Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cancer Treat Res Commun ; 27: 100323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33530025

RESUMEN

Human telomerase reverse transcriptase (hTERT) is an enzyme that is critically involved in elongating and maintaining telomeres length to control cell life span and replicative potential. Telomerase activity is continuously expressed in human germ-line cells and most cancer cells, whereas it is suppressed in most somatic cells. In normal cells, by reducing telomerase activity and progressively shortening the telomeres, the cells progress to the senescence or apoptosis process. However, in cancer cells, telomere lengths remain constant due to telomerase's reactivation, and cells continue to proliferate and inhibit apoptosis, and ultimately lead to cancer development and human death due to metastasis. Studies demonstrated that several DNA and RNA oncoviruses could interact with telomerase by integrating their genome sequence within the host cell telomeres specifically. Through the activation of the hTERT promoter and lengthening the telomere, these cells contributes to cancer development. Since oncoviruses can activate telomerase and increase hTERT expression, there are several therapeutic strategies based on targeting the telomerase of cancer cells like telomerase-targeted peptide vaccines, hTERT-targeting dendritic cells (DCs), hTERT-targeting gene therapy, and hTERT-targeting CRISPR/Cas9 system that can overcome tumor-mediated toleration mechanisms and specifically apoptosis in cancer cells. This study reviews available data on the molecular structure of telomerase and the role of oncoviruses and telomerase interaction in cancer development and telomerase-dependent therapeutic approaches to conquest the cancer cells.


Asunto(s)
Neoplasias/genética , Proteínas Oncogénicas Virales/metabolismo , Retroviridae/patogenicidad , Telomerasa/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/genética , Senescencia Celular/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Interacciones Microbiota-Huesped/genética , Humanos , Ratones , Neoplasias/terapia , Neoplasias/virología , Proteínas Oncogénicas Virales/genética , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Regiones Promotoras Genéticas , Retroviridae/genética , Telomerasa/antagonistas & inhibidores , Telómero/metabolismo , Homeostasis del Telómero
2.
Biochim Biophys Acta Rev Cancer ; 1874(1): 188385, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32554098

RESUMEN

As a promising area of tumor treatment, immunotherapies, such as immune checkpoint inhibitors, have been applied to various types of cancer. However, many patients do not respond to such therapies. Increasing application of tumor ablation therapy, a minimally invasive treatment, has been observed in the clinic. Although it can boost the anti-tumor immune response of patients in many ways, ablation alone is not sufficient to remove the tumor completely or stop tumor recurrence in the long term. Currently, there is emerging research focusing on ablation in combination with immunotherapy, aiming to confirm the therapeutic value of this treatment for cancer patients. Hence, in this article, we review the classification, guideline recommendations, and immunomodulatory effects of ablation therapy, as well as the pre-clinical and clinical research of this combination therapy.


Asunto(s)
Técnicas de Ablación/métodos , Antineoplásicos Inmunológicos/uso terapéutico , Hipertermia Inducida/métodos , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Técnicas de Ablación/normas , Animales , Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Ensayos Clínicos como Asunto , Terapia Combinada/métodos , Terapia Combinada/normas , Modelos Animales de Enfermedad , Humanos , Hipertermia Inducida/normas , Neoplasias/inmunología , Viroterapia Oncolítica/normas , Virus Oncolíticos/inmunología , Guías de Práctica Clínica como Asunto , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Resultado del Tratamiento
3.
J Immunol Res ; 2020: 8459496, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411806

RESUMEN

NK cells are lymphocytes with antitumor properties and can directly lyse tumor cells in a non-MHC-restricted manner. However, the tumor microenvironment affects the immune function of NK cells, which leads to immune evasion. This may be related to the pathogenesis of some diseases. Therefore, great efforts have been made to improve the immunotherapy effect of natural killer cells. NK cells from different sources can meet different clinical needs, in order to minimize the inhibition of NK cells and maximize the response potential of NK cells, for example, modification of NK cells can increase the number of NK cells in tumor target area, change the direction of NK cells, and improve their targeting ability to malignant cells. Checkpoint blocking is also a promising strategy for NK cells to kill tumor cells. Combination therapy is another strategy for improving antitumor ability, especially in combination with oncolytic viruses and nanomaterials. In this paper, the mechanisms affecting the activity of NK cells were reviewed, and the therapeutic potential of different basic NK cell strategies in tumor therapy was focused on. The main strategies for improving the immune function of NK cells were described, and some new strategies were proposed.


Asunto(s)
Inmunoterapia/métodos , Células Asesinas Naturales/trasplante , Neoplasias/terapia , Animales , Antígenos de Neoplasias/inmunología , Antineoplásicos Inmunológicos/administración & dosificación , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Evasión Inmune/efectos de los fármacos , Memoria Inmunológica , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de la radiación , Magnetoterapia , Ratones , Nanomedicina/métodos , Nanopartículas/administración & dosificación , Neoplasias/inmunología , Virus Oncolíticos/inmunología , Receptores Quiméricos de Antígenos/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación
4.
Biochem Pharmacol ; 177: 113986, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32330494

RESUMEN

Virotherpay is emerging as a promising strategy against cancer, and three oncolytic viruses (OVs) have gained approval in different countries for the treatment of several cancer types. Beyond the capability to selectively infect, replicate and lyse cancer cells, OVs act through a multitude of events, including modification of the tumour micro/macro-environment as well as a complex modulation of the anti-tumour immune response by activation of danger signals and immunogenic cell death pathways. Most OVs show limited effects, depending on the viral platform and the interactions with the host. OVs used as monotherapy only in a minority of patients elicited a full response. Better outcomes were obtained using OVs in combination with other treatments, such as immune therapy or chemotherapy, suggesting that the full potential of OVs can be unleashed in combination with other treatment modalities. Here, we report the main described combination of OVs with conventional chemotherapeutic agents: platinum salts, mitotic inhibitors, anthracyclines and other antibiotics, anti-metabolites, alkylating agents and topoisomerase inhibitors. Additionally, our work provides an overview of OV combination with targeted therapies: histone deacetylase inhibitors, kinase inhibitors, monoclonal antibodies, inhibitors of DNA repair, inhibitors of the proteasome complex and statins that demonstrated enhanced OV anti-neoplastic activity. Although further studies are required to assess the best combinations to translate the results in the clinic, it is clear that combined therapies, acting with complementary mechanisms of action might be useful to target cancer lesions resistant to currently available treatments.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Terapia Combinada/métodos , Inmunoterapia/métodos , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Alquilantes/uso terapéutico , Antibióticos Antineoplásicos/uso terapéutico , Antimetabolitos Antineoplásicos/uso terapéutico , Antimitóticos/uso terapéutico , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Virus Oncolíticos/inmunología , Compuestos de Platino/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Topoisomerasa/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
5.
Methods Mol Biol ; 2058: 285-293, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31486046

RESUMEN

Oncolytic viral immunotherapy based on the MG1 Maraba platform has undergone extensive preclinical evaluation, resulting in the advancement of two programs into clinical trials. MG1 Maraba encoding tumor antigens (tumor associated antigens or viral antigens) are used to boost antitumor immunity, while MG1 Maraba infects tumors, causes oncolysis and transforms the tumor microenvironment. An overview of MG1 Maraba clinical development is outlined here, along with general considerations relating to the design of clinical trials for complex biologic products such as oncolytic viral immunotherapies. These include choice of patient population, optimized treatment regimen, and endpoints which provide early signals of activity and inform the late-stage development path of these agents with novel mechanisms of action.


Asunto(s)
Vectores Genéticos/genética , Virus Oncolíticos/genética , Rhabdoviridae/genética , Investigación Biomédica Traslacional , Animales , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Ingeniería Genética , Terapia Genética/métodos , Humanos , Inmunoterapia/métodos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Proyectos de Investigación , Rhabdoviridae/inmunología
6.
Oncol Rep ; 41(3): 1509-1520, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30569160

RESUMEN

Oncolytic viruses are genetically engineered viruses designed for the treatment of solid tumors, and are often coupled with the antitumor immunity of the host. The challenge of using oncolytic herpes simplex virus (oHSV) as an efficacious oncolytic agent is the potential host tissue damage caused by the production of a range of cytokines following intratumoral oHSV injection. An HSV­suppressor of cytokine signaling 4 (SOCS4) recombinant virus was created to investigate whether it inhibits cytokine storm. Recombinant HSV­SOCS4 and HSV­1(F) were used to infect mice, and levels of several representative cytokines, including monocyte chemoattractant protein­1, interleukin (IL)­1ß, tumor necrosis factor­α, IL­6 and interferon γ, in serum and bronchoalveolar lavage fluid (BALF) of infected mice were determined, and immune cells in BALF and spleen were enumerated. Lung damage, virus titers in the lung, body weight and survival rates of infected mice were also determined and compared between the two groups. The cytokine concentration of HSV­SOCS4­infected mice was significantly decreased compared with that of HSV­1(F)­infected mice in BALF and serum, and a smaller number of cluster of differentiation (CD)11b+ cells of BALF, and CD8+CD62L+ T cells and CD4+CD62L+ T cells of the spleen were also identified in HSV­SOCS4­infected mice. HSV­SOCS4­infected mice exhibited slight lung damage, a decrease in body weight loss and a 100% survival rate. The results of the present study indicated that SOCS4 protein may be a useful regulator to inhibit cytokine overproduction, and that HSV­SOCS4 may provide a possible solution to control cytokine storm and its consequences following induction by oncolytic virus treatment.


Asunto(s)
Citocinas/inmunología , Vectores Genéticos/inmunología , Viroterapia Oncolítica/efectos adversos , Virus Oncolíticos/inmunología , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Animales , Antineoplásicos Inmunológicos/efectos adversos , Antineoplásicos Inmunológicos/inmunología , Productos Biológicos/efectos adversos , Productos Biológicos/inmunología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Chlorocebus aethiops , Citocinas/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Vectores Genéticos/genética , Herpesvirus Humano 1/inmunología , Pulmón/citología , Pulmón/inmunología , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Neoplasias/tratamiento farmacológico , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Supresoras de la Señalización de Citocinas/genética , Linfocitos T/inmunología , Células Vero
7.
Mol Pharm ; 15(11): 4777-4800, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30226786

RESUMEN

Toll-like Receptor 4 (TLR4) agonists have had a long journey in the field of cancer immunotherapy. Nevertheless, despite the remarkable number of the TLR4 ligands that have gone through various preclinical and clinical stages, only two (Bacillus Calmette-Guérin (BCG) and monophosphoryl lipid A (MPLA)) have hitherto obtained the FDA approval for clinical application in cancer treatment. This paper provides a comprehensive review of the TLR4 agonists' journey as cancer active immunotherapeutics. Following a brief discussion of the rationale behind the use of TLR ligands in cancer immunotherapy, we will initially focus on the forerunner of the TLR4 agonists, bacterial lipopolysaccharide (LPS). Within this context, the potentials and shortcomings of immunotherapy with this agent will be addressed, the strategies that have been devised to enhance the associated therapeutic outcome will be discussed, and the consequent achievements and shortcomings will be summarized. Subsequently, further and perhaps less well-known, molecular, bacterial, and viral TLR4 agonists with potential for cancer immunotherapy will be introduced, and if present, the outcome of the preclinical and clinical investigations of these agents will be reviewed. Finally, a look will be cast upon the promising souvenirs of the relatively new arena of nanotechnology, where TLR4 activating nanoparticulate systems will be proposed as potential candidates for the future development of this field.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Receptor Toll-Like 4/agonistas , Adyuvantes Inmunológicos/uso terapéutico , Animales , Vacuna BCG/uso terapéutico , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Inmunidad Innata , Inmunoterapia/efectos adversos , Ligandos , Lípido A/análogos & derivados , Lípido A/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/inmunología , Virus Oncolíticos/inmunología , Virus Sincitiales Respiratorios/inmunología , Receptor Toll-Like 4/inmunología , Resultado del Tratamiento
8.
Am J Clin Dermatol ; 19(5): 657-670, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29961183

RESUMEN

The field of tumor immunology has faced many complex challenges over the last century, but the approval of immune checkpoint inhibitors (anti-cytotoxic T-lymphocyte-associated protein 4 [CTLA4] and anti-programmed cell death-1 [PD-1]/PD-ligand 1 [PD-L1]) and talimogene laherparepvec (T-VEC) for the treatment of metastatic melanoma have awakened a new wave of interest in cancer immunotherapy. Additionally, combinations of vaccines and oncolytic viral therapies with immune checkpoint inhibitors and other systemic agents seem to be promising synergistic strategies to further boost the immune response against cancer. These combinations are undergoing clinical investigation, and if successful, will hopefully soon become available to patients. Here, we review key basic concepts of tumor-induced immune suppression in malignant melanoma, the historical perspective around vaccine development in melanoma, and advances in oncolytic viral therapies. We also discuss the emerging role for combination approaches with different immunomodulatory agents as well as new developments in personalized immunization approaches.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Inmunoterapia/métodos , Melanoma/terapia , Neoplasias Cutáneas/terapia , Animales , Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Vacunas contra el Cáncer/inmunología , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Melanoma/genética , Melanoma/inmunología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Medicina de Precisión/métodos , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Resultado del Tratamiento
9.
Front Immunol ; 9: 866, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755464

RESUMEN

Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.


Asunto(s)
Interacciones Microbiota-Huesped/inmunología , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Inmunidad Adaptativa , Antígenos de Neoplasias/inmunología , Humanos , Inmunidad Innata , Neoplasias/inmunología , Viroterapia Oncolítica/efectos adversos , Resultado del Tratamiento
10.
J Gen Virol ; 96(Pt 7): 1533-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25711964

RESUMEN

Hepatocellular carcinoma (HCC) carries a dismal prognosis, with advanced disease being resistant to both radiotherapy and conventional cytotoxic drugs, whilst anti-angiogenic drugs are marginally efficacious. Oncolytic viruses (OVs) offer the promise of selective cancer therapy through direct and immune-mediated mechanisms. The premise of OVs lies in their preferential genomic replication, protein expression and productive infection of malignant cells. Numerous OVs are being tested in preclinical models of HCC, with good evidence of direct and immune-mediated anti-tumour efficacy. Efforts to enhance the performance of these agents have concentrated on engineering OV cellular specificity, immune evasion, enhancing anti-tumour potency and improving delivery. The lead agent in HCC clinical trials, JX-594, a recombinant Wyeth strain vaccinia virus, has demonstrated evidence for significant benefit and earned orphan drug status. Thus, JX-594 appears to be transcending the barrier between novel laboratory science and credible clinical therapy. Relatively few other OVs have entered clinical testing, a hurdle that must be overcome if significant progress is to be made in this field. This review summarizes the preclinical and clinical experience of OV therapy in the difficult-to-treat area of HCC.


Asunto(s)
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Viroterapia Oncolítica/métodos , Viroterapia Oncolítica/tendencias , Virus Oncolíticos/crecimiento & desarrollo , Virus Oncolíticos/inmunología , Animales , Antivirales/uso terapéutico , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Virus Oncolíticos/genética , Producción de Medicamentos sin Interés Comercial , Virus Vaccinia/genética , Virus Vaccinia/crecimiento & desarrollo , Virus Vaccinia/inmunología
11.
Hum Gene Ther ; 23(6): 623-34, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22475378

RESUMEN

Oncolytic viruses represent a novel therapeutic approach for aggressive tumors, such as glioblastoma multiforme, which are resistant to available treatments. Autophagy has been observed in cells infected with oncolytic viruses; however, its role in cell death/survival is unclear. To elucidate the potential therapeutic use of autophagy modulators in association with viral therapy, we analyzed autophagy induction in human glioma cell lines U373MG and U87MG infected with the oncolytic adenovirus dl922-947. dl922-947 infection triggered an autophagic cellular response, as shown by the development of acidic vesicular organelles, LC3-I→LC3-II conversion, and reduction of p62 levels. However, on infection, the Akt/mTOR/p70s6k pathway, which negatively regulates autophagy, was activated, whereas the ERK1/2 pathway, a positive regulator of autophagy, was inhibited. Accordingly, MEK inhibition by PD98059 sensitized glioma cells to dl922-947 effects, whereas autophagy induction by rapamycin protected cells from dl922-947-induced death. Treatment with two inhibitors of autophagy, chloroquine and 3-methyladenine, increased the cytotoxic effects of dl922-947 in vitro. In vivo, the growth of U87MG-induced xenografts was further reduced by adding chloroquine to the dl922-947 treatment. In conclusion, autophagy acts as a survival response in glioma cells infected with dl922-947, thus suggesting autophagy inhibitors as adjuvant/neoadjuvant drugs in oncolytic virus-based treatments.


Asunto(s)
Adenoviridae/genética , Adyuvantes Inmunológicos/farmacología , Autofagia/efectos de los fármacos , Vectores Genéticos/uso terapéutico , Glioma/terapia , Virus Oncolíticos/genética , Adenina/análogos & derivados , Adenina/farmacología , Adenoviridae/inmunología , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/inmunología , Animales , Línea Celular Tumoral , Cloroquina/farmacología , Técnica del Anticuerpo Fluorescente , Vectores Genéticos/genética , Humanos , Ratones , Ratones Desnudos , Virus Oncolíticos/inmunología , Reacción en Cadena de la Polimerasa , Transducción de Señal
12.
PLoS One ; 7(2): e32197, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22359669

RESUMEN

BACKGROUND: H-1 parvovirus (H-1 PV), a rodent autonomous oncolytic parvovirus, has emerged as a novel class of promising anticancer agents, because of its ability to selectively find and destroy malignant cells. However, to probe H-1 PV multimodal antitumor potential one of the major prerequisites is to decipher H-1 PV direct interplay with human immune system, and so prevent any risk of impairment. METHODOLOGY/PRINCIPAL FINDINGS: Non activated peripheral blood mononuclear cells (PBMCs) are not sensitive to H-1 PV cytotoxic effect. However, the virus impairs both activated PBMC proliferation ability and viability. This effect is related to H-1 PV infection as evidenced by Western blotting detection of H-1 PV main protein NS1. However, TCID50 experiments did not allow newly generated virions to be detected. Moreover, flow cytometry has shown that H-1 PV preferentially targets B lymphocytes. Despite seeming harmful at first sight, H-1 PV seems to affect very few NK cells and CD8+ T lymphocytes and, above all, clearly does not affect human neutrophils and one of the major CD4+ T lymphocyte subpopulation. Very interestingly, flow cytometry analysis and ELISA assays proved that it even activates human CD4+ T cells by increasing activation marker expression (CD69 and CD30) and both effective Th1 and Th2 cytokine secretion (IL-2, IFN-γ and IL-4). In addition, H-1 PV action does not come with any sign of immunosuppressive side effect. Finally, we have shown the efficiency of H-1 PV on xenotransplanted human nasopharyngeal carcinoma, in a SCID mouse model reconstituted with human PBMC. CONCLUSIONS/SIGNIFICANCE: Our results show for the first time that a wild-type oncolytic virus impairs some immune cell subpopulations while directly activating a Helper CD4+ T cell response. Thus, our data open numerous gripping perspectives of investigation and strongly argue for the use of H-1 PV as an anticancer treatment.


Asunto(s)
Terapia Biológica/métodos , Linfocitos T CD4-Positivos/virología , Parvovirus H-1/inmunología , Virus Oncolíticos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Carcinoma , Humanos , Ratones , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/terapia , Linfocitos T Reguladores , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Microb Biotechnol ; 5(2): 251-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21923638

RESUMEN

Tumour-specific replicating (oncolytic) viruses are novel anticancer agents, currently under intense investigation in preclinical studies and phase I-III clinical trials. Until recently, most studies have focused on the direct antitumour properties of these viruses. There is now an increasing body of evidence indicating that host immune responses may be critical to the efficacy of oncolytic virotherapy. Although the immune response to oncolytic viruses can rapidly restrict viral replication, thereby limiting the efficacy of therapy, oncolytic virotherapy also has the potential to induce potent antitumoural immune effectors that destroy those cancer cells, which are not directly lysed by virus. In this review, we discuss the role of the immune system in terms of antiviral and antitumoural responses, as well as strategies to evade or promote these responses in favour of improved therapeutic potentials.


Asunto(s)
Terapia Biológica/métodos , Vectores Genéticos , Neoplasias/inmunología , Neoplasias/terapia , Virus Oncolíticos/inmunología , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , Replicación Viral
14.
Clin Cancer Res ; 17(13): 4214-24, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21576084

RESUMEN

Oncolytic viruses consist of a diverse range of DNA and RNA viruses traditionally thought to mediate their effects by exploiting aberrations in tumor pathways, allowing preferential viral replication in, and killing of, tumor cells. Clinical development has progressed to late-phase trials, potentially heralding their introduction into clinical practice. However, despite this promise, the activity of oncolytic viruses has yet to achieve the potential suggested in preclinical models. To address this disparity, we need to recognize the complex interaction among oncolytic viruses, tumor, chemotherapy, and host immune system, and appreciate that direct oncolysis may not be the only factor to play an important role in oncolytic virus-mediated antitumor efficacy. Although key in inactivating viruses, the host immune system can also act as an ally against tumors, interacting with oncolytic viruses under the right conditions to generate useful and long-lasting antitumor immunity. Preclinical data also suggest that oncolytic viruses show synergy with standard therapies, which may offer improved clinical response rates. Here, we explore clinical and preclinical data on clinically relevant oncolytic viruses, highlighting areas of progress, uncertainty, and translational opportunity, with respect to immune recruitment and therapeutic synergy.


Asunto(s)
Neoplasias/inmunología , Neoplasias/terapia , Viroterapia Oncolítica , Virus Oncolíticos/inmunología , Inmunidad Adaptativa , Animales , Terapia Combinada , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Terapia Genética , Humanos , Sistema Inmunológico/inmunología , Inmunidad Innata , Virus Oncolíticos/genética , Resultado del Tratamiento , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA