Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.422
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0300864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635849

RESUMEN

Chia (Salvia hispanica L.) seed (CS) and Pumpkin (Cucurbita moschata) seed (PS) are used in ruminant diets as energy sources. The current experiment studied the impact of dietary inclusion of CS and PS on nutrient intake and digestibility, milk yield, and milk composition of dairy sheep. Twelve primiparous Texel × Suffolk ewes [70 ± 5 days in milk (DIM); 0.320 ± 0.029 kg milk yield] were distributed in a 4 × 3 Latin square design and fed either a butter-based control diet [CON; 13 g/kg dry matter] or two diets with 61 g/kg DM of either CS or PS. Dietary inclusion of CS and PS did not alter live weight (p >0.1) and DM intake (p >0.1). However, compared to the CON, dietary inclusion of both CS and PS increased the digestibility of neutral detergent fiber (p <0.001) and acid detergent lignin (p < 0.001). Milk production (p = 0.001), fat-corrected milk (p < 0.001), and feed efficiency (p < 0.001) were enhanced with PS, while the highest milk protein yield (p < 0.05) and lactose yield (p < 0.001) were for CS-fed ewes. Compared to the CON diet, the ingestion of either CS and/or PS decreased (p < 0.001) the C16:0 in milk. Moreover, both CS and PS tended to enhance the content of C18:3n6 (p > 0.05) and C18:3n3 (p > 0.05). Overall short-term feeding of CS and/or PS (up to 6.1% DM of diet) not only maintains the production performance and digestibility of nutrients but also positively modifies the milk FA composition.


Asunto(s)
Cucurbita , Animales , Femenino , Ovinos , Cucurbita/metabolismo , Lactancia , Salvia hispanica , Detergentes , Fibras de la Dieta/metabolismo , Dieta/veterinaria , Semillas/metabolismo , Digestión , Alimentación Animal/análisis , Zea mays/metabolismo , Suplementos Dietéticos/análisis , Rumen/metabolismo
2.
Sci Rep ; 14(1): 8027, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580764

RESUMEN

The aim of this study was to assess the effects of substituting traditional forage fiber sources with cottonseed cake in the diet on both the quantitative and qualitative characteristics of carcass and meat in Nelore young bulls. Twenty-four Nelore steers starting with an average weight of 377.8 ± 43.5 kg, were individually housed in stalls and provided with individualized feeding over a 112-day confinement period. The study followed a completely randomized design with two treatments and 12 replications. The diets incorporated either whole plant corn silage (WPCS) and, cottonseed cake (CSC) as fiber sources, at a rate of 300 g/kg of dry matter. The CSC diet promoted higher carcass weight. Aging animal meat for seven days significantly decreased the shear force from 83.4 to 71.6 N. Although diets did not influence meat composition, WPCS diet provided higher concentrations of C16:1, C18:1n9c, C18:3n3, and C22:2 acid, and CSC diet higher concentrations of C15:0, C18:1n9t, C18:2n6c, and 20:3n3. The WPCS diet provided higher concentrations of monounsaturated fatty acids and ω9, and the CSC diet had higher concentrations of ω6 and ω6:ω3 ratio in meat. Cottonseed cake used as a fiber source increases the concentration of polyunsaturated fatty acids and ω6 fatty acids in the meat of young bulls finished in feedlot.


Asunto(s)
Alimentación Animal , Aceite de Semillas de Algodón , Masculino , Animales , Bovinos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Carne/análisis , Zea mays
3.
Carbohydr Polym ; 334: 122027, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553226

RESUMEN

To investigate the effect of oil additives on improving the water resistance of corn starch straws, corn oil (CO), soybean oil (SO), rapeseed oil (RO), peanut oil (PO), lard (LD) and coconut oil (CCO) were chosen and compared the structure and properties of starch straws with different oil additives. Corn starch straws (CS), and starch straws supplemented with CO, SO, RO, PO, LD and CCO were prepared by thermoplastic extrusion. The results showed that the incorporation of oils effectively enhanced the water resistance of starch straws such as water absorption, water solubility and water swelling performance. Meanwhile, the flexural strength of starch straws significantly increased. There was no significant linear relationship among starch chain length, oil unsaturation and straw performance. Among seven starch straws, S-SO had the strongest hydrogen bond interaction (3289 cm-1) and relaxation time (0.96 ms). The S-CO had the highest relative crystallinity (16.82 %) and degree of double helix (1.535), hence resulting in the lowest water absorption and solubility values, the highest flexural strength (23.43 MPa), the highest ΔT value (9.93 °C) and ΔH value (4.79 J/g). S-RO had the highest thermal transition temperatures.


Asunto(s)
Almidón , Zea mays , Almidón/química , Zea mays/química , Agua/química , Aceite de Soja , Fenómenos Químicos , Aceite de Brassica napus , Aceite de Maíz
4.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542173

RESUMEN

This study aimed to investigate the effects of fermented corn-soybean meal mixed feed (FMF) on growth performance, intestinal barrier function, gut microbiota and short-chain fatty acids in weaned piglets. A total of 128 weaned piglets [Duroc×(Landrace×Yorkshire), male, 21-day-old] were randomly allocated to four groups. Piglets were fed a control diet (CON) or the control diet supplemented with 10%, 50% or 100% FMF (FMF-10, FMF-50 or FMF-100, respectively) for 14 d. The results showed that the FMF-100 group had higher average daily gain and average daily feed intake and lower diarrhea incidence than the CON group (p < 0.05). The FMF-50 and FMF-100 groups had greater villus height in the duodenum and jejunum, and the FMF-10 and FMF-100 groups had higher villus height-to-crypt depth ratio in the duodenum and jejunum than the CON group. Additionally, the FMF-100 group had higher protein expression of duodenal, jejunal and ileal ZO-1 and jejunal claudin-1; higher mRNA expression of duodenal and ileal TJP1 and jejunal CLDN1 and IL10; and lower jejunal IL1B mRNA expression (p < 0.05). The FMF-50 group showed higher jejunal ZO-1 and claudin-1 protein levels, higher mRNA expression levels of IL10 and TJP1 and lower levels of TNF in the jejunum; the FMF-10 group had higher mRNA expression levels of IL10 and lower levels of TNF in the jejunum than the CON group (p < 0.05). Furthermore, the FMF-10 and FMF-50 groups had higher colonic Lactobacillus abundance and butyrate levels; the FMF-100 group had higher abundance of colonic butyrate, Lactobacillus and Faecalibacterium than the CON group (p < 0.05). Collectively, our results suggest that FMF could improve intestinal mucosal barrier function, gut microbiota and their metabolites, thereby enhancing average daily gain and reducing diarrhea incidence in weaned piglets.


Asunto(s)
Microbioma Gastrointestinal , Zea mays , Porcinos , Animales , Masculino , Interleucina-10 , Funcion de la Barrera Intestinal , Glycine max , Claudina-1 , Harina , Incidencia , Suplementos Dietéticos , Diarrea/prevención & control , Diarrea/veterinaria , ARN Mensajero , Butiratos
5.
Int J Biol Macromol ; 264(Pt 2): 130772, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467217

RESUMEN

This investigation stems from the wide interest in mitigating starch retrogradation, which profoundly impacts the quality of starch-based food, garnering significant attention in the contemporary food industry. Our study delves into the intricate dynamics of soluble soybean polysaccharide (SSPS) and soybean oil (SO) when added individually or in combination to native corn starch (NCS), offering insights into the gelatinization and retrogradation phenomena. We observed that SSPS (0.5 %, w/w) hindered starch swelling, leading to an elevated gelatinization enthalpy change (∆H) value, while SO (0.5 %, w/w) increased ∆H due to its hydrophobicity. Adding SSPS and/or SO concurrently reduced the viscosity and storage modulus (G') of starch matrix. For the starch gel (8 %, w/v) after refrigeration, SSPS magnified water-holding capacity (WHC) and decreased hardness through hydrogen bonding with starch, while SO increased hardness with limited water retention. Crucially, the combination of SSPS and SO maximized WHC, minimized hardness, and significantly inhibited starch retrogradation. The specific ratio of SSPS to SO was found to significantly influence the starch properties, with a 1:1 ratio resulting in the most desirable quality for application in starch-based foods. This study offers insights for utilizing polysaccharides and lipids in starch-based food products to extend shelf life.


Asunto(s)
Glycine max , Almidón , Aceite de Soja , Zea mays , Polisacáridos/farmacología , Agua
6.
J Environ Manage ; 355: 120431, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457890

RESUMEN

Cover crops (CC) can improve phosphorus (P) cycling by reducing water related P losses and contributing to P nutrition of a rotational crop. This is particularly important in claypan soils with freeze-thaw cycles in early spring in the Midwest U.S. This 4-year study (2019-2022) examined the impact of CC monoculture and mix of CC species on P losses from a fertilizer application, and determined the P balance in soil compared to no cover crop (noCC). The CC mix consisted of wheat (Triticum aestivum L.), radish (Raphanus raphanistrum subsp. Sativus), and turnip (Brassica rapa subsp. Rapa) (3xCCmix) in 2019 and 2021 before corn, and cereal rye (Secale cereale L.) was planted as monoculture before soybean in 2020 and 2022. The 3xCCmix had no effect on total phosphorus (TP) and dissolved reactive phosphorus (PO4-P) concentration or load in 2019 and 2021. Cereal rye reduced TP and PO4-P load 70% and 73%, respectively, compared to noCC. The variation in soil moisture, temperature, and net precipitation from fertilizer application until CC termination affected available soil P pools due to variability in CC species P uptake, residue decomposition, and P loss in surface water runoff. Overall, the P budget calculations showed cereal rye had 2.4 kg ha-1 greater P uptake compared to the 3xCCmix species which also reduced P loss in water and had greater differences in soil P status compared to noCC. This study highlights the benefit of CCs in reducing P loss in surface runoff and immobilizing P through plant uptake. However, these effects were minimal with 3xCCmix species and variability in crop residue decomposition from different CC species could affect overall P-soil balance.


Asunto(s)
Agricultura , Fósforo , Fertilizantes , Suelo , Productos Agrícolas , Grano Comestible , Zea mays , Secale , Agua
7.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38466229

RESUMEN

One-hundred-and-ninety-two weanling pigs (6.7 kg body weight) were used to evaluate the impact of a carbohydrases-protease enzyme complex (CPEC) on growth performance, nutrient digestibility, and gut microbiome. Pigs were assigned to one of the four dietary treatments for 42 d according to a 2 × 2 factorial arrangement of diet type (low fiber [LF] or high fiber [HF]) and CPEC supplementation (0 or 170 mg/kg diet). The LF diet was prepared as corn-wheat-based diet while the HF diet was wheat-barley-based and contained wheat middlings and canola meal. Each dietary treatment consisted of 12 replicate pens (six replicates per gender) and four pigs per replicate pen. Over the 42-d period, there was no interaction between diet type and CPEC supplementation on growth performance indices of pigs. Dietary addition of CPEC improved (P < 0.05) the body weight of pigs at days 28 and 42 and the gain-to-feed ratio of pigs from days 0 to 14. During the entire experimental period, dietary CPEC supplementation improved (P < 0.05) the average daily gain and gain-to-feed ratio of pigs. There were interactions between diet type and CPEC supplementation on apparent total tract digestibility (ATTD) of dry matter (DM; P < 0.01), gross energy (GE; P < 0.01), and neutral detergent fiber (NDF; P < 0.05) at d 42. Dietary CPEC addition improved (P < 0.05) ATTD of DM, GE, and NDF in the HF diets. At day 43, dietary CPEC addition resulted in improved (P < 0.05) apparent ileal digestibility (AID) of NDF and interactions (P < 0.05) between diet type and CPEC supplementation on AID of DM and crude fiber. Alpha diversity indices including phylogenetic diversity and observed amplicon sequence variants of fecal microbiome increased (P < 0.05) by the addition of CPEC to the HF diets on day 42. An interaction (P < 0.05) between diet type and CPEC addition on Bray-Curtis dissimilarity index and Unweighted UniFrac distances was observed on day 42. In conclusion, CPEC improved weanling pig performance and feed efficiency, especially in wheat-barley diets, while dietary fiber composition had a more significant impact on fecal microbial communities than CPEC administration. The results of this study underscores carbohydrase's potential to boost pig performance without major microbiome changes.


There is a pressing need to enhance livestock production efficiency to meet the growing global demand for meat. Carbohydrases and proteases are enzymes typically added to swine diets to improve nutrient utilization, leading to better growth rates and feed efficiency. This ultimately contributes to sustainable and economically viable pig farming. However, more research is required to better understand how carbohydrases and proteases interact with different diet types to optimize dietary formulations, and how this may influence gut microbiome composition. In this study, 192 weaner pigs (~7 kg) were assigned to a low-fiber diet or a high-fiber diet. Each diet type was with or without a carbohydrases and protease multi-enzyme supplementation. The results showed that adding a multi-enzyme combination to the pigs' diet significantly improved the pig's performance, regardless of diet type. Improvement in nutrient digestibility was more pronounced in pigs fed the high-fiber diet and that dietary fiber had a greater influence on the composition of fecal microbes. In essence, the study demonstrates that the multi-enzyme can boost pig growth and feed efficiency in diets with varying fiber complexity without causing significant changes in their gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , Hordeum , Porcinos , Animales , Suplementos Dietéticos , Triticum , Zea mays , Digestión , Tracto Gastrointestinal , Filogenia , Dieta/veterinaria , Nutrientes , Fibras de la Dieta , Peso Corporal , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
8.
Ying Yong Sheng Tai Xue Bao ; 35(2): 447-456, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523103

RESUMEN

We conducted a field experiment in the dry farming area in south Ningxia from 2018 to 2021, to explore the influence of tillage methods combined with mulching on soil bulk density, aggregate content, soil water storage and potato yield under different precipitation years. There were four tillage methods (15 cm depth ploughing, and 30 cm, 40 cm and 50 cm depth subsoiling) and three mulching measures (mulching with oat straw, plastic film and no mulching), with the ploughing depth of 15 cm without mulching as control. The results showed the combination of tillage and mulching effectively reduced soil bulk density in 0-60 cm layer after three years of farming compared with that prior to the experiment. Under the same tillage mode, the best effect was achieved in mulching with oat straw under different precipitation years. To be specific, the best effect in 20 cm and 40 cm soil layers was achieved in mulching with oat straw for 30 cm depth subsoiling, in 60 cm soil layer for 15 cm ploughing in wet year, and for 40 cm depth subsoiling in 20 cm, 40 cm and 60 cm soil layers in normal and dry years. In 0-20 cm soil layer, the content of >0.25 mm soil aggregate was the highest for 40 cm depth subsoiling with oat straw mul-ching in all the three years. In 20-40 cm soil layer, the content was the highest for 15 cm depth ploughing with oat straw mulching in wet year, and for 40 cm depth subsoiling with oat straw mulching in normal and dry years. In 40-60 cm soil layer, content was the highest for 15 cm depth ploughing with plastic film mulching, 30 cm depth subsoiling with plastic film mulching, and 30 cm depth subsoiling with oat straw mulching in wet, normal and dry years, which was increased by 18.8%, 27.0%, and 35.8%, respectively, compared with the control. In the key growth stage (from squaring to tuber expansion) of potatoes, soil water storage in 0-100 cm layer was optimal for 30 cm depth subsoiling with oat straw mulching in wet year and for 40 cm depth subsoiling with oat straw mulching in normal and dry years, with an increase of 19.4%, 19.5%, and 23.7%, respectively. Potato yield was the highest for 30 cm depth subsoiling with oat straw mulching in wet year and for 40 cm depth subsoiling in normal and dry years, with an increase of 84.6%, 81.7%, and 106.3%, respectively. The correlation analysis showed that improved soil physical properties played a significant role in increasing potato yield, with the most significant role of soil bulk density and soil water storage at the squaring stage. Potato yield was high at a tillage depth of 34.67-36.03 cm. We concluded that the combination of tillage method and mulching could effectively improve soil physical pro-perties and increase soil water storage in the growth stage of potatoes, thereby significantly increa-sing potato yield. Potato yield in dry farming area could be enhanced through 30 cm depth subsoiling with oat straw mulching in wet years, and 40 cm depth subsoiling with oat straw mulching in normal and dry years.


Asunto(s)
Suelo , Solanum tuberosum , Agricultura/métodos , Granjas , Agua , China , Zea mays
9.
Trop Anim Health Prod ; 56(3): 108, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507148

RESUMEN

Saharan population in Algeria still depending on bovine milk, which suffers from serious constraints undermining its sustainability. Camelus dromedarius milk has experienced growing demand following the emerging market requirements for livestock production and dairy farming over the past decade. The present work aimed at analysing the effect of nutritional regime on milk quality. The differences in pH, Acidity D°, Ash and Fats were significant. The pH was negatively influenced by the intensification conditions such as the much higher use of concentrates. The major constituents of milk were strongly and positively correlated with barley, wheat bran, TN/Kg.DM (Total Nitrogen/ Kg. Dry Matter), Kg.DM, Concentrates and daily watering. The results showed that a good energy-protein balance around 73 g PDI/UFL (Protein Digestible in the Intestine/Energetic Forage Unit for milk production) was beneficial for a better milk protein ratio. The use of corn, soybeans, palm dates and VM-premix (Vitamin Mineral) supplementation were also favourable to the synthesis of fats. Crude fiber and cell walls were better valued in the synthesis of fats with the availability of concentrates and the increasing of TN /Kg.DM and VM-premix rate in dietary regime. The vitamin C content elevate following high ratio of UFL /Kg.DM and PDI/UFL. For thus, the influence of nutritional status can lead to major improvements that need also more advanced and detailed studies.


Asunto(s)
Camelus , Lactancia , Femenino , Animales , Leche/química , Proteínas de la Leche/análisis , Zea mays , Grasas/análisis , Grasas/metabolismo , Vitaminas/metabolismo , Dieta/veterinaria , Ensilaje/análisis , Rumen/metabolismo
10.
Int J Biol Macromol ; 265(Pt 1): 130951, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503373

RESUMEN

Hsian-tsao polysaccharide (HP) with preferable bioactivities was used to produce starchy gel foods. This study elucidated how interactions of HP (0-0.6 %, w/v) with gelatinized corn starch (CS, 6 %, w/v) reduced in vitro digestibility of CS. The CS digestibility (82.85 %, without HP) was reduced to 68.85 % (co-heated) and 74.75 % (non-co-heated) when 0.6 % HP was added, demonstrating that HP reduced the CS digestibility to a larger extent under co-heating by both HP-CS interactions and inhibiting digestive enzyme activities by HP which was dominated under non-co-heating. Moreover, when co-heated, HP bonded to the amylose of CS via physical forces with a composite index of 21.95 % (0.4 % HP), impeded CS swelling and promoted CS aggregation with the average particle size increased to 42.95 µm (0.6 % HP). Also, the HP-CS complexes formed strong association network structures that increased their apparent viscosity and digestive fluid viscosity. Additionally, HP enhanced the short-range ordered structure and crystal structure of CS. These results evidenced that HP-CS interactions significantly reduced the CS digestibility by forming physical barriers, viscosity effects, and ordered structures, to hinder the enzymes from accessing starch matrices. This laid a foundation for applying HP to starchy foods with a low predicted glycemic index.


Asunto(s)
Medicamentos Herbarios Chinos , Almidón , Zea mays , Almidón/química , Zea mays/química , Polisacáridos/química , Amilosa/química
11.
Birth Defects Res ; 116(3): e2321, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457279

RESUMEN

BACKGROUND: Folic acid is a micronutrient that is effective at preventing neural tube defects (NTDs). In 2016, the FDA authorized the voluntary fortification of corn masa flour (CMF) with folic acid to reduce disparities in NTDs among infants of women who do not regularly consume other fortified cereal grains, in particular Hispanic women of reproductive age (WRA). METHODS: We analyzed data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to March 2020 assessing the impact of voluntary fortification of CMF on the folate status of Hispanic WRA. We analyzed folic acid usual intake and red blood cell (RBC) folate concentrations among non-pregnant, non-lactating Hispanic WRA, comparing pre-fortification (2011-2016) to post-fortification (2017-March 2020) data. RBC folate concentrations were used to create model-based estimation of NTD rates. RESULTS: The proportion of Hispanic WRA with folic acid usual intakes <400 µg/d did not change (2011-2016: 86.1% [95% Confidence Interval, CI: 83.7-88.5]; 2017-March 2020: 87.8% [95% CI: 84.8-90.7]; p = .38) nor did the proportion of Hispanic WRA with RBC folate below optimal concentrations (<748 nmol/L, 2011-2016: 16.0% [95% CI: 13.7-18.2]; 2017-March 2020: 18.1% [95% CI: 12.1-24.0]; p = 0.49). Model-based estimates of NTD rates suggest further improvements in the folate status of Hispanic WRA might prevent an additional 157 (95% Uncertainty Interval: 0, 288) NTDs/year. CONCLUSIONS: Voluntary fortification of CMF with folic acid has yet to have a significant impact on the folate status of WRA. Continued monitoring and further research into factors such as fortified product availability, community knowledge, and awareness of folic acid benefits would inform and improve future public health interventions.


Asunto(s)
Ácido Fólico , Defectos del Tubo Neural , Femenino , Humanos , Encuestas Nutricionales , Zea mays , Harina , Alimentos Fortificados , Defectos del Tubo Neural/prevención & control , Eritrocitos
12.
PLoS One ; 19(3): e0295391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457380

RESUMEN

Although maize is sensitive to zinc (Zn) deficiencies, the responses of maize cultivars to the foliar application of Zn sulfate (ZnSO4) may vary significantly. Here, we quantified the responses of grain yields and nitrogen (N), phosphorus (P), and potassium (K) absorption to ZnSO4 using 22 modern maize cultivars. The results revealed that 40.9% of the cultivars were not affected by foliar ZnSO4, whereas only 45.5% of the cultivars responded positively to ZnSO4, which was evidenced by increased grain numbers and shortened bald tip lengths. The impact of Zn fertilizer might be manifested in the dry biomass, from the 8-leaf stage (BBCH 18). For Zn-deficiency resistant cultivars, the foliar application of ZnSO4 enhanced N accumulation by 44.1%, while it reduced P and K absorption by 13.6% and 23.7%, respectively. For Zn-deficiency sensitive maize cultivars, foliar applied ZnSO4 improved the accumulation of N and K by 27.3% and 25.0%, respectively; however, it lowered their utilization efficiency. Hence, determining the optimized application of Zn fertilizer, while avoiding Zn toxicity, should not be based solely on the level of Zn deficiency in the soil, but also, take into consideration the sensitivity of some cultivars to Zn, Furthermore, the supplementation of Zn-deficiency sensitive maize cultivars with N and K is key to maximizing the benefits of Zn fertilization.


Asunto(s)
Sulfato de Zinc , Zinc , Sulfato de Zinc/farmacología , Zinc/análisis , Zea mays , Fertilizantes , Triticum , Minerales , Suelo , Grano Comestible/química
13.
J Sci Food Agric ; 104(7): 4189-4200, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38349054

RESUMEN

BACKGROUND: We investigated the impact of using canola meal (CM) or corn distillers dried grain soluble (cDDGS) in place of soybean meal (SBM) in low-crude-protein diets supplemented with amino acids (AA) on AA digestibility, gut morphometrics, and AA transporter genes in broiler chicken. On day 0, 540 Cobb 500 male broilers were allocated to six diets in 36-floor pens. The positive control (PC) was a corn-SBM diet with adequate crude protein (CP). The CP level of negative control (NC) was decreased by 45 and 40 g kg-1 relative to PC for grower and finisher phases, respectively. The subsequent two diets had the same CP levels as NC but with cDDGS added at 50 or 125 g kg-1. The last two diets had the same CP as NC but with CM added at 50 or 100 g kg-1. RESULTS: Dietary CP reduction in corn-SBM diets increased (P < 0.05) the digestibility of Lys (88.5%), Met (90.7%), Thr (77.4%), Cys (80.7%), and Gly (84.7%). Increasing levels of cDDGS linearly decreased (P < 0.05) the digestibility of Asp, Cys, Glu, and Ser, whereas increasing CM level linearly decreased (P < 0.05) the digestibility of Cys, Pro, and Ser. The CP reduction in corn-SBM diets produced downward expression of peptide transporter1 and decreased (P < 0.05) absolute pancreas and ileum weight and length of jejunum and ileum. CONCLUSIONS: Partial replacement of SBM with alternative protein feedstuffs (cDDGS or CM) in low-CP diets had minimal effects on AA digestibility and mRNA levels of peptides and AA transporters. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Aminoácidos , Brassica napus , Animales , Masculino , Aminoácidos/metabolismo , Pollos/metabolismo , Zea mays/genética , Zea mays/metabolismo , Harina , Digestión , Alimentación Animal/análisis , Dieta/veterinaria , Dieta con Restricción de Proteínas , Íleon/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Péptidos/metabolismo , Glycine max , Expresión Génica , Fenómenos Fisiológicos Nutricionales de los Animales
14.
J Integr Plant Biol ; 66(4): 635-637, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38351742

RESUMEN

This commentary describes recent research discovering that the NAC transcription factor gene ZmNAC78 controls iron intake in maize and its implications for biofortification of this important crop. Using ZmNAC78, iron levels in maize can be more than doubled compared with current varieties.


Asunto(s)
Deficiencias de Hierro , Hierro , Biofortificación , Zea mays/genética , Alimentos Fortificados
15.
J Environ Manage ; 353: 120159, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38310797

RESUMEN

Nicosulfuron is a common herbicide used to control weeds in maize fields. In northeast China, sugar beet is often grown as a subsequent crop after maize, and its frequently suffers from soil nicosulfuron residue damage, but the related toxicity evaluation and photosynthetic physiological mechanisms are not clear. Therefore, we experimented to evaluate the impacts of nicosulfuron residues on beet growth, photochemical properties, and antioxidant defense system. The results showed that when the nicosulfuron residue content reached 0.3 µg kg-1, it inhibited the growth of sugar beet. When it reached 36 µg kg-1 (GR50), the growth stagnated. Compared to the control group, a nicosulfuron residue of 36 µg kg-1 significantly decreased beet plant height (70.93 %), leaf area (91.85 %), dry weights of shoot (70.34 %) and root (32.70 %). It also notably reduced the potential photochemical activity (Fv/Fo) by 12.41 %, the light energy absorption performance index (PIabs) by 46.09 %, and light energy absorption (ABS/CSm) by 6.56 %. It decreased the capture (TRo/CSm) by 9.30 % and transferred energy (ETo/CSm) by 16.13 % per unit leaf cross-section while increasing the energy flux of heat dissipation (DIo/CSm) by 22.85 %. This ultimately impaired the photochemical capabilities of PSI and PSII, leading to a reduction in photosynthetic performance. Furthermore, nicosulfuron increased malondialdehyde (MDA) content while decreasing superoxide dismutase (SOD) and catalase (CAT) activities. In conclusion, this research clarified the toxicity risk level, lethal dose, and harm mechanism of the herbicide nicosulfuron residue. It provides a theoretical foundation for the rational use of herbicides in agricultural production and sugar beet planting management.


Asunto(s)
Beta vulgaris , Herbicidas , Piridinas , Compuestos de Sulfonilurea , Beta vulgaris/metabolismo , Fotosíntesis/fisiología , Antioxidantes/metabolismo , Zea mays , Herbicidas/toxicidad , Azúcares
16.
PLoS Genet ; 20(2): e1011135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38315718

RESUMEN

Phosphorus (P) deficiency is one of the most critical factors for plant growth and productivity, including its inhibition of lateral root initiation. Auxin response factors (ARFs) play crucial roles in root development via auxin signaling mediated by genetic pathways. In this study, we found that the transcription factor ZmARF1 was associated with low inorganic phosphate (Pi) stress-related traits in maize. This superior root morphology and greater phosphate stress tolerance could be ascribed to the overexpression of ZmARF1. The knock out mutant zmarf1 had shorter primary roots, fewer root tip number, and lower root volume and surface area. Transcriptomic data indicate that ZmLBD1, a direct downstream target gene, is involved in lateral root development, which enhances phosphate starvation tolerance. A transcriptional activation assay revealed that ZmARF1 specifically binds to the GC-box motif in the promoter of ZmLBD1 and activates its expression. Moreover, ZmARF1 positively regulates the expression of ZmPHR1, ZmPHT1;2, and ZmPHO2, which are key transporters of Pi in maize. We propose that ZmARF1 promotes the transcription of ZmLBD1 to modulate lateral root development and Pi-starvation induced (PSI) genes to regulate phosphate mobilization and homeostasis under phosphorus starvation. In addition, ZmERF2 specifically binds to the ABRE motif of the promoter of ZmARF1 and represses its expression. Collectively, the findings of this study revealed that ZmARF1 is a pivotal factor that modulates root development and confers low-Pi stress tolerance through the transcriptional regulation of the biological function of ZmLBD1 and the expression of key Pi transport proteins.


Asunto(s)
Fosfatos , Zea mays , Fosfatos/metabolismo , Fósforo/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Raíces de Plantas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Trop Anim Health Prod ; 56(2): 72, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326674

RESUMEN

This study aimed to assess the impact of adding forage cactus as an additive to the production of corn silage without the cob on the performance of feedlot sheep and subsequent silage losses. The experimental design was completely randomized, consisting of three treatments: corn silage without cob; 0% = 100% corn plant without the cob; 10% = 90% corn plant without cob + 10% forage cactus; 20% = 80% corn plant without cob + 20% forage cactus. Significant effects were observed for dry matter intake (P = 0.0201), organic matter (P = 0.0152), ether extract (P = 0.0001), non-fiber carbohydrates (P = 0.0007). Notably, nutrient digestibility showed significant differences in organic matter (P = 0.0187), ether extract (P = 0.0095), neutral detergent fiber (P = 0.0005), non-fiber carbohydrates (P = 0.0001), and metabolizable energy (P = 0.0001). Performance variables, including total weight gain (P = 0.0148), average daily weight gain (P = 0.0148), feeding efficiency, and rumination efficiency of dry matter (P = 0.0113), also exhibited significant effects. Consequently, it is recommended to include 20% forage cactus in corn silage, which, based on natural matter, helps meet animals' water needs through feed. This inclusion is especially vital in semi-arid regions and aids in reducing silage losses during post-opening silo disposal.


Asunto(s)
Cactaceae , Zea mays , Animales , Femenino , Dieta/veterinaria , Fibras de la Dieta , Digestión , Éteres , Lactancia , Leche , Extractos Vegetales , Rumen , Ovinos , Ensilaje/análisis , Aumento de Peso
18.
Environ Sci Pollut Res Int ; 31(13): 20246-20257, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38372921

RESUMEN

An effective way to reduce herbicide quantity is to use adjuvants in order to optimize the amount of herbicide and improve its control efficiency. In order to screen for efficient herbicide tank-mix adjuvants, improve the control of weeds in maize fields, reduce the amount of effective ingredients, and improve the adsorption and digestion behavior of herbicides in soil, this study evaluated the synergistic effects and soil behavior of four types of tank-mix adjuvants combined with herbicides. Different types of adjuvants can enhance herbicide production. Surface tension was significantly reduced by 13% after the pesticide solution was applied with AgroSpred™ Prime. The contact angle with the foliar surface was significantly reduced and solution wettability improved using Atp Lus 245-LQ-(TH). The permeability of topramezone and atrazine in leaves of Amaranthus retroflexus L. and Digitaria sanguinalis (L.) Scop. was increased by 22-96% after adding either tank-mix adjuvant. The solution drying time and maximum retention on leaves were not affected by the tank-mix adjuvants. Ethyl and methylated vegetable oils can reduce the adsorption of topramezone in the soil, thus reducing its half-life in soil. The tank-mix adjuvants had no significant effect on soil dissipation or adsorption of atrazine. AgroSpred™ Prime and Atp Lus 245-LQ-(TH) have the best synergistic effect on topramezone and atrazine in the control of A. retroflexus L. and D. sanguinalis (L.) Scop. in maize fields.


Asunto(s)
Atrazina , Herbicidas , Pirazoles , Herbicidas/análisis , Adyuvantes Inmunológicos , Suelo , Zea mays , Adenosina Trifosfato
19.
Plant Physiol Biochem ; 207: 108396, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38310727

RESUMEN

Drought stress poses a substantial threat to global plant productivity amid increasing population and rising agricultural demand. To overcome this problem, the utilization of organic plant growth ingredients aligns with the emphasis on eco-friendly farming practices. Therefore, the present study aimed to assess the influence of 30 botanical extracts on seed germination, seedling vigor, and subsequent maize plant growth under normal and water deficit conditions. Specifically, eight extracts showed significant enhancement in agronomical parameters (ranging from ∼2 % to ∼ 183 %) and photosynthetic pigments (ranging from ∼21 % to âˆ¼ 195 %) of seedlings under drought conditions. Extended tests on maize in a greenhouse setting confirmed that the application of six extracts viz Moringa oleifera leaf (MLE), bark (MBE), Terminalia arjuna leaf (ALE), bark (ABE), Aegel marmelos leaf (BLE), and Phyllanthus niruri leaf (AmLE) improved plant growth and drought tolerance, as evident in improved physio-biochemical parameters. GC-MS analysis of the selected extracts unveiled a total of 51 bioactive compounds, including sugars, sugar alcohols, organic acids, and amino acids, and might be playing pivotal roles in plant acclimatization to drought stress. In conclusion, MLE, MBE, BLE, and ABE extracts exhibit significant potential for enhancing seedling establishment and growth in maize under both normal and water deficit conditions.


Asunto(s)
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Zea mays/metabolismo , Sequías , Plantones/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Agua/metabolismo , Estrés Fisiológico
20.
Environ Sci Pollut Res Int ; 31(14): 21646-21658, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38396179

RESUMEN

Increasing soil cadmium (Cd) contamination is a serious threat to human food health and safety. In order to reduce Cd uptake and Cd toxicity in silage maize, hydroponic tests were conducted to investigate the effect of exogenous Cd on the toxicity of silage maize in this study. In the study, a combination of Cd (5, 20, 50, 80, and 10 µM) treatments was applied in a hydroponic system. With increasing Cd concentration, Cd significantly inhibited the total root length (RL), root surface area (SA), root volume (RV), root tip number (RT), and branching number (RF) of maize seedlings, which were reduced by 28.1 to 71.3%, 20.2 to 64.9%, 11.2 to 56.5%, 43.7 to 63.4%, and 38.2 to 72.6%, respectively. The excessive Cd accumulation inhibited biomass accumulation and reduced silage maize growth, photosynthesis, and chlorophyll content and activated the antioxidant systems, including increasing lipid peroxidation and stimulating catalase (CAT) and peroxidase (POD), but reduced the activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in the root. Besides, selenium (Se) significantly decreased the Cd concentration of the shoot and root by 27.1% and 35.1% under Cd50, respectively. Our results reveal that exogenously applied Cd reduced silage maize growth and impaired photosynthesis. Whereas silage maize can tolerate Cd by increasing the concentration of ascorbate and glutathione and activating the antioxidant defense system, the application of exogenous selenium significantly reduced the content of Cd in silage maize.


Asunto(s)
Selenio , Humanos , Selenio/farmacología , Cadmio/toxicidad , Zea mays , Antioxidantes , Ensilaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA