RESUMEN
There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, define correlates of immune protection, and down-select candidate antivirals. Here, we generate a highly infectious recombinant vesicular stomatitis virus (VSV) bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein and show that this recombinant virus, rVSV-SARS-CoV-2 S, closely resembles SARS-CoV-2 in its entry-related properties. The neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in a high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S, and neutralization of rVSV-SARS-CoV-2 S and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific therapeutics and for mechanistic studies of viral entry and its inhibition.
Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/fisiología , Virus de la Estomatitis Vesicular Indiana/fisiología , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/farmacología , Betacoronavirus/genética , Betacoronavirus/fisiología , COVID-19 , Vacunas contra la COVID-19 , Línea Celular , Chlorocebus aethiops , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Evaluación Preclínica de Medicamentos , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Mutación , Pruebas de Neutralización , Pandemias/prevención & control , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/fisiología , Neumonía Viral/prevención & control , Neumonía Viral/terapia , Receptores Virales/genética , Receptores Virales/fisiología , Recombinación Genética , SARS-CoV-2 , Serina Endopeptidasas/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Virus de la Estomatitis Vesicular Indiana/genética , Vacunas Virales/genética , Vacunas Virales/inmunología , Internalización del Virus , Replicación Viral/genética , Tratamiento Farmacológico de COVID-19RESUMEN
Rabies virus (RABV) causes a severe and fatal neurological disease, but morbidity is vaccine preventable and treatable prior to the onset of clinical symptoms. However, immunoglobulin (IgG)-based rabies postexposure prophylaxis (PEP) is expensive, restricting access to life-saving treatment, especially for patients in low-income countries where the clinical need is greatest, and does not confer cross-protection against newly emerging phylogroup II lyssaviruses. Toward identifying a cost-effective replacement for the IgG component of rabies PEP, we developed and implemented a high-throughput screening protocol utilizing a single-cycle RABV reporter strain. A large-scale screen and subsequent direct and orthogonal counterscreens identified a first-in-class direct-acting RABV inhibitor, GRP-60367, with a specificity index (SI) of >100,000. Mechanistic characterization through time-of-addition studies, transient cell-to-cell fusion assays, and chimeric vesicular stomatitis virus (VSV) recombinants expressing the RABV glycoprotein (G) demonstrated that GRP-60367 inhibits entry of a subset of RABV strains. Resistance profiling of the chemotype revealed hot spots in conserved hydrophobic positions of the RABV G protein fusion loop that were confirmed in transient cell-to-cell fusion assays. Transfer of RABV G genes with signature resistance mutations into a recombinant VSV backbone resulted in the recovery of replication-competent virions with low susceptibility to the inhibitor. This work outlines a tangible strategy for mechanistic characterization and resistance profiling of RABV drug candidates and identified a novel, well-behaved molecular probe chemotype that specifically targets the RABV G protein and prevents G-mediated viral entry.IMPORTANCE Rabies PEP depends on anti-RABV IgG, which is expensive and in limited supply in geographical areas with the highest disease burden. Replacing the IgG component with a cost-effective and shelf-stable small-molecule antiviral could address this unmet clinical need by expanding access to life-saving medication. This study has established a robust protocol for high-throughput anti-RABV drug screens and identified a chemically well-behaved, first-in-class hit with nanomolar anti-RABV potency that blocks RABV G protein-mediated viral entry. Resistance mapping revealed a druggable site formed by the G protein fusion loops that has not previously emerged as a target for neutralizing antibodies. Discovery of this RABV entry inhibitor establishes a new molecular probe to advance further mechanistic and structural characterization of RABV G that may aid in the design of a next-generation clinical candidate against RABV.
Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Evaluación Preclínica de Medicamentos/métodos , Virus de la Rabia/inmunología , Animales , Anticuerpos Antivirales/inmunología , Antivirales/farmacología , Línea Celular , Protección Cruzada , Humanos , Biblioteca de Péptidos , Rabia/prevención & control , Vacunas Antirrábicas/inmunología , Virus de la Rabia/metabolismo , Virus de la Rabia/patogenicidad , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/inmunología , Vesiculovirus/genética , Vesiculovirus/inmunología , Proteínas Virales de Fusión/farmacologíaRESUMEN
Vesicular stomatitis virus (VSV) matrix (M) protein mutants have been studied as oncolytic agents due to their capacity to effectively kill cancer cells while exhibiting low virulence in vivo. Despite encouraging results, many cancer cells maintain resistance to oncolytic VSV mutants in part due to residual antiviral responses. We sought to determine whether combination of VSV with natural agents with anti-tumor properties, such as curcumin, resveratrol, and flavokavain B, would enhance tumor cell killing in a prostate cancer model. Our results revealed that pretreatment with curcumin potentiated VSV-induced oncolysis of PC-3 prostate cancer cells in cell culture and in a mouse model of prostate cancer. The ability of curcumin to synergize with VSV in PC-3 cells correlated with a cumulative decrease in the expression of the anti-apoptotic protein, Bcl-xl, and in the phosphorylation of NF-κB. Although curcumin did not impact the expression of type I IFN in infected cells, it inhibited the phosphorylation and activation of STAT1, a key player in the IFN response pathway, leading to an overall increase in virus-infected cells. These results suggest that curcumin sensitizes prostate cancer cells to the oncolytic effects of VSV by modulating antiviral responses and components of the intrinsic apoptotic pathway.
Asunto(s)
Curcumina/farmacología , Terapia Genética , Vectores Genéticos/genética , Viroterapia Oncolítica , Virus Oncolíticos/genética , Neoplasias de la Próstata/virología , Virus de la Estomatitis Vesicular Indiana/genética , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Terapia Genética/métodos , Humanos , Interferón Tipo I/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Viroterapia Oncolítica/métodos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Replicación Viral , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The use of engineered viral strains such as gene therapy vectors and oncolytic viruses (OV) to selectively destroy cancer cells is poised to make a major impact in the clinic and revolutionize cancer therapy. In particular, several studies have shown that OV therapy is safe and well tolerated in humans and can infect a broad range of cancers. Yet in clinical studies OV therapy has highly variable response rates. The heterogeneous nature of tumors is widely accepted to be a major obstacle for OV therapeutics and highlights a need for strategies to improve viral replication efficacy. Here, we describe the development of a new class of small molecules for selectively enhancing OV replication in cancer tissue. Medicinal chemistry studies led to the identification of compounds that enhance multiple OVs and gene therapy vectors. Lead compounds increase OV growth up to 2000-fold in vitro and demonstrate remarkable selectivity for cancer cells over normal tissue ex vivo and in vivo. These small molecules also demonstrate enhanced stability with reduced electrophilicity and are highly tolerated in animals. This pharmacoviral approach expands the scope of OVs to include resistant tumors, further potentiating this transformative therapy. It is easily foreseeable that this approach can be applied to therapeutically enhance other attenuated viral vectors.
Asunto(s)
Furanos/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Viroterapia Oncolítica/métodos , Virus Oncolíticos/efectos de los fármacos , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Adenocarcinoma/terapia , Animales , Línea Celular Tumoral , Neoplasias del Colon/terapia , Evaluación Preclínica de Medicamentos , Estabilidad de Medicamentos , Femenino , Glutatión/análisis , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Proteínas Inmediatas-Precoces/deficiencia , Proteínas Inmediatas-Precoces/genética , Ratones , Ratones Endogámicos BALB C , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , Suero , Estimulación Química , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/fisiología , Proteínas de la Matriz Viral/deficiencia , Proteínas de la Matriz Viral/genéticaRESUMEN
In vitro mRNA synthesis of Sendai virus is almost entirely dependent on the addition of cellular proteins (host factors). Previous studies indicated that the host factor activity from bovine brain was resolved into at least two complementary fractions, one of which may be tubulin. In this study, the host factor activity that stimulates the transcription in the presence of tubulin was further purified from bovine brain. This fraction was found to contain at least two complementary factors, and one of them was purified to a single polypeptide chain with an apparent M(r) of 46,000 (p46). From the amino acid sequence, biochemical, and immunological analyses, p46 was identified as a glycolytic enzyme, phosphoglycerate kinase (PGK). Purified native PGK from rabbit and yeast, and a recombinant human PGK substituted for p46. Although, as previously suggested, tubulin was involved in the transcription initiation complex formation by being integrated into the complex, p46 and its complementary factor had little effect on the complex formation. On the other hand, when p46 and the complementary factor were added to the RNA chain elongation reaction from the isolated initiation complex formed with tubulin, mRNA synthesis was dramatically stimulated. The enzymatic activity per se of PGK did not seem to be required for its activity. West-Western blot analysis showed that PGK could directly interact with tubulin. These data suggest that PGK stimulates Sendai virus mRNA synthesis at the elongation step, probably through its interaction with tubulin in the initiation complex.
Asunto(s)
Regulación Fúngica de la Expresión Génica , Fosfoglicerato Quinasa/metabolismo , Respirovirus/genética , Transcripción Genética , Virus de la Estomatitis Vesicular Indiana/genética , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Bovinos , Embrión de Pollo , Cromatografía , Cromatografía de Afinidad , Durapatita , Glucólisis , Humanos , Ratones , Datos de Secuencia Molecular , Peso Molecular , Fragmentos de Péptidos/química , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/aislamiento & purificación , ARN Mensajero/genética , Conejos , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/aislamiento & purificación , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Tubulina (Proteína)/aislamiento & purificación , Tubulina (Proteína)/metabolismoRESUMEN
Synthetic oligonucleotides (oligomers) complementary to vesicular stomatitis virus (VSV) N protein mRNA have specific antiviral properties at concentrations lower than 1 microM when they are covalently linked to poly(L-lysine) (PLL). Since it is generally postulated that antisense oligomers act at the translational level, oligomers with potential targets on VSV viral mRNA and/or genomic RNA have been tested here. In vitro translation experiments in reticulocyte lysates, in vitro transcription experiments with permeabilized viruses, measurement of viral RNA transcription and accumulation in VSV infected cells, and antiviral experiments demonstrate in our model that antisense oligomers probably also act at other levels. Difficulties in the choice of the most effective antisense oligomer targets are also discussed.
Asunto(s)
Antivirales , Genes Virales/efectos de los fármacos , Oligodesoxirribonucleótidos/farmacología , Polilisina , ARN Mensajero/antagonistas & inhibidores , ARN Viral/antagonistas & inhibidores , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Animales , Secuencia de Bases , Células L , Ratones , Datos de Secuencia Molecular , ARN/genética , ARN sin Sentido , ARN Mensajero/genética , ARN Viral/genética , Virus de la Estomatitis Vesicular Indiana/genéticaRESUMEN
Short (14 to 20-mer range) synthetic oligodeoxyribonucleotides (oligos) allow to modulate specifically viral or cellular gene expression at various stages thus providing a versatile tool for fundamental studies and a rational approach to antiviral chemotherapy. Several problems, such as metabolic stability and efficient cell internalization of oligos, still limit this approach appreciably, as briefly discussed here. We demonstrate here that the conjugation of 15-mer (beta)-anomeric oligos to poly(L-lysine) allows a specific protection of various cell lines against vesicular stomatitis virus infection at concentrations lower than 1 microM. This can be achieved with oligos complementary to the viral N-protein mRNA initiation site or to viral intergenic sequences, i.e., to untranscribed regions. No antiviral activity can be obtained with (alpha)-anomeric oligos directed against the same targets, although such analogues are much more resistant to nuclease degradation and form stable hybrids, at least in cell-free experiments.
Asunto(s)
Antivirales/farmacología , Oligodesoxirribonucleótidos/farmacología , Polilisina/farmacología , Virus de la Estomatitis Vesicular Indiana/genética , Animales , Secuencia de Bases , Línea Celular , Genes/efectos de los fármacos , Genes Virales/efectos de los fármacos , Células L , Ratones , Datos de Secuencia Molecular , ARN Mensajero/genética , Transcripción Genética/efectos de los fármacos , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Virus de la Estomatitis Vesicular Indiana/fisiología , Replicación Viral/efectos de los fármacosRESUMEN
Antisense oligonucleotides represent an interesting tool for selective inhibition of gene expression, but their efficient introduction within intact cells proved to be difficult to realize. As a step toward this goal, small (13- or 15-mer) synthetic oligodeoxyribonucleotides have been coupled at their 3' ends to epsilon-amino groups of lysine residues of poly(L-lysine) (Mr, 14,000). A 15-mer oligonucleotide-poly(L-lysine) conjugate complementary to the initiation region of vesicular stomatitis virus (VSV) N-protein mRNA specifically inhibits the synthesis of VSV proteins and exerts an antiviral activity against VSV when added in the cell culture medium at doses as low as 100 nM. Neither synthesis of cellular proteins nor multiplication of encephalomyocarditis virus was affected significantly by this oligonucleotide conjugate. The data suggest that oligonucleotide-poly(L-lysine) conjugates might become effective for studies on gene expression regulation and for antiviral chemotherapy.
Asunto(s)
Antivirales/farmacología , Cápside/genética , Oligodesoxirribonucleótidos/farmacología , Polilisina/farmacología , ARN Mensajero/genética , Virus de la Estomatitis Vesicular Indiana/genética , Proteínas del Núcleo Viral/genética , Animales , Cinética , Células L/metabolismo , Ratones , Oligodesoxirribonucleótidos/síntesis química , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacosRESUMEN
A total of 18 different types of human leukemic cell lines were tested for their susceptibility to the anticellular and antiviral effects of interferons (IFNs) alpha, beta and gamma. In general, only the three myelogenous leukemic cell lines U937, KG-1 and HL-60 were found to be highly susceptible to the anticellular effect of the different IFNs while cells of the other lineages were relatively resistant. In order to determine whether the cell lines were sensitive to the antiviral effects of IFNs, the cells were first screened for their ability to support the replication of vesicular stomatitis virus (VSV), sindbis virus (SBV) and semliki forest virus (SFV). Unexpectedly, only three cell lines--Raji, K562 and U937 were highly susceptible to SFV while other cell lines were relatively refractory to all three viruses. Using SFV as indicator virus, the antiviral activity of all IFNs could be detected in all three cell lines and their relative efficiency was in the order of alpha greater than beta greater than gamma. The significance of these results were discussed.
Asunto(s)
Transformación Celular Viral , Interferón Tipo I/toxicidad , Interferón gamma/toxicidad , Leucemia/patología , Virus de los Bosques Semliki/genética , Virus Sindbis/genética , Virus de la Estomatitis Vesicular Indiana/genética , Línea Celular , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , HumanosRESUMEN
Under the normal conditions of in vitro RNA synthesis, the virion-associated RNA polymerase of vesicular stomatitis virus synthesizes five monocristronic mRNAs and a 48-nucleotide-long leader RNA that represents the exact 3'-terminal region of the genome RNA [Colonno, R. J. & Banerjee, A. K. (1978) Cell, 15, 93-101]. When the transcribing core was preincubated with ATP and CTP, reisolated, and then incubated in the presence of the beta, gamma imido analogue of ATP (AdoPP[NH]P) and the three normal ribonucleoside triphosphates, the full-length complementary strand of the genome RNA was synthesized in vitro. The results suggest that specific phosphorylated states of regulatory proteins may control transcription in vitro to generate the full-length plus strands.