Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 833: 155163, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35413342

RESUMEN

Nitrogen (N) and phosphorus (P) control biogeochemical cycling in terrestrial ecosystems. However, N and P addition effects on litter decomposition, especially biological pathways in subtropical forests, remain unclear. Here, a two-year field litterbag experiment was employed in a subtropical forest in southwestern China to examine N and P addition effects on litter biological decomposition with nine treatments: low and high N- and P-only addition (LN, HN, LP, and HP), NP coaddition (LNLP, LNHP, HNLP, and HNHP), and a control (CK). The results showed that the decomposition coefficient (k) was higher in NP coaddition treatments (P < 0.05), and lower in N- and P-only addition treatments than in CK (P < 0.05). The highest k was observed with LNLP (P < 0.05). The N- and P-only addition treatments decreased the losses of litter mass, lignin, cellulose, and condensed tannins, litter microbial biomass carbon (MBC), litter cellulase, and soil pH (P < 0.05). The NP coaddition treatments increased the losses of litter mass, lignin, and cellulose, MBC concentration, litter invertase, urease, cellulase, and catalase activities, soil arthropod diversity (S) in litterbags, and soil pH (P < 0.05). Litter acid phosphatase activity and N:P ratio were lower in N-only addition treatments but higher in P-only addition and NP coaddition treatments than in CK (P < 0.05). Structural equation model showed that litter MBC, S, cellulase, acid phosphatase, and polyphenol oxidase contributed to the loss of litter mass (P < 0.05). The litter N:P ratio was negatively logarithmically correlated with mass loss (P < 0.01). In conclusion, the negative effect of N addition on litter decomposition was reversed when P was added by increasing decomposed litter soil arthropod diversity, MBC concentration, and invertase and cellulase activities. Finally, the results highlighted the important role of the N:P ratio in litter decomposition.


Asunto(s)
Celulasas , Nitrógeno , Fosfatasa Ácida/metabolismo , Carbono/análisis , Celulasas/análisis , Celulasas/metabolismo , China , Ecosistema , Bosques , Lignina/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Hojas de la Planta/química , Suelo/química , beta-Fructofuranosidasa/análisis , beta-Fructofuranosidasa/metabolismo
2.
PLoS One ; 15(4): e0231198, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32343698

RESUMEN

Soil physicochemical properties, bacterial communities and enzyme activities change with land subsidence resulting from coal mining. However, research on the responses of bacterial communities and enzyme activities to the soil properties in different degree of subsidence areas is limited. As such, we collected soil samples from a control area (C area), a moderate mining subsidence area (M area) and a severe mining subsidence area (S area) in Central China. Soil properties, such as the pH, total nitrogen (TN) content, total phosphorus (TP) content, available phosphorus (AP) content, organic matter (OM) content, and soil enzyme (urease, invertase, catalase and alkaline phosphatase) activities were measured in each sampling area at depths of 0-20 cm, 20-40 cm, and 40-60 cm. The results indicated that the soil physiochemical properties, soil urease activity, soil alkaline phosphatase activity and soil bacterial richness and diversity in the topsoil (0-20 cm) of the mining subsidence area were significantly lower than those in the C area. However, the soil enzyme activities within the deepest layer of the subsidence area were significantly greater than those of the C area. The bacterial communities within the depth of 0-20 cm were dominated by RB41, Pseudomonas, MND1, Nitrospira, Trichococcus, Sphingomonas and Dongia, whereas RB41 and Pseudomonas were the dominant species in the C area and subsidence area, respectively. Using correlation analysis, we found that the soil pH value, soil AP content and activities of the four enzymes were the main factors affecting the soil bacterial community structure. In addition, the soil nutrient contents, enzyme activities and bacterial richness and evenness decreased with increasing subsidence degree (classified by geological hazards, groundwater and landscape damage degree of coal mining subsidence). These results provide a reliable basis for environmental management of mining areas.


Asunto(s)
Bacterias/enzimología , Minas de Carbón , Microbiología del Suelo , Suelo/química , Fosfatasa Alcalina/análisis , Catalasa/análisis , China , Geografía , Agua Subterránea , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Fósforo/análisis , Ureasa/análisis , beta-Fructofuranosidasa/análisis
3.
J Sci Food Agric ; 97(12): 4094-4102, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28211621

RESUMEN

BACKGROUND: Spraying selenium (Se) fertilizer is an effective method for Se-enriched fruit production. Sugar content in fruit is the major factor determining berry quality. However, changes in sugar metabolism in response to Se fertilizer are unclear. Hence, this study was conducted to identify the effects of Se fertilizer on sugar metabolism and related enzyme activities of grape berries. Additionally, production of leaves with and without Se fertilizer was also investigated. RESULTS: Acid invertase (AI) activity, total soluble sugar and Se content in berries, and photosynthetic rate in leaves produced under Se fertilizer treatments were higher than that of control. Glucose and fructose were the primary sugars in berries, with a trace of sucrose. In both berries and leaves, neutral invertase activity was lower than AI, there was no significant difference in neutral invertase, sucrose synthase and sucrose phosphate synthase between Se fertilizer-treated and control. In berries, AI showed a significant positive correlation with glucose and fructose; also Se content was significantly correlated with sugar content. CONCLUSION: AI played an important role in the process of sugar accumulation in berries; high AI activity in berries and photosynthetic rate in leaves could explain the mechanism by which Se fertilizer affected sugar accumulation in berries. © 2017 Society of Chemical Industry.


Asunto(s)
Carbohidratos/química , Frutas/química , Proteínas de Plantas/análisis , Selenio/análisis , Vitis/química , beta-Fructofuranosidasa/análisis , Metabolismo de los Hidratos de Carbono , Fertilizantes/análisis , Frutas/enzimología , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Selenio/metabolismo , Vitis/enzimología , Vitis/crecimiento & desarrollo , Vitis/metabolismo , beta-Fructofuranosidasa/metabolismo
4.
PLoS One ; 10(11): e0142677, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26560310

RESUMEN

Soil labile organic carbon and soil enzymes play important roles in the carbon cycle of coastal wetlands that have high organic carbon accumulation rates. Soils under three vegetations (Phragmites australis, Spartina alterniflora, and Scirpusm mariqueter) as well as bare mudflat in Hangzhou Bay wetland of China were collected seasonally. Seasonal dynamics and correlations of soil labile organic carbon fractions and soil enzyme activities were analyzed. The results showed that there were significant differences among vegetation types in the contents of soil organic carbon (SOC) and dissolved organic carbon (DOC), excepting for that of microbial biomass carbon (MBC). The P. australis soil was with the highest content of both SOC (7.86 g kg-1) and DOC (306 mg kg-1), while the S. mariqueter soil was with the lowest content of SOC (6.83 g kg-1), and the bare mudflat was with the lowest content of DOC (270 mg kg-1). Soil enzyme activities were significantly different among vegetation types except for urease. The P. australis had the highest annual average activity of alkaline phosphomonoesterase (21.4 mg kg-1 h-1), and the S. alterniflora had the highest annual average activities of ß-glycosidase (4.10 mg kg-1 h-1) and invertase (9.81 mg g-1 24h-1); however, the bare mudflat had the lowest activities of alkaline phosphomonoesterase (16.2 mg kg-1 h-1), ß-glycosidase (2.87 mg kg-1 h-1), and invertase (8.02 mg g-1 24h-1). Analysis also showed that the soil labile organic carbon fractions and soil enzyme activities had distinct seasonal dynamics. In addition, the soil MBC content was significantly correlated with the activities of urease and ß-glucosidase. The DOC content was significantly correlated with the activities of urease, alkaline phosphomonoesterase, and invertase. The results indicated that vegetation type is an important factor influencing the spatial-temporal variation of soil enzyme activities and labile organic carbon in coastal wetlands.


Asunto(s)
Carbono/química , Contaminantes del Suelo/química , Humedales , Bahías , Biomasa , Ciclo del Carbono , China , Monitoreo del Ambiente , Geografía , Glicósido Hidrolasas/análisis , Nitrógeno/química , Monoéster Fosfórico Hidrolasas/análisis , Fósforo/química , Estaciones del Año , Suelo , beta-Fructofuranosidasa/análisis
5.
Environ Monit Assess ; 186(10): 6319-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24869954

RESUMEN

The impact of repeated applications of buprofezin and acephate, at concentrations ranging from 0.25 to 1.0 kg ha(-1), on activities of cellulases, amylase, and invertase in unamended and nitrogen, phosphorous, and potassium (NPK) fertilizer-amended soil planted with cotton was studied. The nontarget effect of selected insecticides, when applied once, twice, or thrice on soil enzyme activities, was dose-dependent; the activities decreased with increasing concentrations of insecticides. However, there was a rapid decline in activities of enzymes after three repeated applications of insecticides in unamended or NPK-amended soil. Our data clearly suggest that insecticides must be applied judiciously in pest management in order to protect the enzymes largely implicated in soil fertility.


Asunto(s)
Amilasas/análisis , Celulasas/análisis , Monitoreo del Ambiente , Insecticidas/toxicidad , Compuestos Organotiofosforados/toxicidad , Fosforamidas/toxicidad , Microbiología del Suelo , Tiadiazinas/toxicidad , beta-Fructofuranosidasa/análisis , Fertilizantes/análisis , Insecticidas/análisis , Nitrógeno/análisis , Fósforo/análisis , Potasio , Suelo
6.
Int J Food Sci Nutr ; 55(4): 325-31, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15369986

RESUMEN

The activity of soluble invertase, and the variation in glucose, fructose and sucrose contents in onion bulbs (Allium cepa) during long-term storage at 10 degrees C and 20 degrees C were investigated. Invertase activity increased progressively after 8 weeks to 0.084 and 0.092 nkat/g fresh weight (FW), then sharply to 0.29 and 0.35 nkat/g FW at 20 degrees C and 10 degrees C, respectively, and remained high during 5 weeks. Then, activity decreased abruptly to 0.039 and 0.041 nkat/g, and remained low during the last 8 weeks and close to that observed initially. Glucose increased to 17.73 and 14.62 mg/g FW after 4 weeks at 20 degrees C and 10 degrees C, respectively, then decreased sharply between week 5 and week 7 to 4.13 and 4.91 mg/g FW, respectively, and remained rather stable ranging from 9 and 10 mg/g FW at both temperatures. Fructose showed a similar pattern and was 14.8 and 21.68 mg/g FW at 20 degrees C and 10 degrees C, respectively. Between week 10 and week 24, fructose ranged from 5 and 6 mg/g FW, and from 6 and 7 mg/g FW at 20 degrees C and 10 degrees C, respectively. Sucrose increased to 19.63 and 14.43 mg/g FW at 20 degrees C and 10 degrees C, respectively, decreased during 3 weeks, and then increased randomly from 5.69 to 9.42 mg/g FW at 20 degrees C, but remained in a steady state at 10 degrees C ranging 5.03 +/- 0.78 mg/g FW. During the last 6 weeks, the sucrose content was higher at 20 degrees C than at 10 degrees C. The fructose-glucose ratio varied during the first 8 weeks but remained at a steady level during the last 16 weeks. The (glucose+fructose)/sucrose ratio increased randomly at 10 degrees C, whereas at 20 degrees C the ratio increased during 10 weeks then decreased progressively during the final 14 weeks.


Asunto(s)
Conservación de Alimentos , Cebollas/química , Temperatura , beta-Fructofuranosidasa/análisis , Análisis de los Alimentos/métodos , Fructosa/análisis , Glucosa/análisis , Valor Nutritivo , Sacarosa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA