Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684785

RESUMEN

In this study, we determined the effect of hormonization treatment on yield quantity and quality, content of biologically active compounds, and antioxidant activity in fruits and raisins of 'Einset Seedless' grapevine. Field studies were conducted in 2017 at Nobilis Vineyard (50°39' N; 21°34' E) in the Sandomierz Upland. Analytical studies were carried out in the Laboratory of the University of Life Sciences in Lublin. Hormonized fruits and raisins, which were dried at 40 °C in a food dryer for 7 days, were the experimental material. It was shown that the application of the hormonization treatment had a significant effect on yield size and quality. The hormonization treatment and the form of plant material analyzed had a significant effect on the content of biologically active compounds and the antioxidant activity in 'Einset Seedless' grapevine fruits and raisins. The concentration of applied gibberellic acid had a significant effect on the levels of acidity, content of anthocyanins, and antioxidant activity determined with the FRAP and DPPH methods. The application of the multivariate analysis technique showed that, in the fresh fruits and raisins, the level of biologically active compounds and antioxidant activity in the case of the 200 mg∙GA3∙L-1 concentration and in the control combination was similar but differed significantly in the case of the 300 mg∙GA3∙L-1 application.


Asunto(s)
Vitis/química , Antocianinas/análisis , Antioxidantes/análisis , Alimentos en Conserva/análisis , Frutas/química , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Giberelinas/administración & dosificación , Fenoles/análisis , Extractos Vegetales/análisis , Reguladores del Crecimiento de las Plantas/farmacología , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo
2.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34360903

RESUMEN

Despite the fact that many studies have examined the effectiveness of different gaseous postharvest treatments applied at low temperature to maintain table grape quality, the use of ethanol vapor has hardly been investigated. Thus, this work has studied the effectiveness of ethanol vapor-generating sachets in the maintenance of It 681-30 table grape quality, a new cultivar, during storage at low temperature and after the shelf-life period at 20 °C. To this end, various quality assessments have been carried out and the effect of the ethanol treatment on the expression of different genes (phenylpropanoids, transcription factors, PRs, and aquaporins) was determined. The results indicated that the application of ethanol vapor reduced the total decay incidence, weight loss, and the rachis browning index in It 681-30 grapes stored at 0 °C and after the shelf-life period at 20 °C, as compared to non-treated samples. Moreover, the modulation of STS7 and the different PR genes analyzed seems to play a part in the molecular mechanisms activated to cope with fungal attacks during the postharvest of It 681-30 grapes, and particularly during the shelf-life period at 20 °C. Furthermore, the expression of aquaporin transcripts was activated in samples showing higher weight loss. Although further work is needed to elucidate the role of ethanol in table grape quality, the results obtained in this work provide new insight into the transcriptional regulation triggered by ethanol treatment.


Asunto(s)
Frío , Etanol/farmacología , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Calidad de los Alimentos , Almacenamiento de Alimentos/métodos , Frutas/efectos de los fármacos , Gases/farmacología , Vitis/efectos de los fármacos , Acuaporinas/genética , Frutas/genética , Expresión Génica/efectos de los fármacos , Reacción de Maillard/efectos de los fármacos , Proteínas de Plantas/genética , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Vitis/genética , Volatilización
3.
Plant Sci ; 302: 110712, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288019

RESUMEN

Actin remodelling by a membrane-associated oxidative process can sense perturbations of membrane integrity and activate defence. In the current work, we show that glycyrrhizin, a muscle relaxant used in Traditional Chinese Medicine, can activate oxidative burst and actin remodelling in tobacco BY-2 cells, which could be suppressed by diphenylene iodonium, an inhibitor of NADPH oxidases. Glycyrrhizin caused a dose-dependent delay of proliferation, and induced cell death, which was suppressed by addition of indole-acetic acid, a natural auxin that can mitigate RboH dependent actin remodelling. To test, whether the actin remodelling induced by glycyrrhizin was followed by activation of defence, several events of basal immunity were probed. We found that glycyrrhizin induced a transient extracellular alkalinisation, indicative of calcium influx. Furthermore, transcripts of phytoalexins genes, were activated in cells of the grapevine Vitis rupestris, and this induction was followed by accumulation of the glycosylated stilbene α-piceid. We also observed that glycyrrhizin was able to induce actin bundling in leaves of a transgenic grape, especially in guard cells. We discuss these data in frame of a model, where glycyrrhizin, through stimulation of RboH, can cause actin remodelling, followed by defence responses, such as calcium influx, induction of phytoalexins transcripts, and accumulation of stilbene glycosides.


Asunto(s)
Actinas/metabolismo , Glycyrrhiza uralensis , Ácido Glicirrínico/farmacología , Proteínas de Plantas/metabolismo , Vitis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glycyrrhiza uralensis/química , Medicina Tradicional China , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Estilbenos/metabolismo , Nicotiana/efectos de los fármacos , Vitis/inmunología , Vitis/metabolismo
4.
J Agric Food Chem ; 68(51): 15085-15096, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33315399

RESUMEN

The increasing use of plant defense stimulators (PDS) and biostimulants (BS) to make agriculture more sustainable has led to questions about their action on plants. A new PhysBioGen approach is proposed with complementary tools: PHYSiological (root weight); BIOchemical and BIOlogical (secondary metabolite quantification and Plasmopara viticola development) and expressions of 161 GENes involved in metabolic plant functions. The proposed approach investigated the effects of three phytostimulants on Vitis vinifera: one PDS (ASM) and one BS chelated (CH) and another enriched with seaweed (SW). Distinct responses were obtained between the PDS and the two BS. In particular, we observed the persistence of anti-mildew efficacy over time, correlated with differentiated expressions of defense genes (VvROMT, VvSAMT, VvPR8). As expected, the two BS displayed more similarities to each other than to the PDS (flavonols, anthocyanins, free salicylic acid). However, the two BS revealed differences in the modulation of genes involved in defense and primary metabolism and some genes were identified as potential markers of their action (VvWRKY1, VvLOX9, VvPOD, VvPDV1, VvXIP1, VVDnaJ). Our results highlight the common and the specific effects of the two BS and the PDS. These new tools could help in understanding the mode of action of phytostimulants in order to achieve better quality and production yield and/or as a way to limit chemical inputs in the vineyard.


Asunto(s)
Extractos Vegetales/farmacología , Tiadiazoles/farmacología , Vitis/efectos de los fármacos , Vitis/inmunología , Resistencia a la Enfermedad , Oomicetos/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Algas Marinas/química , Vitis/genética , Vitis/microbiología
5.
Food Res Int ; 131: 108983, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32247465

RESUMEN

Calcium supplements have increasingly been used at pre-harvest stages for improving fruit firmness, aiming at mitigating environmental stress. However, as recent studies demonstrated that calcium modifies the polyphenolic profile of grape berries, we hypothesize in this study that it also affects wine volatile profile. In a two-year study, grapevines cv. "Vinhão" were sprayed with 2% CaCl2 throughout the fruiting season, and musts were prepared at a laboratory scale. Musts from calcium-treated fruits contained higher calcium levels and less anthocyanins. Increased calcium content did not affect the course of fermentation induced with a S. cerevisiae starter inoculum, but impacted the course of spontaneous fermentations carried out by endogenous berry microflora. Several compounds associated to varietal and fermentative aromas were largely influenced by the calcium treatment. For instance, volatile phenols decreased, together with ß-damascenone, benzaldehyde and γ-nonalactone, while several acetates and alcohols increased. Principal component analysis showed that the volatile profile of control wines produced by spontaneous fermentation substantially differed between replicates, but calcium treatment lowered replicate variability. Volatile profiles were also influenced by the vintage and fermentation type. The shift in wine volatile profile upon calcium treatment may be relevant from an oenological perspective.


Asunto(s)
Agricultura/métodos , Calcio/farmacología , Vitis/efectos de los fármacos , Vino/análisis , Fermentación , Factores de Tiempo
6.
Plant Physiol Biochem ; 150: 49-55, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32114399

RESUMEN

Having a central role in cell wall pectin cross-linking, calcium has been increasingly used as supplement to promote fruit firmness and extended shelf-life. However, the molecular rearrangements associated to increased fruit robustness are still a matter of debate. In this study, mechanical, histochemical and molecular assays were conducted to understand the mechanisms underlying the effects of Ca in fruit physical properties. In a two-year field trial, grapevines were sprayed with exogenous CaCl2 throughout the fruiting season. Results showed an increase in berry Ca concentration at harvest, associated to increased fruit consistency and skin resistance. Scanning electron microscopy showed that fruits from Ca-treated plants had smoother skin surfaces than control fruits, and that microcracks encircling the lenticels were less prominent. Histochemistry assays suggested higher deposition of pectin-like material in skin cell walls in grapes from Ca-treated vines, but no evident modifications in cellulose content were observed. Accordingly, the expression of cellulose synthase family gene CesA3 was not affected by exogenous Ca, while polygalacturonase-encoding genes PG1 and PG2 were downregulated, together with EXP6 belonging to expansin family, and CER9 and CYP15 involved in cuticle biosynthesis. These results suggested that Ca acts by inhibiting pectin degradation and cell wall loosening, while remodeling cuticle structure.


Asunto(s)
Cloruro de Calcio , Frutas , Vitis , Calcio/metabolismo , Cloruro de Calcio/farmacología , Pared Celular/efectos de los fármacos , Frutas/efectos de los fármacos , Frutas/ultraestructura , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Poligalacturonasa/genética , Vitis/efectos de los fármacos
7.
Plant Mol Biol ; 103(1-2): 91-111, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32043226

RESUMEN

KEY MESSAGE: Auxin treatment of grape (Vitis vinifera L.) berries delays ripening by inducing changes in gene expression and cell wall metabolism and could combat some deleterious climate change effects. Auxins are inhibitors of grape berry ripening and their application may be useful to delay harvest to counter effects of climate change. However, little is known about how this delay occurs. The expression of 1892 genes was significantly changed compared to the control during a 48 h time-course where the auxin 1-naphthaleneacetic acid (NAA) was applied to pre-veraison grape berries. Principal component analysis showed that the control and auxin-treated samples were most different at 3 h post-treatment when approximately three times more genes were induced than repressed by NAA. There was considerable cross-talk between hormone pathways, particularly between those of auxin and ethylene. Decreased expression of genes encoding putative cell wall catabolic enzymes (including those involved with pectin) and increased expression of putative cellulose synthases indicated that auxins may preserve cell wall structure. This was confirmed by immunochemical labelling of berry sections using antibodies that detect homogalacturonan (LM19) and methyl-esterified homogalacturonan (LM20) and by labelling with the CMB3a cellulose-binding module. Comparison of the auxin-induced changes in gene expression with the pattern of these genes during berry ripening showed that the effect on transcription is a mix of changes that may specifically alter the progress of berry development in a targeted manner and others that could be considered as non-specific changes. Several lines of evidence suggest that cell wall changes and associated berry softening are the first steps in ripening and that delaying cell expansion can delay ripening providing a possible mechanism for the observed auxin effects.


Asunto(s)
Pared Celular/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Células Vegetales/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Vitis/efectos de los fármacos , Aumento de la Célula/efectos de los fármacos , Pared Celular/genética , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Naftalenoacéticos/farmacología , Células Vegetales/fisiología , Tiempo , Vitis/crecimiento & desarrollo
8.
Food Chem ; 313: 126123, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31923871

RESUMEN

Calcium supplements have increasingly been used at pre- and post-harvest stages for improving fruit firmness, but elevated calcium levels in grape cells were shown to reduce total anthocyanin content. In this study, we hypothesized that exogenous calcium influences specific polyphenolic compounds, and performed targeted UPLC-MS analysis in fruits collected from vines cv. "Vinhão" sprayed with 2% (w/v) CaCl2 throughout the fruiting season, in two consecutive vintages, and in grape cell cultures elicited with calcium. Results showed that anthocyanin content is reduced upon calcium treatment, while stilbenoid synthesis is generally stimulated, in line with UFGT and STS expression patterns. The main metabolites involved in this response were malvidin-3-O-glucoside, E-piceid, E-ε-viniferin and E-resveratrol. The accumulation of phenolic acids, catechin and some quercetin derivatives was also favored by calcium, while other flavonols and flavan-3-ols were affected according to the vintage and berry developmental stage. In cell cultures, the entire flavonoid pathway was repressed.


Asunto(s)
Antocianinas/análisis , Calcio/farmacología , Estilbenos/análisis , Vitis/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Análisis Discriminante , Frutas/química , Frutas/efectos de los fármacos , Frutas/metabolismo , Análisis de los Mínimos Cuadrados , Espectrometría de Masas en Tándem , Vitis/química , Vitis/metabolismo
9.
J Sci Food Agric ; 100(2): 825-835, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31646642

RESUMEN

BACKGROUND: Seaweeds are defined as novel elicitors in many crops, allowing the synthesis of secondary metabolites to be triggered in different plant tissues. Currently, the phenolic composition of Tempranillo Blanco grapes and wines is unreported. The present study aimed to investigate the effects of an Ascophyllum nodosum seaweed extract applied to Tempranillo Blanco grapevines, at low (Ld) and high (Hd) dosages, on grape and wine phenolic compounds during two consecutive seasons (2017-2018). RESULTS: The results obtained showed that catechin was the most abundant phenolic compound in Tempranillo Blanco grapes and wines. Season affected the weight of 100 berries and some enological parameters. Catechin and flavonols concentrations in grapes were increased after Hd application to grapevines, independently of season. The concentration of hydroxycinnamic and hydroxybenzoic acids in wines was affected by vintage, probably as a result of oxidation reactions, as well as pinking phenomena, whereas the stilbenes content in wines was conditioned by the affect of cryptogamic diseases in grapes. CONCLUSION: Seaweeds might act as an elicitor of several phenolic compounds in grapes, enhancing the content of some phenolic compounds in wines. © 2019 Society of Chemical Industry.


Asunto(s)
Phaeophyceae/química , Fenoles/química , Extractos Vegetales/farmacología , Algas Marinas/química , Vitis/química , Cromatografía Líquida de Alta Presión , Fertilizantes/análisis , Flavonoles/análisis , Flavonoles/metabolismo , Frutas/química , Frutas/efectos de los fármacos , Frutas/metabolismo , Fenoles/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Estilbenos/análisis , Estilbenos/metabolismo , Vitis/efectos de los fármacos , Vitis/metabolismo , Vino/análisis
10.
Int J Mol Sci ; 20(24)2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861147

RESUMEN

The reduction of synthetic chemistry use in modern viticulture relies on either the biological control of microorganisms or the induction of pathogenesis-related proteins. In the present study, the effects of hydro-alcoholic plant extracts (PEs) (i.e., by-products of Vitis vinifera L., leaves of Olea europaea L. and Ailanthus altissima (Mill.) Swingle) were tested on purified enzymes activity involved in plant-pathogen interactions. The polyphenolic composition was assayed and analyzed to characterize the extract profiles. In addition, suspension cell cultures of grapevine were treated with PEs to study their modulation of chitinase activity. Application of grape marc's PE enhanced chitinase activity at 4 g L-1. Additionally, foliar treatment of grape marc's PE at two doses (4 g L-1 and 800 g L-1) on grapevine cuttings induced a concentration-dependent stimulation of chitinase activity. The obtained results showed that the application of bioactive compounds based on PEs, rich in phenolic compounds, was effective both at in vitro and ex/in vivo level. The overall effects of PEs on plant-pathogen interaction were further discussed by applying a multi-criteria decision analysis, showing that grape marc was the most effective extract.


Asunto(s)
Quitinasas/metabolismo , Extractos Vegetales/análisis , Proteínas de Plantas/metabolismo , Polifenoles/análisis , Vitis/metabolismo , Ailanthus/química , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Olea/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Polifenoles/farmacología , Vitis/efectos de los fármacos
11.
BMC Genomics ; 20(1): 825, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703618

RESUMEN

BACKGROUND: 5-Azacytidine (5-azaC) promotes the development of 'Kyoho' grape berry but the associated changes in gene expression have not been reported. In this study, we performed transcriptome analysis of grape berry at five developmental stages after 5-azaC treatment to elucidate the gene expression networks controlling berry ripening. RESULTS: The expression patterns of most genes across the time series were similar between the 5-azaC treatment and control groups. The number of differentially expressed genes (DEGs) at a given developmental stage ranged from 9 (A3_C3) to 690 (A5_C5). The results indicated that 5-azaC treatment had not very great influences on the expressions of most genes. Functional annotation of the DEGs revealed that they were mainly related to fruit softening, photosynthesis, protein phosphorylation, and heat stress. Eight modules showed high correlation with specific developmental stages and hub genes such as PEROXIDASE 4, CAFFEIC ACID 3-O-METHYLTRANSFERASE 1, and HISTONE-LYSINE N-METHYLTRANSFERASE EZA1 were identified by weighted gene correlation network analysis. CONCLUSIONS: 5-AzaC treatment alters the transcriptional profile of grape berry at different stages of development, which may involve changes in DNA methylation.


Asunto(s)
Azacitidina/farmacología , Frutas/crecimiento & desarrollo , Frutas/genética , Perfilación de la Expresión Génica , Vitis/crecimiento & desarrollo , Vitis/genética , Frutas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , RNA-Seq , Vitis/efectos de los fármacos
12.
PLoS One ; 14(9): e0222854, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31560730

RESUMEN

The reduction of synthetic fungicides in agriculture is necessary to guarantee a sustainable production that protects the environment and consumers' health. Downy mildew caused by the oomycete Plasmopara viticola is the major pathogen in viticulture worldwide and responsible for up to 60% of pesticide treatments. Alternatives to reduce fungicides are thus utterly needed to ensure sustainable vineyard-ecosystems, consumer health and public acceptance. Essential oils (EOs) are amongst the most promising natural plant protection alternatives and have shown their antibacterial, antiviral and antifungal properties on several agricultural crops. However, the efficiency of EOs highly depends on timing, application method and the molecular interactions between the host, the pathogen and EO. Despite proven EO efficiency, the underlying processes are still not understood and remain a black box. The objectives of the present study were: a) to evaluate whether a continuous fumigation of a particular EO can control downy mildew in order to circumvent the drawbacks of direct application, b) to decipher molecular mechanisms that could be triggered in the host and the pathogen by EO application and c) to try to differentiate whether essential oils directly repress the oomycete or act as plant resistance primers. To achieve this a custom-made climatic chamber was constructed that enabled a continuous fumigation of potted vines with different EOs during long-term experiments. The grapevine (Vitis vinifera) cv Chasselas was chosen in reason of its high susceptibility to Plasmopara viticola. Grapevine cuttings were infected with P. viticola and subsequently exposed to continuous fumigation of different EOs at different concentrations, during 2 application time spans (24 hours and 10 days). Experiments were stopped when infection symptoms were clearly observed on the leaves of the control plants. Plant physiology (photosynthesis and growth rate parameters) were recorded and leaves were sampled at different time points for subsequent RNA extraction and transcriptomics analysis. Strikingly, the Oregano vulgare EO vapour treatment during 24h post-infection proved to be sufficient to reduce downy mildew development by 95%. Total RNA was extracted from leaves of 24h and 10d treatments and used for whole transcriptome shotgun sequencing (RNA-seq). Sequenced reads were then mapped onto the V. vinifera and P. viticola genomes. Less than 1% of reads could be mapped onto the P. viticola genome from treated samples, whereas up to 30% reads from the controls mapped onto the P. viticola genome, thereby confirming the visual observation of P. viticola absence in the treated plants. On average, 80% of reads could be mapped onto the V. vinifera genome for differential expression analysis, which yielded 4800 modulated genes. Transcriptomic data clearly showed that the treatment triggered the plant's innate immune system with genes involved in salicylic, jasmonic acid and ethylene synthesis and signaling, activating Pathogenesis-Related-proteins as well as phytoalexin synthesis. These results elucidate EO-host-pathogen interactions for the first time and indicate that the antifungal efficiency of EO is mainly due to the triggering of resistance pathways inside the host plants. This is of major importance for the production and research on biopesticides, plant stimulation products and for resistance-breeding strategies.


Asunto(s)
Fungicidas Industriales/administración & dosificación , Aceites Volátiles/administración & dosificación , Oomicetos/patogenicidad , Origanum/química , Enfermedades de las Plantas/prevención & control , Aceites de Plantas/administración & dosificación , Vitis/inmunología , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/efectos de los fármacos , Resistencia a la Enfermedad/inmunología , Fumigación , Fungicidas Industriales/toxicidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/inmunología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/efectos de los fármacos , Aceites Volátiles/toxicidad , Oxilipinas/metabolismo , Fotosíntesis/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Aceites de Plantas/toxicidad , Sesquiterpenos/metabolismo , Vitis/efectos de los fármacos , Vitis/microbiología , Fitoalexinas
13.
J Sci Food Agric ; 99(14): 6350-6363, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31273796

RESUMEN

BACKGROUND: Recent studies report that Ascophyllum nodosum extracts, once applied on the canopy of different crops, deliver positive effects, increasing yield, inducing tolerance to biotic stress, and improving the quality of products. However, the mechanisms of action are still unclear. In this research, vines subjected to multiple foliar applications of an A. nodosum extract (ANE) at label doses were compared with untreated vines (NTV) in accordance with a comparative approach. The investigation coupled a field experiment with a second trial conducted under semi-controlled conditions, to clarify the mechanisms of action involved. RESULTS: The biostimulant did not affect soluble solids or the acidity of grapes; instead, it improved their anthocyanin and phenolic concentrations and the respective profiles. At the time of harvest, anthocyanin, and phenolic concentration were increased by 10.4% and 14.5%, respectively, when compared to the NTV. These effects correlated with a specific modulation of genes involved in the flavonoid metabolic pathways. Moreover, grapes from ANE vines witnessed a significant reduction in the spreading of gray mold when they were either assessed in field conditions or in vitro, compared to the grapes of NTV vines. This was related to a significant upregulation of the defense-related genes of the plant. CONCLUSIONS: Overall, the results showed that A. nodosum extracts can be valuable tools in viticulture considering the emergence of challenging environmental conditions; hence, the regulation of specific metabolic pathways is the mechanism of action that leads to an increased tolerance of biotic stress and of changes in the content of grape metabolites. © 2019 Society of Chemical Industry.


Asunto(s)
Ascophyllum/química , Extractos Vegetales/farmacología , Vitis/efectos de los fármacos , Vitis/metabolismo , Antocianinas/análisis , Antocianinas/metabolismo , Flavonoides/análisis , Flavonoides/metabolismo , Frutas/química , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Fenoles/análisis , Fenoles/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/química , Vitis/crecimiento & desarrollo
14.
Genes (Basel) ; 10(7)2019 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-31284601

RESUMEN

Previous study has demonstrated that the riboflavin treatment promoted the early ripening of the 'Kyoho' grape berry. However, the molecular mechanism causing this was unclear. In order to reveal the regulation mechanism of riboflavin treatment on grape berry development and ripening, the different berry developmental stages of the 'Kyoho' berry treated with 0.5 mmol/L of riboflavin was sampled for transcriptome profiling. RNA-seq revealed that 1526 and 430 genes were up-regulated and down-regulated, respectively, for the comparisons of the treatment to the control. TCseq analysis showed that the expression patterns of most of the genes were similar between the treatment and the control, except for some genes that were related to the chlorophyll metabolism, photosynthesis-antenna proteins, and photosynthesis, which were revealed by the enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The differentially expressed genes and weighted gene co-expression network analysis (WGCNA) analysis identified some significantly differentially expressed genes and some hub genes, including up-regulation of the photosynthesis-related ELIP1 and growth and development-related GDSL; and down-regulation of the oxidative stress-related ATHSP22 and berry softening-related XTH32 and GH9B15. The results suggested that the riboflavin treatment resulted in the variations of the expression levels of these genes, and then led to the early ripening of the 'Kyoho' berry.


Asunto(s)
Frutas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Riboflavina/farmacología , Vitis/efectos de los fármacos , Frutas/genética , RNA-Seq , Vitis/genética
15.
J Sci Food Agric ; 99(13): 5946-5952, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31206683

RESUMEN

BACKGROUND: Grape berries produce significant amounts of phenolic compounds. These are an essential qualitative factor due to their nutritional value and effect on berry color and texture. Salicylic acid (SA) and its derivatives usually lead to enhancement of phenolic content in plant tissues. The present study was conducted to evaluate the effect of different levels of SA (0.0, 50.0, 100.0, and 200.0 mM) on the production of phenolic compounds and the derivatives (anthocyanin and flavonoid) in the grape berries, with emphasis on malvidin-3-O-ß glucoside as a regular anthocyanin in red grapes. RESULT: The results showed that total phenolics content were significantly enhanced in SA-treated (100.0 and 200.0 mM) berries compared to untreated ones. Salicylic acid treatment at all concentrations considerably improved the anthocyanin content in the berries and, compared with untreated berries, the accumulation of malvidin-3-O-ß glucoside was higher in SA-treated fruits. In particular, the 200.0 mM concentration caused approximately two times more malvidin-3-O-ß glucoside than the control. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity of the fruits treated with SA were significantly higher than those of the untreated berries. The activity of phenylalanine ammonia-lyase (PAL) in SA treated fruits significantly increased as compared with the untreated clusters. CONCLUSION: A general evaluation of the current results leads us to the conclusion that SA is a suitable and recommendable treatment for improving and increasing the phenolic and antioxidant capacity of grape berries. Spraying grape berries at pre-véraison stage with SA could therefore be a convenient strategy to increase quality and nutritional value of grape berries considerably. © 2019 Society of Chemical Industry.


Asunto(s)
Antocianinas/química , Frutas/química , Extractos Vegetales/química , Ácido Salicílico/farmacología , Vitis/química , Antioxidantes/metabolismo , Color , Frutas/efectos de los fármacos , Fenoles/química , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/efectos de los fármacos , Vitis/genética
16.
J Sci Food Agric ; 99(4): 1926-1937, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30270444

RESUMEN

BACKGROUND: Koshu, a hybrid of Vitis vinifera L. and V. davidii Foex, is the most popular indigenous cultivar for wine production in Japan. However, little is known about the potential aroma compounds it contains and how environmental factors affect these. In this study, we obtained comprehensive profiles of the volatile (both glycosidically bound and free) and phenolic compounds that occur in koshu berries, and compared these with similar profiles for V. vinifera cv. chardonnay. We then compared the response of these two cultivars to bunch shading and the ripening-related phytohormone abscisic acid (ABA). RESULTS: Koshu berries contained significantly higher concentrations of phenolic compounds, such as hydroxycinnamic acid derivatives, and some volatile phenols, such as 4-vinyl guaiacol and eugenol, than chardonnay berries, which are thought to contribute to the characteristics of koshu wine. In addition, koshu berries had a distinctly different terpenoid composition from chardonnay berries. Shading reduced the concentration of norisoprenoid in both cultivars, as well as several phenolic compounds, particularly their volatile derivatives in koshu berries. The exogenous application of ABA induced ripening and increased the concentrations of lipid derivatives, such as hexanol, octanol, 1-nonanol, and 1-octen-3-ol. Multivariate and discriminant analyses showed that the potential aroma and flavor compounds in the berries could be discriminated clearly based on cultivar and environmental cues, such as light exposure. CONCLUSION: The unique secondary metabolite profiles of koshu and their different responses to environmental factors could be valuable for developing various types of koshu wines and new cultivars with improved quality and cultural characteristics. © 2018 Society of Chemical Industry.


Asunto(s)
Aromatizantes/química , Vitis/química , Ácido Abscísico/farmacología , Frutas/química , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Odorantes/análisis , Fenoles/química , Extractos Vegetales/química , Reguladores del Crecimiento de las Plantas/farmacología , Gusto , Terpenos/química , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Vino/análisis
17.
Microsc Microanal ; 24(5): 564-573, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30334518

RESUMEN

The production of Amarone wine is governed by a disciplinary guideline to preserve its typical features; however, postharvest infections by the fungus Botrytis cinerea (B. cinerea) not only represent a phytosanitary problem but also cause a significant loss of product. In this study, we tested a treatment with mild ozoniztion on grapes for Amarone wine production during withering in the fruttaio (the environment imposed by the disciplinary guideline) and evaluated the impact on berry features by a multimodal imaging approach. The results indicate that short and repeated treatments with low O3 concentrations speed up the naturally occurring berry withering, probably inducing a reorganization of the epicuticular wax layer, and inhibit the development of B. cinerea, blocking the fungus in an intermediate vegetative stage. This pilot study will pave the way to long-term research on Amarone wine obtained from O3-treated grapes.


Asunto(s)
Imagen Multimodal/métodos , Ozono/farmacología , Análisis Espectral/métodos , Vitis/efectos de los fármacos , Vino/microbiología , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Botrytis/patogenicidad , Microbiología de Alimentos , Conservación de Alimentos/métodos , Frutas/química , Italia , Imagen por Resonancia Magnética , Microscopía Electrónica de Rastreo , Proyectos Piloto , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Vitis/química , Vitis/microbiología , Vino/análisis
18.
Pest Manag Sci ; 74(12): 2864-2873, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29781195

RESUMEN

BACKGROUND: Black-foot disease is one of the main soilborne fungal diseases affecting grapevine production worldwide. Two field experiments were established to evaluate the effect of white mustard cover crop residue amendment and chemical fumigation with propamocarb + fosetyl-Al combined with Trichoderma spp. root treatment on the viability of black-foot inoculum in soil and fungal infection in grafted plants and grapevine seedlings used as bait plants. RESULTS: A total of 876 black-foot pathogen isolates were collected from grafted plants and grapevine seedlings used as bait plants in both fields. White mustard biofumigation reduced inoculum of Dactylonectria torresensis and the incidence and severity of black-foot of grapevine, but no added benefit was obtained when biofumigation was used with Trichoderma spp. root treatments. The effect of white mustard residues and chemical fumigation on populations of D. torresensis propagules in soil was inconsistent, possibly because of varying pretreatment inoculum levels. CONCLUSION: Biofumigation with white mustard plants has potential for improving control of black-foot disease in grapevines. This control strategy can reduce soil inoculum levels and protect young plants from infection, providing grape growers and nursery propagators with more tools for developing integrated and sustainable control systems. © 2018 Society of Chemical Industry.


Asunto(s)
Fumigación , Enfermedades de las Plantas/microbiología , Sinapis/metabolismo , Suelo/química , Trichoderma/fisiología , Vitis/efectos de los fármacos , Vitis/microbiología , Biomasa , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Plantones/efectos de los fármacos , Plantones/microbiología
19.
J Sci Food Agric ; 98(15): 5632-5638, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29704237

RESUMEN

BACKGROUND: The physiological and metabolic processes involved with grapevine growth and production are influenced by key macro- and micronutrients. Potassium is an essential plant nutrient that affects growth and fruit quality. In this study, the impact of foliar spraying of potassium sulfate (K2 SO4 ) on qualitative characteristics of grape berries was evaluated in the cultivar 'Rasha', a commonly cultivated cultivar in Kurdistan province of Iran. Leaves of the fully grown vines were sprayed with each of the 1.5 and 3 g L-1 K2 SO4 solutions once (1 month after petal senescence) and twice (15 days after first spraying). The control plants were sprayed with distilled water. Various biochemical contents and enzyme activities on the ripe berries were analyzed. RESULTS: Significant increases in anthocyanin, total protein content, and antioxidant enzyme activities were observed in the berries treated twice with 3 g L-1 K2 SO4 . Concentrations of total carbohydrate, phenol, and antioxidant activity in berries sprayed with K2 SO4 were higher than in the controls. We observed a strong correlation between antioxidant activity and different phenolic compounds. CONCLUSION: These findings suggest that K2 SO4 treatment influences biosynthesis of phenolic compounds and antioxidant enzymes. Thus, treatment by K2 SO4 could improve nutritional and qualitative attributes of grape. © 2018 Society of Chemical Industry.


Asunto(s)
Antioxidantes/química , Frutas/química , Sulfatos/farmacología , Vitis/química , Antocianinas/química , Antocianinas/metabolismo , Antioxidantes/metabolismo , Frutas/efectos de los fármacos , Frutas/metabolismo , Irán , Fenoles/química , Fenoles/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Vitis/efectos de los fármacos , Vitis/metabolismo
20.
J Sci Food Agric ; 98(8): 3031-3040, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29194640

RESUMEN

BACKGROUND: The Microvine plant model displays unique reproductive organ behavior and is suitable for grapevine fruit physiological studies, allowing one to undertake studies up to five times more rapidly than the current situation with grapevines. Recently, vine-shoot aqueous extracts, which have an interesting phenolic and aroma composition, have been proposed as viticultural biostimulants, since their post-veraison foliar application to grapevines impacts the wine aroma profile. Using Microvines, the aim of this study was to determine the effect of vine-shoot extract foliar application on 21 stages of grape development. The application was carried out from BBCH 53 (inflorescences clearly visible) to BBCH 85 (softening of berries) to reveal stage-specific responses of the accumulation of glycosylated aroma precursors at BBCH 89 (berries ripe for harvest), the phenological stage selected to study the treatment effect. RESULTS: Microvine use made it possible to carry out 15 sampling time points during 86 days of the experiment, which were established by the cumulative degree days (CDD) parameter. The results confirmed that vine-shoot extract treatment had a positive impact on total glycosylated compounds, especially aglycones such as alcohols, terpenes and C13 -norisoprenoids, with a higher effect when the treatment was applied during ripening. CONCLUSION: Extrapolation of the results to grapevines suggests that vine-shoot extract treatment could modulate the synthesis of grape glycosylated aroma precursors. © 2017 Society of Chemical Industry.


Asunto(s)
Producción de Cultivos/métodos , Extractos Vegetales/farmacología , Brotes de la Planta/química , Tallos de la Planta/química , Vitis/química , Compuestos Orgánicos Volátiles/química , Vino/análisis , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Flores/metabolismo , Frutas/química , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Glicosilación , Modelos Biológicos , Odorantes/análisis , Fenoles/química , Fenoles/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Vitis/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA