Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 34(4): 949-957, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38480002

RESUMEN

There has been a growing interest in skin beauty and antimelanogenic products. Melanogenesis is the process of melanin synthesis whereby melanocytes are activated by UV light or hormone stimulation to produce melanin. Melanogenesis is mediated by several enzymes, such as tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), and TRP-2. In this study, we investigated the effect of Tuber himalayense extract on melanin synthesis in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 melanoma cells. We confirmed that T. himalayense extract was not toxic to α-MSH-treated B16F10 melanoma cells and exhibited a significant inhibitory effect on melanin synthesis at concentrations of 25, 50, and 100 µg/ml. Additionally, the T. himalayense extract inhibited melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are enzymes involved in melanin synthesis, in a concentration-dependent manner. Furthermore, T. himalayense extract inhibited the mitogen-activated protein kinase (MAPK) pathways, such as extracellular signal-regulated kinase-1/2 (ERK), c-Jun N-terminal kinase (JNK), and p38. Therefore, we hypothesized that various components of T. himalayense extract affect multiple factors involved in melanogenesis in B16F10 cells. Our results indicate that T. himalayense extract could potentially be used as a new material for preparing whitening cosmetics.


Asunto(s)
Melaninas , Factor de Transcripción Asociado a Microftalmía , Monofenol Monooxigenasa , Extractos Vegetales , Melaninas/biosíntesis , Melaninas/metabolismo , Animales , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Línea Celular Tumoral , República de Corea , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Oxidorreductasas Intramoleculares/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Melanoma Experimental/metabolismo , Oxidorreductasas/metabolismo , Tubérculos de la Planta/química , Glicoproteínas de Membrana/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Supervivencia Celular/efectos de los fármacos
2.
Pharm Biol ; 62(1): 296-313, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38555860

RESUMEN

CONTEXT: Hyperpigmentation, a common skin condition marked by excessive melanin production, currently has limited effective treatment options. OBJECTIVE: This study explores the effects of Tao-Hong-Si-Wu decoction (THSWD) on hyperpigmentation and to elucidate the underlying mechanisms. MATERIALS AND METHODS: We employed network pharmacology, Mendelian randomization, and molecular docking to identify THSWD's hub targets and mechanisms against hyperpigmentation. The Cell Counting Kit-8 (CCK-8) assay determined suitable THSWD treatment concentrations for PIG1 cells. These cells were exposed to graded concentrations of THSWD-containing serum (2.5%, 5%, 10%, 15%, 20%, 30%, 40%, and 50%) and treated with α-MSH (100 nM) to induce an in vitro hyperpigmentation model. Assessments included melanin content, tyrosinase activity, and Western blotting. RESULTS: ALB, IL6, and MAPK3 emerged as primary targets, while quercetin, apigenin, and luteolin were the core active ingredients. The CCK-8 assay indicated that concentrations between 2.5% and 20% were suitable for PIG1 cells, with a 50% cytotoxicity concentration (CC50) of 32.14%. THSWD treatment significantly reduced melanin content and tyrosinase activity in α-MSH-induced PIG1 cells, along with downregulating MC1R and MITF expression. THSWD increased ALB and p-MAPK3/MAPK3 levels and decreased IL6 expression in the model cells. DISCUSSION AND CONCLUSION: THSWD mitigates hyperpigmentation by targeting ALB, IL6, and MAPK3. This study paves the way for clinical applications of THSWD as a novel treatment for hyperpigmentation and offers new targeted therapeutic strategies.


Asunto(s)
Medicamentos Herbarios Chinos , Hiperpigmentación , Humanos , Análisis de la Aleatorización Mendeliana , Melaninas , Monofenol Monooxigenasa , Simulación del Acoplamiento Molecular , alfa-MSH , Farmacología en Red , Interleucina-6 , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Hiperpigmentación/tratamiento farmacológico
3.
J Ethnopharmacol ; 326: 117933, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38382653

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The roots and rhizomes of Bergenia purpurascens (Hook. f. et Thomson) Engl., was used as a sunscreen to protect against ultraviolet rays in Tibet of China historically, but its skin whitening constituents and pharmacological effects of this plant remained unknown. AIM OF THE STUDY: To investigate the anti-melanogenesis effect of B. purpurascens in vitro and in vivo, and then explore the preliminary mechanism. MATERIALS AND METHODS: An ultraviolet B (UVB)-induced skin injury model of mice was used to verify the ameliorative effect of B. purpurascens extract (BPE) on ultraviolet damage. Then, alpha-melanocyte stimulating hormone (α-MSH)-induced murine melanoma cell line (B16F10) melanin generation model was further adopted to approval the effects of BPE and its bioactive compound, cuscutin, in vitro. Moreover, α-MSH stimulated melanogenesis model in zebrafish was employed to confirm the anti-pigmentation effect of cuscutin. Then, proteins expressions associated with melanin production were observed using western blotting assay to explore preliminary mechanism. RESULTS: BPE inhibited UVB-induced mice injury and restored skin barrier function observably in vivo. BPE and cuscutin suppressed the overproduction of melanin in α-MSH induced B16F10 significantly, in which cuscutin exhibited better effect than well-known whitening agent α-arbutin at same 10 µg/mL concentration. Moreover, the pigmentation of zebrafish embryo was decreased by cuscutin. Finally, cuscutin showed significant downregulation of expressions of tyrosinase (TYR) and tyrosinase related protein-1 (TRP-1), TRP-2 and microphthalmia-associated transcription factor (MITF) in the melanogenic signaling pathway. CONCLUSION: B. purpurascens extract and its major bioactive constituent, cuscutin, showed potent anti-melanogenesis and skin-whitening effect by targeting TYR and TRP-2 proteins for the first time, which supported its traditional use.


Asunto(s)
Melanoma Experimental , Monofenol Monooxigenasa , Animales , Ratones , Melaninas/metabolismo , Pez Cebra , alfa-MSH/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Factor de Transcripción Asociado a Microftalmía/metabolismo , Línea Celular Tumoral , Melanoma Experimental/tratamiento farmacológico
4.
Phytomedicine ; 126: 155442, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394730

RESUMEN

BACKGROUND: The pursuit for safe and efficacious skin-whitening agents has prompted a dedicated exploration of plant-derived compounds. Notably, Tagetes erecta L. flowers have been used as a medicinal extract and possessed in vitro mushroom tyrosinase activity. However, whether polyphenol-enriched fraction extracted from T. erecta L. flowers (TE) regulates melanogenesis within cellular and animal models has not yet been investigated. PURPOSE: This study aimed to investigate the effect of TE as a prospective inhibitor of melanogenesis. METHODS: Through advanced UPLC-QTof/MS analysis, the components of TE were analyzed. Anti-melanogenic effects of TE were evaluated in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells by measuring cell viability assay, extracellular and intracellular melanin biosynthesis, cyclic adenosine monophosphate (cAMP) production, and melanogenesis-related gene and protein expression. Zebrafish larvae were employed for in vivo studies, assessing both heart rate and melanogenesis. Furthermore, molecular docking analyses were employed to predict the interaction between TE components and the melanocortin 1 receptor (MC1R). Direct binding activity of TE components to MC1R was compared with [Nle4, d-Phe7]-MSH (NDP-MSH). RESULTS: TE was found to contain significant phenolic compounds such as patulitrin, quercetagetin, kaempferol, patuletin, and isorhamnetin. This study revealed that TE effectively inhibits melanin biosynthesis in both in vitro and in vivo models. This inhibition was attributed to interference of TE with the cAMP-cAMP response element-binding protein (CREB)-microphthalmia-associated transcription factor (MITF)-tyrosinase pathway, which plays a pivotal role in regulating melanogenesis. Importantly, TE exhibited the remarkable ability to curtail α-MSH-induced melanogenesis in zebrafish larvae without impacting heart rates. Molecular docking analyses predicted that the components of TE possibly interact with the melanocortin 1 receptor, suggesting their role as potential inhibitors of melanin biosynthesis. However, through the direct binding activity compared with NDP-MSH, any TE components did not directly bind to MC1R, suggesting that TE inhibits α-MSH-induced melanogenesis by inhibiting the cAMP-mediated intracellular signaling pathway. The assessment of anti-melanogenic activity, conducted both in vitro and in vivo, revealed that patulitrin and patuletin exhibited significant inhibitory effects on melanin formation, highlighting their potency as major contributors. DISCUSSION: This investigation demonstrated the considerable potential of TE as a natural remedy endowed with remarkable anti-melanogenic properties. The demonstrated capacity of TE to attenuate melanin production by modulating the cAMP-CREB-MITF-tyrosinase pathway underscores its central role in management of disorders associated with excessive pigmentation. Importantly, the implications of these findings extend to the cosmetics industry, where TE emerges as a prospective and valuable ingredient for the formulation of skin-whitening products. The elucidated interactions between TE components and MC1R not only provide insight into a potential mechanism of action but also elevate the significance of this study. In summary, this study not only contributes to our comprehension of pigmentation-related conditions but also firmly establishes TE as a secure and natural strategy for the regulation of melanin production. The innovative aspects of TE propel it into the forefront of potential interventions, marking a noteworthy advancement in the pursuit of effective and safe solutions for pigmentation disorders.


Asunto(s)
Melanoma Experimental , Tagetes , Animales , Melaninas , Monofenol Monooxigenasa/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Pez Cebra/metabolismo , Tagetes/metabolismo , Melanogénesis , Polifenoles/farmacología , Receptor de Melanocortina Tipo 1/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Factor de Transcripción Asociado a Microftalmía/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo
5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108635

RESUMEN

Pearl powder is a famous traditional Chinese medicine that has a long history in treating palpitations, insomnia, convulsions, epilepsy, ulcers, and skin lightining. Recently, several studies have demonstrated the effects of pearl extracts on protection of ultraviolet A (UVA) induced irritation on human skin fibroblasts and inhibition of melanin genesis on B16F10 mouse melanoma cells. To further explore the effect we focused on the whitening efficacy of pearl hydrolyzed conchiolin protein (HCP) on human melanoma MNT-1 cells under the irritation of alpha-melanocyte-stimulating hormone (α-MSH) or endothelin 1 (ET-1) to evaluate the intracellular tyrosinase and melanin contents, as well as the expression levels of tyrosinase (TYR), tyrosinase related protein 1 (TRP-1), and dopachrome tautomerase (DCT) genes and related proteins. We found that HCP could decrease the intracellular melanin content by reducing the activity of intracellular tyrosinase and inhibiting the expression of TYR, TRP-1, DCT genes and proteins. At the same time, the effect of HCP on melanosome transfer effect was also investigated in the co-culture system of immortalized human keratinocyte HaCaT cells with MNT-1. The result indicated that HCP could promote the transfer of melanosomes in MNT-1 melanocytes to HaCaT cells, which might accelerate the skin whitening process by quickly transferring and metabolizing melanosomes during keratinocyte differentiation. Further study is needed to explore the mechanism of melanosome transfer with depigmentation.


Asunto(s)
Melanoma Experimental , Melanoma , Animales , Ratones , Humanos , Melaninas/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Monofenol Monooxigenasa/metabolismo , Endotelina-1/metabolismo , Línea Celular Tumoral , Melanocitos/metabolismo , Melanoma/metabolismo , Hidrolisados de Proteína/metabolismo , Melanoma Experimental/metabolismo
6.
Neuroendocrinology ; 113(9): 885-904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37094550

RESUMEN

Understanding the complex action mechanism of appetite regulation peptides can significantly impact therapeutic options in the treatment of obesity and other metabolic diseases. Hypothalamic alpha-melanocyte-stimulating hormone (α-MSH) is an anorexigenic peptide, closely related to the occurrence of obesity, playing a central role in food intake and energy expenditure. In the central nervous system, α-MSH is cleaved from proopiomelanocortin and then released into different hypothalamic regions to act on melanocortin 3/4 receptor-expressing neurons, lowering food intake, and raising energy expenditure via appetite suppression and sympathetic nervous system. Furthermore, it can increase the transmission of some anorexigenic hormones (e.g., dopamine) and interact with other orexigenic factors (e.g., agouti-related protein, neuropeptide Y) to influence food reward rather than merely feeding behavior. Therefore, α-MSH is a critical node of the hypothalamus in transmitting appetite suppression signals and is a key component of the central appetite-regulating circuits. Herein, we describe the role of α-MSH in appetite suppression in terms of specific receptors, effector neurons, sites of action, and the interaction with other appetite-relative peptides, respectively. We focus on the role of α-MSH in obesity. The status of research on α-MSH-related drugs is also discussed. With the intention of illuminating a new approach for targeting α-MSH in the hypothalamus as a strategy to manage obesity, we hope to further understand the direct or indirect mechanisms by which α-MSH exerts its appetite-regulating effects.


Asunto(s)
Regulación del Apetito , alfa-MSH , Humanos , alfa-MSH/metabolismo , Regulación del Apetito/fisiología , Apetito , Obesidad/metabolismo , Hipotálamo/metabolismo
7.
Mol Metab ; 72: 101713, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977433

RESUMEN

OBJECTIVE: Orexin-A (OX-A) is a neuropeptide produced selectively by neurons of the lateral hypothalamus. It exerts powerful control over brain function and physiology by regulating energy homeostasis and complex behaviors linked to arousal. Under conditions of chronic or acute brain leptin signaling deficiency, such as in obesity or short-term food deprivation, respectively, OX-A neurons become hyperactive and promote hyperarousal and food seeking. However, this leptin-dependent mechanism is still mostly unexplored. The endocannabinoid 2-arachidonoyl-glycerol (2-AG) is known to be implicated in food consumption by promoting hyperphagia and obesity, and we and others demonstrated that OX-A is a strong inducer of 2-AG biosynthesis. Here, we investigated the hypothesis that, under acute (6 h fasting in wt mice) or chronic (in ob/ob mice) hypothalamic leptin signaling reduction, OX-A-induced enhancement of 2-AG levels leads to the production of the 2-AG-derived 2-arachidonoyl-sn-glycerol-3-phosphate (2-AGP), a bioactive lipid belonging to the class of lysophosphatidic acids (LPAs), which then regulates hypothalamic synaptic plasticity by disassembling α-MSH anorexigenic inputs via GSK-3ß-mediated Tau phosphorylation, ultimately affecting food intake. METHODS: We combined cell-type-specific morphological (CLEM and confocal microscopy), biochemical, pharmacological, and electrophysiological techniques to dissect the leptin- and OX-A/2-AGP-mediated molecular pathways regulating GSK-3ß-controlled pT231-Tau production at POMC neurons of obese ob/ob and wild-type (wt) lean littermate mice and in an in vitro model of POMC neurons such as mHypoN41 neurons (N41). RESULTS: 2-AGP is overproduced in the hypothalamus of obese leptin-deficient, or lean 6 h food-deprived mice, and promotes food intake by reducing α-MSH-expressing synaptic inputs to OX-A neurons via lysophosphatidic acid type-1 receptor (LPA1-R) activation, and pT231-Tau accumulation in α-MSH projections. This effect is due to the activation of the Pyk2-mediated pTyr216-GSK3ß pathway and contributes to further elevating OX-A release in obesity. Accordingly, we found a strong correlation between OX-A and 2-AGP levels in the serum of obese mice and of human subjects. CONCLUSIONS: Hypothalamic feeding pathways are endowed with 2-AGP-mediated synaptic plasticity according to their inherent functional activities and the necessity to adapt to changes in the nutritional status. These findings reveal a new molecular pathway involved in energy homeostasis regulation, which could be targeted to treat obesity and related disturbances.


Asunto(s)
Endocannabinoides , Leptina , Ratones , Humanos , Animales , Orexinas/metabolismo , Leptina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Endocannabinoides/metabolismo , alfa-MSH/metabolismo , Proopiomelanocortina/metabolismo , Hipotálamo/metabolismo , Obesidad/metabolismo , Lisofosfolípidos/metabolismo , Ratones Endogámicos
8.
J Cosmet Dermatol ; 22(2): 637-644, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36030197

RESUMEN

BACKGROUND: Ligularia fischeri is a perennial herb isolated from plants of the Asteraceae family. Ligularia fischeri is distributed throughout Korea, Japan, eastern Siberia, and China. AIMS: The aim of this study is to examine the intracellular inhibitory effect of Ligularia fischeri ethanol extract on melanin synthesis and expression of tyrosinase and tyrosinase-related protein 1 and 2. In addition, we analyzed the mitogen-activated protein kinase signaling pathway and microphthalmia-associated transcription factor in alpha-melanocyte-stimulating hormone-stimulated B16F10 melanoma cells. METHODS: To assess the inhibition of melanogenesis in alpha-melanocyte-stimulating hormone-stimulated B16F10 melanoma cells, the expression of melanogenesis-related genes was investigated by quantitative real-time polymerase chain reaction, while western blotting was performed to determine protein expression levels. RESULTS: We confirmed that the ethanol extract of Ligularia fischeri inhibited melanin synthesis in vitro by decreasing tyrosinase and tyrosinase-related protein 1 and 2 expression. Furthermore, we revealed that tyrosinase expression was regulated by the suppression of microphthalmia-associated transcription factor expression and activation of extracellular signal-regulated kinase phosphorylation. The ethanol extract of Ligularia fischeri inhibited melanogenesis by activating extracellular signal-regulated kinase phosphorylation and suppressing microphthalmia-associated transcription factor and tyrosinase expression. CONCLUSIONS: Ligularia fischeri ethanol extract may be used as an effective skin whitening agent in functional cosmetics.


Asunto(s)
Ligularia , Melanoma , Humanos , Monofenol Monooxigenasa , alfa-MSH/farmacología , alfa-MSH/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Melaninas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Melanoma/metabolismo , Extractos Vegetales/farmacología
9.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203322

RESUMEN

The whitening effect of reducing skin pigmentation is one of the most important goals of cosmetics. The purpose of this study was to determine whether Catalpa ovata extract and its fractions have potential as natural skin-lightening agents. Initially, we screened various fractions of Catalpa ovata extract using an in vitro antioxidant assay. Then, the inhibitory effects of C. ovata extract and its fraction on melanogenesis and the related mechanisms were investigated in B16F1 melanoma cells. The results showed that the ethyl acetate fraction (EF) from C. ovata extract markedly inhibited melanin synthesis in a dose-dependent manner at non-toxic concentrations. Furthermore, EF downregulated both the protein and mRNA levels of tyrosinase, which is a specific enzyme that catalyzes the conversion of tyrosine into melanin. We also found that EF decreased the microphthalmia-associated transcription factor (MITF) at the protein and mRNA levels. EF increased the phosphorylation of ERK and suppressed the phosphorylation of JNK and p38 in ɑ-MSH-induced B16F1 cells. These results indicate that EF can regulate the MAPK pathway. In addition, EF has an anti-melanogenic effect via the downregulation of intracellular cyclic-AMP (cAMP). Nineteen major compounds of EF were identified using LC-MS/MS. Taken together, these results suggest that EF may be a potential anti-melanogenic agent for use in skin-whitening cosmetics and in topical treatments for hyperpigmentation disorders.


Asunto(s)
Acetatos , Bignoniaceae , Melanogénesis , alfa-MSH/farmacología , Melaninas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Monofenol Monooxigenasa , AMP Cíclico , ARN Mensajero , Extractos Vegetales/farmacología
10.
Mol Metab ; 66: 101627, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36374777

RESUMEN

OBJECTIVE: The hypothalamus regulates feeding and glucose homeostasis through the balanced action of different neuropeptides, which are cleaved and activated by the proprotein convertases PC1/3 and PC2. However, the recent association of polymorphisms in the proprotein convertase FURIN with type 2 diabetes, metabolic syndrome, and obesity, prompted us to investigate the role of FURIN in hypothalamic neurons controlling glucose and feeding. METHODS: POMC-Cre+/- mice were bred with Furinfl/fl mice to generate conditional knockout mice with Furin-deletion in neurons expressing proopiomelanocortin (POMCFurKO), and Furinfl/fl mice were used as controls. POMCFurKO and controls were periodically monitored on both normal chow diet and high fat diet (HFD) for body weight and glucose tolerance by established in-vivo procedures. Food intake was measured in HFD-fed FurKO and controls. Hypothalamic Pomc mRNA was measured by RT-qPCR. ELISAs quantified POMC protein and resulting peptides in the hypothalamic extracts of POMCFurKO mice and controls. The in-vitro processing of POMC was studied by biochemical techniques in HEK293T and CHO cell lines lacking FURIN. RESULTS: In control mice, Furin mRNA levels were significantly upregulated on HFD feeding, suggesting an increased demand for FURIN activity in obesogenic conditions. Under these conditions, the POMCFurKO mice were hyperphagic and had increased body weight compared to Furinfl/fl mice. Moreover, protein levels of POMC were elevated and ACTH concentrations markedly reduced. Also, the ratio of α-MSH/POMC was decreased in POMCFurKO mice compared to controls. This indicates that POMC processing was significantly reduced in the hypothalami of POMCFurKO mice, highlighting for the first time the involvement of FURIN in the cleavage of POMC. Importantly, we found that in vitro, the first stage in processing where POMC is cleaved into proACTH was achieved by FURIN but not by PC1/3 or the other proprotein convertases in cell lines lacking a regulated secretory pathway. CONCLUSIONS: These results suggest that FURIN processes POMC into proACTH before sorting into the regulated secretory pathway, challenging the dogma that PC1/3 and PC2 are the only convertases responsible for POMC cleavage. Furthermore, its deletion affects feeding behaviors under obesogenic conditions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Conducta Alimentaria , Furina , Hipotálamo , Proopiomelanocortina , Animales , Humanos , Ratones , alfa-MSH/metabolismo , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Conducta Alimentaria/fisiología , Furina/genética , Furina/metabolismo , Glucosa , Células HEK293 , Hipotálamo/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo , Proproteína Convertasa 2/genética , Proproteína Convertasa 2/metabolismo , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , ARN Mensajero/metabolismo , Subtilisinas/genética , Subtilisinas/metabolismo
11.
Front Endocrinol (Lausanne) ; 13: 999928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277690

RESUMEN

Background: Bile acids are important signaling molecules that might activate hypothalamic neurons. This study aimed to investigate possible changes in hypothalamic pro-opiomelanocortin (POMC) neurons after biliary diversion in diabetic rats. Methods: Ten GK rats were randomly divided into the biliary diversion (BD) and sham groups. The glucose metabolism, hypothalamic POMC expression, serum bile acid profiles, and ileal bile acid-specific receptors of the two groups were analyzed. Results: Biliary diversion improved blood glucose (P = 0.001) and glucose tolerance (P = 0.001). RNA-Seq of the hypothalamus showed significantly upregulated expression of the POMC gene (log2-fold change = 4.1, P < 0.001), which also showed increased expression at the protein (P = 0.030) and mRNA (P = 0.004) levels. The POMC-derived neuropeptide α-melanocyte stimulating hormone (α-MSH) was also increased in the hypothalamus (2.21 ± 0.11 ng/g, P = 0.006). In addition, increased taurocholic acid (TCA) (108.05 ± 20.62 ng/mL, P = 0.003) and taurodeoxycholic acid (TDCA) (45.58 ± 2.74 ng/mL, P < 0.001) were found in the BD group and induced the enhanced secretion of fibroblast growth factor-15 (FGF15, 74.28 ± 3.44 pg/ml, P = 0.001) by activating farnesoid X receptor (FXR) that was over-expressed in the ileum. Conclusions: Hypothalamic POMC neurons were upregulated after BD, and the increased TCA, TDCA, and the downstream gut-derived hormone FGF15 might activate POMC neurons.


Asunto(s)
Diabetes Mellitus Experimental , Neuropéptidos , Ratas , Animales , Proopiomelanocortina/genética , alfa-MSH/genética , alfa-MSH/metabolismo , Regulación hacia Arriba , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Ácidos y Sales Biliares , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , ARN Mensajero/metabolismo , Ácido Taurodesoxicólico/metabolismo , Ácido Taurocólico/metabolismo
12.
Phytochemistry ; 203: 113349, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35973614

RESUMEN

A bioactive molecular networking strategy has been applied to discovery of bioactive constituents from the fruits of Celastrus orbiculatus Thunb., which showed significant inhibitory effects on the α-MSH-induced melanin production in B16F0 melanoma cells. In the obtained molecular network, the nodes with relatively high bioactive scores were prioritized for isolation; as a result, 12 undescribed dihydro-ß-agarofuran sesquiterpenes together with 15 known compounds were isolated from MeOH extracts of the fruits of C. orbiculatus. Their structures were elucidated based on the interpretation of NMR, HRESIMS, ECD data, and single crystal X-ray diffraction. Among the obtained isolates, celastorbin A and (1R,2S,4R,5S,7S,8S,9R,10S)-1,2,8-triacetoxy-9-cinnamoyloxydihydro-ß-agarofuran, which possessed high bioactive scores in the molecular network, exhibited potent inhibitory effects on the α-MSH-induced melanin production in B16F0 cells with IC50 values of 4.1 and 2.0 µM, respectively.


Asunto(s)
Celastrus , Sesquiterpenos , Celastrus/química , Frutas/química , Melaninas/análisis , Estructura Molecular , Extractos Vegetales/análisis , Sesquiterpenos/química , alfa-MSH/análisis
13.
BMC Complement Med Ther ; 22(1): 174, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752787

RESUMEN

BACKGROUND: Polysaccharides from wampee have been reported to process various biological activities, while the relationship between structure and bioactivities has been barely addressed. Pectin, an abundant water-soluble polysaccharide in wampee, showed significant antioxidant activity, which was associated with the anti-melanogenic activity. Therefore, this study investigated the physicochemical characteristics and the anti-melanogenesis effect of pectin extracted from wampee fruit in A375 cells. METHODS: The physicochemical characterization of pectin from wampee fruit was investigated by gel chromatography (GCP), FT-IR spectroscopy, and NMR spectroscopy methods. The anti-melanogenesis effects and mechanism were evaluated by mushroom tyrosine enzyme and human melanin cell model in vitro. RESULTS: The results showed that a molecular weight of 5.271 × 105 Da wampee fruit pectin (WFP) were mainly composed of mannose (Man), ribose (Rib), rhamnose (Rha), glucuronic acid (Glc A), glucose (Glc), galacturonic acid (Gal A), galactose (Gal), and arabinose (Ara), which linked with →4)-ß-D-Galp-(1 → units. The current study revealed that WFP could significantly suppress mushroom TRY activity in vitro. Furtherly, WFP significantly reduced intracellular and extracellular melanin formation in A375 melanoma cells depending on the presence of alpha-melanocyte stimulating hormone (α-MSH). TRY activity was only inhibited in α-MSH treated A375 cells. Western blot analysis demonstrated that WFP reverse α-MSH induced melanogenesis in A375 melanoma cells, including in down-regulated TRY, TYRP-1, TYRP-2, MITF and CREB expressions. CONCLUSION: These results indicated that WFP could inhibit α-MSH induced melanogenesis in A375 melanoma cells via α-MSH/TRY pathway. In conclusion, these data provided a new perspective to annotate WFP anti-melanogenesis activity mechanism.


Asunto(s)
Melanoma , alfa-MSH , Línea Celular Tumoral , Frutas , Humanos , Melaninas , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/metabolismo , Pectinas/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , alfa-MSH/metabolismo , alfa-MSH/farmacología
14.
Mol Biol Rep ; 49(8): 7827-7836, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35733058

RESUMEN

BACKGROUND: Hyperpigmentation, which causes excessive melanin synthesis and accumulation, is an important issue in the cosmetic industry. Since compounds developed against hyperpigmentation often come with side effects such as skin irritation and contact dermatitis, new studies focus on the use of natural agents that have no side effects. METHODS AND RESULTS: In this study, it was found that the effects of soybean cell culture extract (SCE) on alpha-melanocyte-stimulating hormone (α-MSH) induced melanogenesis in B16-F10 murine melanoma cells. The cells were incubated with SCE for 48 h after treatment with α­MSH for 24 h to analysis the melanin content, cellular tyrosinase activity, and gene and protein expression. SCE at 1 mg/mL decreased melanin content and tyrosinase activity by 34% and 24%, respectively, compared to the α-MSH-treated group, which did not decrease cell viability. In addition, SCE (1 mg/mL) downregulated the expression of tyrosinase (TYR), tyrosinase-related protein (TRP)-1, tyrosinase-related protein (TRP)-2, and microphthalmia-associated transcription factor (MITF) genes 1.5-, 1.5-, 2-, and 2-fold, respectively. Furthermore, SCE inhibited the expression of TYR, TRP1, and TRP2 by decreasing the expression of MITF, as shown in a western blot assay. CONCLUSIONS: This study suggests that SCE reveals dose-dependent inhibition of melanin synthesis through the suppression of tyrosinase activity as well as molecular levels of TYR, TRP1, TRP2, and MITF in B16-F10 murine melanoma cells. Therefore, SCE has the potential to be an effective and natural skin-whitening agent for application in the cosmetic industry.


Asunto(s)
Hiperpigmentación , Melanoma Experimental , Animales , Técnicas de Cultivo de Célula , Extractos Celulares , Línea Celular Tumoral , Melaninas/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa , Extractos Vegetales/farmacología , Glycine max/metabolismo , alfa-MSH/genética , alfa-MSH/metabolismo , alfa-MSH/farmacología
15.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163281

RESUMEN

Calycosin, a bioactive isoflavonoid isolated from root extracts of Astragalus membranaceus, has been reported to inhibit melanogenesis, the mechanism of which remains undefined. In this study, we interrogated the mechanistic basis by which calycosin inhibits melanin production in two model systems, i.e., B16F10 melanoma cells and zebrafish embryos. Calycosin was effective in protecting B16F10 cells from α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity. This anti-melanogenic effect was accompanied by decreased expression levels of microphthalmia-associated transcription factor (MITF), a key protein controlling melanin synthesis, and its target genes tyrosinase and tyrosinase-related protein-2 (TRP-2) in calycosin-treated cells. Mechanistically, we obtained the first evidence that calycosin-mediated MITF downregulation was attributable to its ability to block signaling pathways mediated by cAMP response element-binding protein (CREB) and p38 MAP kinase. The protein kinase A (PKA) inhibitor H-89 and p38 inhibitor SB203580 validated the premise that calycosin inhibits melanin synthesis and tyrosinase activity by regulating the PKA/CREB and p38 MAPK signaling pathways. Moreover, the in vivo anti-melanogenic efficacy of calycosin was manifested by its ability to suppress body pigmentation and tyrosinase activity in zebrafish embryos. Together, these data suggested the translational potential of calycosin to be developed as skin-lightening cosmeceuticals.


Asunto(s)
Isoflavonas/farmacología , Melaninas/metabolismo , Animales , Astragalus propinquus/metabolismo , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Isoflavonas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Raíces de Plantas , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo , alfa-MSH/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Molecules ; 26(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34641503

RESUMEN

Melanin is a natural pigment produced by cells to prevent damage caused by ultraviolet radiation. Previously, resveratrol was shown to reduce melanin synthesis. As a natural polyphenol with various biological activities, resveratrol occurs in a variety of beverages and plant foods, such as grapes. Therefore, we investigated whether grape extracts containing resveratrol also had the ability to regulate melanin synthesis. In this study, we used mouse B16F10 melanoma cells as a model for melanin synthesis with the melanogenesis-inducing α-melanocyte-stimulating hormone (α-MSH) as a positive control. Our results confirmed previous reports that resveratrol reduces melanin synthesis by reducing the activity of the rate-limiting enzyme tyrosinase. In contrast, the grape extract could not reduce melanin synthesis, and in fact promoted melanogenesis in the presence of α-MSH. The expression of genes related to melanin synthesis, such as tyrosinase, tyrosinase-related protein-1, tyrosinase-related protein-2, and microphthalmia-associated transcription factor, also supports these phenomena, which means that even in the presence of resveratrol, grape extract will strengthen the function of α-MSH in promoting melanin synthesis. Therefore, these results also provide a point of view for research on cosmetics.


Asunto(s)
Melaninas/biosíntesis , Melanoma Experimental/metabolismo , Resveratrol/farmacología , Vitis/química , alfa-MSH/farmacología , Animales , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/farmacología , Células Tumorales Cultivadas
17.
Eur J Pharmacol ; 910: 174458, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34480884

RESUMEN

Abnormal melanogenesis and melanosome transport can cause skin pigmentation disorders that are often treated using ginseng-based formulation. We previously found that phenolic acid compounds in ginseng root could inhibit melanin production and as a skin-whitening agents. However, mechanisms of action underlying effects of ginseng phenolic acid monomers on melanogenesis remain unclear. This study was conducted to investigate effects of salicylic acid, a main ginseng root phenolic acid component, on melanogenesis and melanosome functions in melanocytes of zebrafish and other species. Salicylic acid exhibited no cytotoxicity and reduced melanin levels and tyrosinase activity in B16F10 murine melanoma cells and normal human epidermal melanocytes regardless of prior cell stimulation with α-melanocyte stimulating hormone. Additionally, salicylic acid treatment reduced expression of melanogenic enzymes tyrosinase, tyrosinase-related protein 1 and tyrosinase-related protein 2, while reducing expression of their master transcriptional regulator, microphthalmia-associated transcription factor. Moreover, reduced phosphorylation of cAMP response-element binding protein was observed due to reduced cAMP levels resulting from salicylic acid inhibition of upstream signal regulators (adenylyl cyclase and protein kinase A). Furthermore, salicylic acid treatment suppressed expression of transport complex-associated proteins melanophilin and myosin Va in two UVB-treated melanocytic cell lines, suppressed phagocytosis of fluorescent microspheres by UVB-stimulated human keratinocytes (HaCaT), inhibited protease-activated receptor 2 activation by reducing both Ca2+ release and activation of phosphoinositide 3 kinase/AKT and mitogen-activated protein kinases and induced anti-melanogenic effects in zebrafish. Collectively, these results indicate that salicylic acid within ginseng root can inhibit melanocyte melanogenesis and melanin transport, while also suppressing keratinocyte phagocytic function.


Asunto(s)
Hiperpigmentación/tratamiento farmacológico , Melaninas/metabolismo , Melanosomas/metabolismo , Panax/química , Ácido Salicílico/farmacología , Animales , Calcio/metabolismo , Línea Celular , AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Oxidorreductasas Intramoleculares/metabolismo , Queratinocitos/efectos de los fármacos , Melaninas/antagonistas & inhibidores , Melanocitos/efectos de los fármacos , Melanosomas/efectos de los fármacos , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Oxidorreductasas/metabolismo , Fagocitosis/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Receptor PAR-2/metabolismo , Transducción de Señal/efectos de los fármacos , Rayos Ultravioleta , Pez Cebra , alfa-MSH/farmacología
18.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299326

RESUMEN

Ziziphus jujuba extracts possess a broad spectrum of biological activities, such as antioxidant and anticancer activities in melanoma cancers. Nevertheless, the compounds contain high antioxidant capacities and anticancer activities in melanoma cells, shown to be effective in hyperpigmentation disorders, but whether flavonoid glycosides from Z. jujuba regulate anti-melanogenesis remains unclear. In this study, we evaluated the anti-melanogenic activity of five flavonoid glycosides from Z. jujuba var. inermis (Bunge) Rehder seeds, including jujuboside A (JUA), jujuboside B (JUB), epiceanothic acid (EPA), betulin (BTL), and 6'''-feruloylspinosin (FRS), in B16F10 melanoma cells and zebrafish larvae. According to our results, JUB, EPA, and FRS potently inhibited α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and prevented hyperpigmentation in zebrafish larvae. In particular, under α-MSH-stimulated conditions, FRS most significantly inhibited α-MSH-induced intracellular and extracellular melanin content in B16F10 melanoma cells. Additionally, JUB, EPS, and FRS remarkably downregulated melanogenesis in α-MSH-treated zebrafish larvae, with no significant change in heart rate. Neither JUA nor BTA were effective in downregulating melanogenesis in B16F10 melanoma cells and zebrafish larvae. Furthermore, JUB, EPA, and FRS directly inhibited in vitro mushroom tyrosinase enzyme activity. JUB, EPA, and FRS also downregulated cyclic adenosine monophosphate (cAMP) levels and the phosphorylation of cAMP-response element-binding protein (CREB), and subsequent microphthalmia transcription factor (MITF) and tyrosinase expression. In conclusion, this study demonstrated that JUB, EPA, and FRS isolated from Z. jujuba var. inermis (Bunge) Rehder seeds exhibit potent anti-melanogenic properties by inhibition of the cAMP-CERB-MITF axis and consequent tyrosinase activity.


Asunto(s)
Flavonoides/farmacología , Glicósidos/farmacología , Ziziphus/metabolismo , alfa-MSH/metabolismo , Animales , Antioxidantes/farmacología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Flavonoides/aislamiento & purificación , Glicósidos/aislamiento & purificación , Larva , Melaninas/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma Experimental , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Semillas/metabolismo , Transducción de Señal/efectos de los fármacos , Pez Cebra , alfa-MSH/antagonistas & inhibidores
19.
Diabetes ; 70(9): 2081-2091, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34183373

RESUMEN

Work in recent decades has established that metabolic hormones released by endocrine cells and diverse other cell types serve to regulate nutrient intake and energy homeostasis. Tsukushi (TSK) is a leucine-rich repeat-containing protein secreted primarily by the liver that exerts an inhibitory effect on brown fat sympathetic innervation and thermogenesis. Despite this, physiological regulation of TSK and the mechanisms underlying its effects on energy balance remain poorly understood. Here we show that hepatic expression and plasma concentrations of TSK are induced by feeding and regulated by melanocortin-4 receptor (MC4R) signaling. We generated TSK and MC4R-double-knockout mice to elucidate the nature of cross talk between TSK and the central regulatory circuit of energy balance. Remarkably, TSK inactivation restores energy balance, ameliorates hyperphagia, and improves metabolic health in MC4R-deficient mice. TSK ablation enhances thermogenic gene expression in brown fat, dampens obesity-association inflammation in the liver and adipose tissue, and protects MC4R-null mice from diet-induced nonalcoholic steatohepatitis. At the cellular level, TSK deficiency augments feeding-induced c-Fos expression in the paraventricular nucleus of the hypothalamus. These results illustrate physiological cross talk between TSK and the central regulatory circuit in maintaining energy balance and metabolic homeostasis.


Asunto(s)
Metabolismo Energético/fisiología , Obesidad/metabolismo , Proteoglicanos/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Fármacos Antiobesidad/farmacología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Proteoglicanos/genética , Receptor de Melanocortina Tipo 4/genética , Transducción de Señal/fisiología , Termogénesis/fisiología , alfa-MSH/análogos & derivados , alfa-MSH/farmacología
20.
J Exp Med ; 218(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33978701

RESUMEN

Atypical antipsychotics such as risperidone cause drug-induced metabolic syndrome. However, the underlying mechanisms remain largely unknown. Here, we report a new mouse model that reliably reproduces risperidone-induced weight gain, adiposity, and glucose intolerance. We found that risperidone treatment acutely altered energy balance in C57BL/6 mice and that hyperphagia accounted for most of the weight gain. Transcriptomic analyses in the hypothalamus of risperidone-fed mice revealed that risperidone treatment reduced the expression of Mc4r. Furthermore, Mc4r in Sim1 neurons was necessary for risperidone-induced hyperphagia and weight gain. Moreover, we found that the same pathway underlies the obesogenic effect of olanzapine-another commonly prescribed antipsychotic drug. Remarkably, whole-cell patch-clamp recording demonstrated that risperidone acutely inhibited the activity of hypothalamic Mc4r neurons via the opening of a postsynaptic potassium conductance. Finally, we showed that treatment with setmelanotide, an MC4R-specific agonist, mitigated hyperphagia and obesity in both risperidone- and olanzapine-fed mice.


Asunto(s)
Antipsicóticos/farmacología , Receptor de Melanocortina Tipo 4/metabolismo , Risperidona/farmacología , Aumento de Peso/efectos de los fármacos , Animales , Femenino , Hiperfagia/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Obesidad/metabolismo , Olanzapina/farmacología , Potasio/metabolismo , Potenciales Sinápticos/efectos de los fármacos , Transcriptoma/efectos de los fármacos , alfa-MSH/análogos & derivados , alfa-MSH/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA