin-3-O-ß-d-glucosyl-7-O-α-rhamnoside (1), isorhamnetin-7-O-ß-neohesperidoside (2), isorhamnetin-3-O-ß-d-glucoside (3) kaempferol-4'-methoxy-3,7-O-α-dirhamnoside (4), and isorhamnetin-3-O-α-(4″-acetylrhamnoside)-7-O-α-rhamnoside (5). The inhibitory activities of these compounds were tested in vitro against several enzymes involved in diabetes management. Only the relatively less polar methoxylated flavonol glycosides (4, 5) showed mild to moderate α-amylase and α-glucosidase inhibitory activities. Compounds 1-4 displayed remarkable inhibition of dipeptidyl peptidase IV (DPPIV) enzyme (IC50 0.194 ± 0.06, 0.573 ± 0.03, 0.345 ± 0.02 and 0.281 ± 0.05 µg/mL, respectively) comparable to vildagliptin (IC50 0.154 ± 0.02 µg/mL). Moreover, these compounds showed high potential in preventing diabetes complications through inhibiting aldose reductase enzyme and combating oxidative stress. Both isorhamnetin glycoside derivatives (2, 3) exhibited the highest activities in aldose reductase inhibition and compound 2 (IC50 5.45 ± 0.26 µg/mL) was even more potent than standard quercetin (IC50 7.77 ± 0.43 µg/mL). Additionally, these flavonols exerted excellent antioxidant capacities through 2, 2-diphenyl-1-picrylhydrazil (DPPH) and ferric reducing antioxidant (FRAP) assays.


Asunto(s)
Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Glicósidos/farmacología , Aldehído Reductasa/química , Aldehído Reductasa/metabolismo , Antioxidantes/química , Compuestos de Bifenilo/química , Química Farmacéutica/métodos , Cromatografía Líquida de Alta Presión , Cleome , Diseño de Fármacos , Depuradores de Radicales Libres , Humanos , Hipoglucemiantes , Técnicas In Vitro , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Modelos Químicos , Estrés Oxidativo , Picratos/química , Vildagliptina/farmacología , alfa-Amilasas/química , alfa-Glucosidasas/metabolismo
5.
Phytomedicine ; 57: 158-165, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30668318

RESUMEN

BACKGROUND: The marketed synthetic (Dipeptidyl peptidase-IV) DPP-IV Inhibitors are expensive antidiabetic drugs and have been reported to cause unacceptable adverse effects such as pancreatitis, angioedema, thyroid and pancreatic cancers. In this scenario research to develop novel DPP-IV Inhibitors from alternative sources is the need of the hour. HYPOTHESIS/PURPOSE: Terminalia arjuna, a medicinal herb with antidiabetic and cardioprotective activities may represent a natural DPP-IV Inhibitor, the DPP-IV Inhibitory activity of which may translate into demonstrable therapeutic benefits in setting of diabetes with cardiovascular co-morbidities. STUDY DESIGN: The study type used for the present study was an experimental (In vitro, In vivo and In silico) design. METHOD: The DPP-IV Inhibitory, antidiabetic and cardioprotective effects of Terminalia arjuna was evaluated in the experimental model of myocardial infarction co-existing with diabetes. To determine the active principle of Terminalia arjuna responsible for DPP-IV Inhibitory activity, the crystal structure of DPP-IV was considered as receptor which was docked against Arjunetin, Arjungenin, Arjunic acid, Arjunone, Ellagic acid, Gallic acid, Sitagliptin and Vildagliptin. The binding sites as well as affinity of various active ingredients of Terminalia arjuna for DPP- IV enzyme was elucidated using in silico studies and compared to Vildagliptin. RESULTS: Terminalia arjuna demonstrated significant DPP-IV Inhibitory, antidiabetic (significant reduction in HbA1C) and cardioprotective effects (restoration of myocardial CPK-MB) in the experimental model of myocardial infarction co-existing with diabetes. The cardioprotective efficacy correlated to its DPP-IV Inhibitory activity. The active ingredients of Terminalia arjuna (Arjunetin, Arjungenin, Arjunic Acid Arjunone, Ellagic acid and Gallic acid) demonstrated significant inhibition of DPP-IV enzyme. Arjunic acid and Arjunone prefers the active site pocket of DPP-IV enzyme. Compounds like Arjunetin and Vildagliptin prefers to bind near the interface region of the DPP-IV as their biological active forms are homodimer. Sitagliptin binds near the α/ß hydrolase domain. CONCLUSION: The DPP-IV Inhibitory activity of Terminalia arjuna was found to be comparable to Vildagliptin. The DPP-IV Inhibitory activity translated into significant cardioprotective effects in the setting of diabetes. The active ingredient of Terminalia arjuna; Arjunetin, Arjungenin, Ellagic acid and Arjunic acid showed superior DPP-IV Inhibitory activity as compared to synthetic DPP-IV inhibitors (Sitagliptin and Vildagliptin) based on results of docking studies.


Asunto(s)
Cardiotónicos/farmacología , Diabetes Mellitus Experimental/fisiopatología , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Infarto del Miocardio/tratamiento farmacológico , Terminalia/química , Animales , Cardiotónicos/química , Simulación por Computador , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/fisiopatología , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/química , Humanos , Hipoglucemiantes/farmacología , Masculino , Simulación del Acoplamiento Molecular , Infarto del Miocardio/etiología , Extractos Vegetales/farmacología , Ratas Wistar , Saponinas/química , Saponinas/metabolismo , Triterpenos/química , Triterpenos/metabolismo , Vildagliptina/química , Vildagliptina/metabolismo , Vildagliptina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA