Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Clin Nutr ; 119(3): 702-710, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38159728

RESUMEN

BACKGROUND: Approximately 70%-100% of the Asian adult population is lactase nonpersistent (LNP). The literature shows that many individuals with the LNP-genotype can consume ≤12 g of lactose without experiencing gastrointestinal discomfort. Repetitive consumption of lactose may reduce intolerance symptoms via adaptation of the gut microbiota. OBJECTIVE: This study aimed to assess the effects of daily consumption of incremental lactose doses on microbiota composition and function, and intolerance symptoms. METHODS: Twenty-five healthy adults of Asian origin, carrying the LNP-genotype were included in this 12-wk before and after intervention trial. Participants consumed gradually increasing lactose doses from 3 to 6 g to 12 g twice daily, each daily dose of 6 g, 12 g, or 24 g being provided for 4 consecutive weeks. Participants handed-in repeated stool samples and underwent a 25 g lactose challenge hydrogen breath test (HBT) before and after the 12-wk intervention. Daily gastrointestinal symptoms and total symptom scores (TSSs) during the lactose challenge were recorded. RESULTS: A significant increase from 5.5% ± 7.6% to 10.4% ± 9.6% was observed in Bifidobacterium relative abundance after the intervention (P = 0.009), accompanied by a 2-fold increase (570 ± 269 U/g; P < 0.001) in fecal ß-galactosidase activity compared with baseline (272 ± 158 U/g). A 1.5-fold decrease (incremental area under the curve; P = 0.01) in expired hydrogen was observed during the second HBT (38 ± 35 ppm·min), compared with the baseline HBT (57 ± 38 ppm·min). There was a nonsignificant decrease in TSS (10.6 ± 8.3 before compared with 8.1 ± 7.2 after intervention; P = 0.09). Daily consumption of lactose was well tolerated, with mild to no gastrointestinal complaints reported during the intervention. CONCLUSIONS: Increased levels of Bifidobacterium indicate an adaptation of the gut microbiota upon repetitive consumption of incremental doses of lactose, which was well tolerated as demonstrated by reduced expired hydrogen concentrations during the second 25-g lactose HBT. Bifidobacteria metabolize lactose without gas production thereby potentially reducing intestinal gas formation in the gut of individuals with the LNP-genotype. This increased lactose tolerance possibly lifts the necessity to remove nutrient-rich dairy foods completely from the diet. The trial is registered at the International Clinical Trials Registry Platform: NL9516. The effect of dietary lactose in lactase nonpersistent individuals on gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Intolerancia a la Lactosa , Adulto , Humanos , Intolerancia a la Lactosa/genética , Lactasa/genética , Lactosa/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/uso terapéutico , Genotipo , Hidrógeno/uso terapéutico , Suplementos Dietéticos , Pruebas Respiratorias
2.
Mol Med Rep ; 23(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33786633

RESUMEN

Targeting microRNAs (miRs) using small chemical molecules has become a promising strategy for disease treatment. miR­216a has been reported to be a potential therapeutic target in endothelial senescence and atherosclerosis via the Smad3/NF­κB signaling pathway. Ginsenoside Rb2 (Rb2) is the main bioactive component extracted from the plant Panax ginseng, and is a widely used traditional Chinese medicine. In the present study, Rb2 was identified to have a high score for miR­216a via bioinformatics analysis based on its sequence and structural features. The microscale thermophoresis experiment further demonstrated that Rb2 had a specific binding affinity for miR­216a and the dissociation constant was 17.6 µM. In both young and senescent human umbilical vein endothelial cells (HUVECs), as well as human aortic endothelial cells, Rb2 decreased the expression of endogenous miR­216a. Next, a replicative endothelial senescence model of HUVECs was established by infection with pre­miR­216a recombinant lentiviruses (Lv­miR­216a) and the number of population­doubling level (PDL) was calculated. Stable overexpression of miR­216a induced a premature senescent­like phenotype, whereas the senescent features and increased activity of senescence­associated ß­galactosidase (SA­ß­gal) were reversed after Rb2 treatment. The percentage of SA­ß­gal­positive cells in senescent PDL25 cells transfected with Lv­miR­216a was decreased 76% by Rb2 treatment compared with the Lv­miR­216a group without Rb2 treatment (P=0.01). Mechanistically, miR­216a inhibited Smad3 protein expression, promoted IκBα degradation and activated NF­κB­responsive genes, such as vascular cell adhesion molecule 1 (VCAM1), which promoted the adhesiveness of endothelial cells to monocytes. These pro­inflammatory effects of miR­216a were significantly suppressed by Rb2 treatment. When Smad3 was suppressed by small interfering RNA, the elevated expression levels of intercellular adhesion molecule 1 and VCAM1 induced by miR­216a were significantly reversed. Collectively, to the best of our knowledge, the present study demonstrated for the first time that Rb2 exerted an anti­inflammation effect on the process of endothelial cell senescence and could be a potential therapeutic drug by targeting miR­216a.


Asunto(s)
Antiinflamatorios/farmacología , Senescencia Celular , Ginsenósidos/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , MicroARNs/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , MicroARNs/genética , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
3.
Planta ; 251(5): 100, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32328732

RESUMEN

MAIN CONCLUSION: ß-(1,4)-galactan determines the interactions between different matrix polysaccharides and cellulose during the cessation of cell elongation. Despite recent advances regarding the role of pectic ß-(1,4)-galactan neutral side chains in primary cell wall remodelling during growth and cell elongation, little is known about the specific function of this polymer in other developmental processes. We have used transgenic Arabidopsis plants overproducing chickpea ßI-Gal ß-galactosidase under the 35S CaMV promoter (35S::ßI-Gal) with reduced galactan levels in the basal non-elongating floral stem internodes to gain insight into the role of ß-(1,4)-galactan in cell wall architecture during the cessation of elongation and the beginning of secondary growth. The loss of galactan mediated by ßI-Gal in 35S::ßI-Gal plants is accompanied by a reduction in the levels of KOH-extracted xyloglucan and an increase in the levels of xyloglucan released by a cellulose-specific endoglucanase. These variations in cellulose-xyloglucan interactions cause an altered xylan and mannan deposition in the cell wall that in turn results in a deficient lignin deposition. Considering these results, we can state that ß-(1,4)-galactan plays a key structural role in the correct organization of the different domains of the cell wall during the cessation of growth and the early events of secondary cell wall development. These findings reinforce the notion that there is a mutual dependence between the different polysaccharides and lignin polymers to form an organized and functional cell wall.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Pared Celular/química , Cicer/enzimología , Galactanos/análisis , Pectinas/química , beta-Galactosidasa/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Pared Celular/metabolismo , Celulosa/análisis , Cicer/genética , Galactanos/metabolismo , Lignina/análisis , Pectinas/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Xilanos/análisis , beta-Galactosidasa/genética
4.
Appl Microbiol Biotechnol ; 104(3): 1135-1148, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31853563

RESUMEN

Three recombinant ß-galactosidases (BGALs; PcBGAL35A, PcBGAL35B, and PcGALX35C) belonging to the glycoside hydrolase (GH) family 35 derived from Penicillium chrysogenum 31B were expressed using Pichia pastoris and characterized. PcBGAL35A showed a unique substrate specificity that has not been reported so far. Based on the results of enzymological tests and 1H-nuclear magnetic resonance, PcBGAL35A was found to hydrolyze ß-1,4-galactosyl residues linked to L-rhamnose in rhamnogalacturonan-I (RG-I) of pectin, as well as p-nitrophenyl-ß-D-galactopyranoside and ß-D-galactosyl oligosaccharides. PcBGAL35B was determined to be a common BGAL through molecular phylogenetic tree and substrate specificity analysis. PcGALX35C was found to have similar catalytic capacities for the ß-1,4-galactosyl oligomer and polymer. Furthermore, PcGALX35C hydrolyzed RG-I-linked ß-1,4-galactosyl oligosaccharide side chains with a degree of polymerization of 2 or higher in pectin. The amino acid sequence similarity of PcBGAL35A was approximately 30% with most GH35 BGALs, whose enzymatic properties have been characterized. The amino acid sequence of PcBGAL35B was approximately 80% identical to those of BGALs from Penicillium sp. The amino acid sequence of PcGALX35C was classified into the same phylogenetic group as PcBGAL35A. Pfam analysis revealed that the three BGALs had five domains including a catalytic domain. Our findings suggest that PcBGAL35A and PcGALX35C are enzymes involved in the degradation of galactosylated RG-I in pectin. The enzymes characterized in this study may be applied for products that require pectin processing and for the structural analysis of pectin.


Asunto(s)
Pectinas/metabolismo , Penicillium chrysogenum/enzimología , beta-Galactosidasa/metabolismo , Secuencia de Aminoácidos , Hidrólisis , Penicillium chrysogenum/genética , Filogenia , Pichia/genética , Especificidad por Sustrato , beta-Galactosidasa/genética
5.
Sci Rep ; 9(1): 13449, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31530834

RESUMEN

The Burkholderia cepacia complex (Bcc) is a family of closely related bacterial pathogens that are the causative agent of deadly human infections. Virulence in Bcc species has been shown to be controlled by the CepI/CepR quorum sensing (QS) system, which is mediated by an N-acyl L-homoserine lactone (AHL) signal (C8-AHL) and its cognate LuxR-type receptor (CepR). Chemical strategies to block QS in Bcc members would represent an approach to intercept this bacterial communication process and further delineate its role in infection. In the current study, we sought to identify non-native AHLs capable of agonizing or antagonizing CepR, and thereby QS, in a Bcc member. We screened a library of AHL analogs in cell-based reporters for CepR, and identified numerous highly potent CepR agonists and antagonists. These compounds remain active in a Bcc member, B. multivorans, with one agonist 250-fold more potent than the native ligand C8-AHL, and can affect QS-controlled motility. Further, the CepR antagonists prolong C. elegans survival in an infection model. These AHL analogs are the first reported non-native molecules that both directly modulate CepR and impact QS-controlled phenotypes in a Bcc member, and represent valuable chemical tools to assess the role of QS in Bcc infections.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Complejo Burkholderia cepacia/efectos de los fármacos , Complejo Burkholderia cepacia/patogenicidad , Percepción de Quorum/efectos de los fármacos , Acil-Butirolactonas/metabolismo , Animales , Proteínas Bacterianas/agonistas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Burkholderia/microbiología , Caenorhabditis elegans/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Escherichia coli/genética , Genes Reporteros , Ligandos , Percepción de Quorum/fisiología , beta-Galactosidasa/genética
6.
J Sci Food Agric ; 99(8): 4003-4010, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30723911

RESUMEN

BACKGROUND: Fruit dips in calcium ions solutions have been shown as an effective treatment to extend strawberries (Fragaria × ananassa, Duch) quality during storage. In the present work, strawberry fruit were treated with 10 g L-1 calcium chloride solution and treatment effects on cell wall enzymes activities and the expression of encoding genes, as well as enzymes involved in fruit defense responses were investigated. RESULTS: Calcium treatment enhanced pectin methylesterase activity while inhibited those corresponding to pectin hydrolases as polygalacturonase and ß-galactosidase. The expression of key genes for strawberry pectin metabolism was up-regulated (for FaPME1) and down-regulated (for FaPG1, FaPLB, FaPLC, FaßGal1 and FaAra1) by calcium dips. In agreement, a higher firmness level and ionically-bound pectins (IBPs) amount were detected in calcium-treated fruit compared with controls. The in vitro and in vivo growth rate of fungal pathogen Botrytis cinerea was limited by calcium treatment. Moreover, the activities of polyphenol oxidases, chitinases, peroxidases and ß-1,3-glucanases were enhanced by calcium ion dips. CONCLUSION: News insights concerning the biochemical and molecular basis of cell wall preservation and resistance to fungal pathogens on calcium-treated strawberries are provided. © 2019 Society of Chemical Industry.


Asunto(s)
Cloruro de Calcio/farmacología , Pared Celular/efectos de los fármacos , Conservantes de Alimentos/farmacología , Fragaria/efectos de los fármacos , Pared Celular/enzimología , Pared Celular/metabolismo , Fragaria/enzimología , Fragaria/genética , Fragaria/metabolismo , Frutas/efectos de los fármacos , Frutas/enzimología , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Pectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
7.
PLoS One ; 13(10): e0205878, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30379953

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a very rare fatal disease characterized for accelerated aging. Although the causal agent, a point mutation in LMNA gene, was identified more than a decade ago, the molecular mechanisms underlying HGPS are still not fully understood and, currently, there is no cure for the patients, which die at a mean age of thirteen. With the aim of unraveling non-previously altered molecular pathways in the premature aging process, human cell lines from HGPS patients and from healthy parental controls were studied in parallel using Next-Generation Sequencing (RNAseq) and High-Resolution Quantitative Proteomics (iTRAQ) techniques. After selection of significant proteins and transcripts and crosschecking of the results a small set of protein/transcript pairs were chosen for validation. One of those proteins, ribose-phosphate pyrophosphokinase 1 (PRPS1), is essential for nucleotide synthesis. PRPS1 loss-of-function mutants present lower levels of purine. PRPS1 protein and transcript levels are detected as significantly decreased in HGPS cell lines vs. healthy parental controls. This modulation was orthogonally confirmed by targeted techniques in cell lines and also in an animal model of Progeria, the ZMPSTE24 knock-out mouse. In addition, functional experiments through supplementation with S-adenosyl-methionine (SAMe), a metabolite that is an alternative source of purine, were done. Results indicate that SAMe has a positive effect in the proliferative capacity and reduces senescence-associated Beta-galactosidase staining of the HPGS cell lines. Altogether, our data suggests that nucleotide and, specifically, purine-metabolism, are altered in premature aging, opening a new window for the therapeutic treatment of the disease.


Asunto(s)
Lamina Tipo A/genética , Progeria/genética , Purinas/metabolismo , ARN Mensajero/genética , Ribosa-Fosfato Pirofosfoquinasa/genética , Adulto , Animales , Línea Celular , Proliferación Celular , Niño , Biología Computacional/métodos , Modelos Animales de Enfermedad , Femenino , Efecto Fundador , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lamina Tipo A/deficiencia , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Ratones , Ratones Noqueados , Progeria/tratamiento farmacológico , Progeria/metabolismo , Progeria/patología , ARN Mensajero/metabolismo , Ribosa-Fosfato Pirofosfoquinasa/deficiencia , S-Adenosilmetionina/farmacología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
8.
J Agric Food Chem ; 66(48): 12730-12740, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30411897

RESUMEN

Although dietary polyphenols are known to be beneficial to vision, the protective distinctions among different types of polyphenols are unclear. In this work, the visual benefits of various blueberry polyphenols were evaluated using an in vitro model of visible light-lipid-induced injury of retinal pigment epithelial cells. Results showed that, at 10.0 µg/mL, the phenolic acid-rich fraction was superior in inhibiting cell death (93.6% ± 2.8% of cell viability). Anthocyanin- and flavonoid-rich fractions shared similar advantages in preventing the expression of senescence-associated ß-galactosidase (34.8% ± 11.1% and 32.2% ± 9.7% of aged cells, respectively) and overexpression of vascular endothelial growth factor (51.8 ± 3.5 and 54.1 ± 6.5 pg/mL, respectively). The flavonoid-rich fraction also showed high activity in ameliorating phagocytosis (70.3% ± 12.6%) and cellular oxidative stress. These results were further confirmed by using the corresponding polyphenol standards. Improved inhibitory effects of polyphenol mixture on cell death and senescence-associated ß-galactosidase expression were also observed. Therefore, various polyphenols play diverse roles and exert synergistic effects in nourishing the retina.


Asunto(s)
Arándanos Azules (Planta)/química , Lípidos/efectos adversos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Frutas/química , Humanos , Luz/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/lesiones , Epitelio Pigmentado de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
9.
J Plant Physiol ; 231: 135-146, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30268077

RESUMEN

In Cicer arietinum, as in several plant species, the ß-galactosidases are encoded by multigene families, although the role of the different proteins is not completely elucidated. Here, we focus in 2 members of this family, ßIII-Gal and ßIV-Gal, with high degree of amino acid sequence identity (81%), but involved in different developmental processes according to previous studies. Our objective is to deepen in the function of these proteins by establishing their substrate specificity and the possible alterations caused in the cell wall polysaccharides when they are overproduced in Arabidopsis thaliana by constructing the 35S::ßIII-Gal and 35S::ßIV-Gal transgenic plants. ßIII-Gal does cause visible alterations of the morphology of the transgenic plant, all related to a decrease in growth at different stages of development. FTIR spectroscopy and immunological studies showed that ßIII-Gal causes changes in the structure of the arabidopsis cell wall polysaccharides, mainly a reduction of the galactan side chains which is compensated by a marked increase in homogalacturonan, which allows us to attribute to galactan a role in the control of the architecture of the cell wall, and therefore in the processes of growth. The 35S::ßIV-Gal plants do not present any phenotypic changes, neither in their morphology nor in their cell walls. In spite of the high sequence homology, our results show different specificity of substrate for these proteins, maybe due to other dissimilar characteristics, such as isoelectric points or the number of N-glycosylation sites, which could determine their enzymatic properties and their distinct action in the cell walls.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Cicer/metabolismo , Galactanos/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , beta-Galactosidasa/genética , Arabidopsis/enzimología , Arabidopsis/genética , Mapeo Cromosómico , Cicer/enzimología , Cicer/genética , Técnica del Anticuerpo Fluorescente , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo/genética , Espectroscopía Infrarroja por Transformada de Fourier , beta-Galactosidasa/metabolismo
10.
J Sci Food Agric ; 98(6): 2105-2112, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28944957

RESUMEN

BACKGROUND: Fruit softening facilitates pathogen infection and postharvest decay, leading to the reduction of shelf-life. Hot air (HA) treatment at 38 °C for 12 h is effective in reducing postharvest disease and chilling injury of tomato fruit. To explore the effect and mechanism of HA treatment on reducing postharvest decay and softening of cherry tomato, fruit at the mature green stage were treated with HA and then stored at 20 °C for 15 days. Changes in natural decay incidence, firmness, cell wall compositions, activities and gene expression of cell wall-degrading enzymes of cherry tomatoes were assessed. RESULTS: HA treatment reduced natural decay incidence, postponed the firmness decline, inhibited the respiration rate and ethylene production, and retarded pectin solubilisation and cellulose degradation of cherry tomatoes. Enzymatic activities and gene expression of pectin methylesterase, polygalacturonase, cellulase and ß-galactosidase were inhibited by HA treatment. In addition, the gene expression of LeEXP1 was reduced, while LeEXT was up-regulated after HA treatment. CONCLUSIONS: Our findings suggested that HA treatment could inhibit cell wall degradation and postpone softening of cherry tomatoes by regulating gene expression and activities of cell wall-degrading enzymes, resulting in the reduction of postharvest decay. © 2017 Society of Chemical Industry.


Asunto(s)
Conservación de Alimentos/métodos , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Celulasa/genética , Celulasa/metabolismo , Conservación de Alimentos/instrumentación , Almacenamiento de Alimentos , Frutas/química , Frutas/enzimología , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/química , Solanum lycopersicum/enzimología , Solanum lycopersicum/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
11.
Metab Brain Dis ; 32(5): 1529-1536, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28577204

RESUMEN

Juvenile and adult GM1-gangliosidosis are invariably characterized by progressive neurological deterioration. To date only symptomatic therapies are available. We report for the first time the positive results of Miglustat (OGT 918, N-butyl-deoxynojirimycin) treatment on three Italian GM1-gangliosidosis patients. The first two patients had a juvenile form (enzyme activity ≤5%, GLB1 genotype p.R201H/c.1068 + 1G > T; p.R201H/p.I51N), while the third patient had an adult form (enzyme activity about 7%, p.T329A/p.R442Q). Treatment with Miglustat at the dose of 600 mg/day was started at the age of 10, 17 and 28 years; age at last evaluation was 21, 20 and 38 respectively. Response to treatment was evaluated using neurological examinations in all three patients every 4-6 months, the assessment of Movement Disorder-Childhood Rating Scale (MD-CRS) in the second patient, and the 6-Minute Walking Test (6-MWT) in the third patient. The baseline neurological status was severely impaired, with loss of autonomous ambulation and speech in the first two patients, and gait and language difficulties in the third patient. All three patients showed gradual improvement while being treated; both juvenile patients regained the ability to walk without assistance for few meters, and increased alertness and vocalization. The MD-CRS class score in the second patient decreased from 4 to 2. The third patient improved in movement and speech control, the distance covered during the 6-MWT increased from 338 to 475 m. These results suggest that Miglustat may help slow down or reverse the disease progression in juvenile/adult GM1-gangliosidosis.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Gangliosidosis GM1/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas/uso terapéutico , 1-Desoxinojirimicina/uso terapéutico , Adulto , Factores de Edad , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/psicología , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Marcha , Gangliosidosis GM1/genética , Gangliosidosis GM1/psicología , Genotipo , Humanos , Trastornos del Lenguaje/tratamiento farmacológico , Trastornos del Lenguaje/psicología , Destreza Motora , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/psicología , Pruebas Neuropsicológicas , Resultado del Tratamiento , Caminata , Adulto Joven , beta-Galactosidasa/genética
12.
Plant Physiol Biochem ; 113: 208-221, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28254702

RESUMEN

Galactose (Gal) is incorporated into cell wall polysaccharides as flowers open, but then is lost because of ß-galactosidase activity as flowers mature and wilt. The significance of this for flower physiology resides in the role of galactan-containing polysaccharides in the cell wall, which is still largely unresolved. To investigate this, transcript accumulation of six cell wall-associated ß-galactosidases was simultaneously knocked down in 'Mitchell' petunia (Petunia axillaris x (P. axillaris x P. hybrida)) flower petals. The multi-PhBGAL RNAi construct targeted three bud- and three senescence-associated ß-galactosidase genes. The petals of the most down-regulated line (GA19) were significantly disrupted in galactose turnover during flower opening, and at the onset of senescence had retained 86% of their galactose compared with 20% in the controls. The Gal content of Na2CO3-soluble cell wall extracts and the highly insoluble polysaccharides associated with cellulose were particularly affected. Immunodetection with the antibody LM5 showed that much of the cell wall Gal in GA19 was retained as galactan, presumably the side-chains of rhamnogalacturonan-I. The flowers of GA19, despite having retained substantially more galactan, were no different from controls in their internal cell arrangement, dimensions, weight or timing of opening and senescence. However, the GA19 petals had less petal integrity (as judged by force required to cause petal fracture) after opening and showed a greater decline in this integrity with time than controls, raising the possibility that galactan loss is a mechanism for helping to maintain petal tissue cohesion after flower opening.


Asunto(s)
Galactanos/metabolismo , Pectinas/metabolismo , Petunia/enzimología , Petunia/genética , beta-Galactosidasa/genética , Envejecimiento/fisiología , Secuencia de Bases , Carbonatos/química , Pared Celular/química , Pared Celular/metabolismo , Regulación hacia Abajo , Flores/química , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Galactosa/metabolismo , Técnicas de Silenciamiento del Gen , Petunia/crecimiento & desarrollo , Petunia/metabolismo , Extractos Vegetales/química , Plantas Modificadas Genéticamente , Polisacáridos/química , Polisacáridos/metabolismo , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/metabolismo
13.
Methods Mol Biol ; 1548: 387-394, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28013520

RESUMEN

Compounds that inhibit virulence gene expression in bacterial pathogens have received increasing interest as possible alternatives to the traditional antibiotic treatment of infections. For the human pathogen Staphylococcus aureus, we have developed two simple assays based on reporter gene fusions to central virulence genes that are easily applicable for screening various sources of natural and synthetic peptides for anti-virulence effects. The plate assay is qualitative but simultaneously assesses the effect of gradient concentrations of the investigated compound, whereas the liquid assay is quantitative and can be employed to address whether a compound is acting on the central quorum sensing regulatory system, agr, that controls a large number of virulence genes in S. aureus.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Descubrimiento de Drogas , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Virulencia/genética , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Expresión Génica , Genes Reporteros , Percepción de Quorum/efectos de los fármacos , Staphylococcus aureus/patogenicidad , beta-Galactosidasa/genética , beta-Lactamasas/genética
14.
Genet Mol Res ; 15(3)2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27706682

RESUMEN

The development of age-related cardiovascular disease is associated with the senescence of vascular cells. This study aimed to investigate the effect of ginsenoside Rg1 on vascular smooth muscle cell (VSMC) senescence. Primary VSMCs were cultured and divided into control, D-galactose (D-gal), Rg1-L, and Rg1-H groups, which were cultured without and with D-gal, and with low- and high-concentrations of Rg1, respectively. D-gal-induced cellular senescence was identified by b-galactosidase staining, and ultrastructural changes within the cells were observed. The expression of p16, p21, and p53 in the four groups of VSMCs was determined by western blotting, and the cell cycle was investigated by flow cytometry. Compared with the control group, there was an obvious change in the ultrastructure of VSMCs in the D-gal group, and the proportion of b-galactosidase-positive cells was significantly increased (P < 0.05). In addition, p16, p21, and p53 expression was significantly increased (P < 0.05) and the cell cycle was arrested in the G0/G1 phase. Compared with the D-gal group, the percentage of positive cells was significantly reduced (P < 0.05) in the Rg1 groups, the expression of p16, p21, and p53 was significantly reduced (P < 0.05), and the number of cells in the G0/G1 phase decreased (P < 0.05). Ginsenoside Rg1 can inhibit VSMC senescence, and the mechanisms may be related to its partial inhibition of the p16INK4a/Rb and p53-p21Cip1/Waf1 signaling pathways during the cell cycle.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Ginsenósidos/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Animales , Adhesión Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Medicamentos Herbarios Chinos/química , Galactosa/farmacología , Regulación de la Expresión Génica , Ginsenósidos/aislamiento & purificación , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
15.
Nutrients ; 8(8)2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27483310

RESUMEN

Ultraviolet (UV) irradiation generates reactive oxygen species (ROS) in the cells, which induces the cellular senescence and photoaging. The present study investigated the protective effects of garlic on photo-damage and cellular senescence in UVB-exposed human keratinocytes, HaCaT cells. An in vitro cell free system was used to examine the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and nitric oxide (NO). The effect of garlic extract on ROS formation, MMP-1 protein and mRNA expressions, cytokines such as interleukin (IL)-1ß and IL-6, senescence associated-ß-galactosidase (SA-ß-gal) activity, and silent information regulator T1 (SIRT1) activity were determined in UVB-irradiated HaCaT cells. Garlic exhibited strong DPPH radical and NO scavenging activity in cell free system exhibiting IC50 values of 2.50 mg/mL and 4.38 mg/mL, respectively. Garlic pretreatment attenuated the production of UVB-induced intracellular ROS. MMP-1 level, which has been known to be induced by ROS, was dramatically elevated by UVB irradiation, and UVB-induced MMP-1 mRNA and protein expressions were significantly reduced by garlic treatment (50 µg/mL) comparable to those of UV-unexposed control cells. UV-induced pro-inflammatory cytokine productions (IL-6 and IL-1ß) were significantly inhibited by pretreatment with garlic in a dose-dependent manner. SA-ß-gal activity, a classical biomarker of cellular senescence, and SIRT1 activity, which has attracted attention as an anti-aging factor in recent years, were ameliorated by garlic treatment in UV-irradiated HaCaT cells. The present study provides the first evidence of garlic inhibiting UVB-induced photoaging as a result of augmentation of cellular senescence in HaCaT human keratinocytes.


Asunto(s)
Senescencia Celular , Depuradores de Radicales Libres/metabolismo , Ajo , Queratinocitos/metabolismo , Extractos Vegetales/metabolismo , Raíces de Plantas , Biomarcadores/metabolismo , Línea Celular Transformada , Senescencia Celular/efectos de la radiación , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Suplementos Dietéticos , Ajo/química , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Queratinocitos/inmunología , Queratinocitos/efectos de la radiación , Metaloproteinasa 1 de la Matriz/química , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Raíces de Plantas/química , ARN Mensajero/metabolismo , Protectores contra Radiación/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/química , Sirtuina 1/genética , Sirtuina 1/metabolismo , Envejecimiento de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , beta-Galactosidasa/antagonistas & inhibidores , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
16.
J Neurosci ; 36(26): 7039-54, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358460

RESUMEN

UNLABELLED: The formation and refinement of thalamocortical axons (TCAs) is an activity-dependent process (Katz and Shatz, 1996), but its mechanism and nature of activity are elusive. We studied the role of spike timing-dependent plasticity (STDP) in TCA formation and refinement in mice. At birth (postnatal day 0, P0), TCAs invade the cortical plate, from which layers 4 (L4) and L2/3 differentiate at P3-P4. A portion of TCAs transiently reach toward the pia surface around P2-P4 (Senft and Woolsey, 1991; Rebsam et al., 2002) but are eventually confined below the border between L2/3 and L4. We previously showed that L4-L2/3 synapses exhibit STDP with only potentiation (timing-dependent long-term potentiation [t-LTP]) during synapse formation, then switch to a Hebbian form of STDP. Here we show that TCA-cortical plate synapses exhibit robust t-LTP in neonates, whose magnitude decreased gradually after P4-P5. After L2/3 is differentiated, TCA-L2/3 gradually switched to STDP with only depression (t-LTD) after P7-P8, whereas TCA-L4 lost STDP. t-LTP was dependent on NMDA receptor and PKA, whereas t-LTD was mediated by Type 1 cannabinoid receptors (CB1Rs) probably located at TCA terminals, revealed by global and cortical excitatory cell-specific knock-out of CB1R. Moreover, we found that administration of CB1R agonists, including Δ(9)-tetrahydrocannabinol, caused substantial retraction of TCAs. Consistent with this, individual thalamocortical axons exuberantly innervated L2/3 at P12 in CB1R knock-outs, indicating that endogenous cannabinoid signaling shapes TCA projection. These results suggest that the developmental switch in STDP and associated appearance of CB1R play important roles in the formation and refinement of TCAs. SIGNIFICANCE STATEMENT: It has been shown that neural activity is required for initial synapse formation of thalamocortical axons with cortical cells, but precisely what sort of activities in presynaptic and postsynaptic cells are required is not yet clear. In addition, how activity is further translated into structural changes is unclear. We show here that the period during which spike timing-dependent long-term potentiation and depression (t-LTP, t-LTD) can be induced closely matches the time course of synapse formation and retraction, respectively, at the thalamocortical synapse. Moreover, administration of cannabinoid agonists, which mimic t-LTD, caused TCA retraction, suggesting that cannabinoids translate physiological changes into morphological consequences.


Asunto(s)
Potenciales de Acción/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/citología , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Axones/efectos de los fármacos , Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/genética , Factores de Tiempo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
17.
Carbohydr Polym ; 144: 9-16, 2016 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-27083787

RESUMEN

Genes encoding pectic enzymes were introduced to wild-type potato Karnico. Cell wall materials were extracted from Karnico and transgenic lines expressing ß-galactosidase (ß-Gal-14 mutant) or rhamnogalacturonan lyase (RGL-18 mutant). After sequential extraction, ß-Gal-14 hot buffer-soluble solids (HBSS) of pectin contained 54% less galactose than Karnico HBSS, representing shorter galactan side chains. The individual pectin populations of ß-Gal-14 HBSS showed different modifications extended to the two sub-populations as obtained by ion-exchange chromatography. Compared to wild-type, RGL-18 HBSS contained 27% more galacturonic acid and 55% less Gal on fresh potato weight basis, which was due to the removal of galactan-rich rhamnogalacturonan I (RG-I) segments. All pectin populations of RGL-18 showed consistently low levels of RG-I segments. Transgenic modification showed side effects on the methyl-esterification and acetyl substitution of RGL-18 HBSS (DM=53, DA=21), but not of the ß-Gal-14 HBSS in comparison to wild-type (DM=29, DA=54).


Asunto(s)
Pectinas/metabolismo , Polisacárido Liasas/genética , Solanum tuberosum/genética , Transgenes , beta-Galactosidasa/genética , Acetatos/análisis , Pared Celular/enzimología , Galactosa/química , Plantas Modificadas Genéticamente , Polisacárido Liasas/metabolismo , beta-Galactosidasa/metabolismo
18.
Biochim Biophys Acta ; 1861(9 Pt B): 1282-1293, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27060488

RESUMEN

Triacylglycerol (TAG), a major source of biodiesel production, accumulates in nitrogen-starved Chlamydomonas reinhardtii. However, the metabolic pathway of starch-to-TAG conversion remains elusive because an enzyme that affects the starch degradation is unknown. Here, we isolated a new class of mutant bgal1, which expressed an overaccumulation of starch granules and defective photosynthetic growth. The bgal1 was a null mutant of a previously uncharacterized ß-galactosidase-like gene (Cre02.g119700), which decreased total ß-galactosidase activity 40% of the wild type. Upon nitrogen starvation, the bgal1 mutant showed decreased TAG accumulation mainly due to the reduced flux of de novo TAG biosynthesis evidenced by increased unsaturation of fatty acid composition in TAG and reduced TAG accumulation by additional supplementation of acetate to the culture media. Metabolomic analysis of the bgal1 mutant showed significantly reduced levels of metabolites following the hydrolysis of starch and substrates for TAG accumulation, whereas metabolites in TCA cycle were unaffected. Upon nitrogen starvation, while levels of glucose 6-phosphate, fructose 6-phosphate and acetyl-CoA remained lower, most of the other metabolites in glycolysis were increased but those in the TCA cycle were decreased, supporting TAG accumulation. We suggest that BGAL1 may be involved in the degradation of starch, which affects TAG accumulation in nitrogen-starved C. reinhardtii. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.


Asunto(s)
Proteínas Algáceas/genética , Chlamydomonas reinhardtii/metabolismo , Ácidos Grasos/biosíntesis , Triglicéridos/biosíntesis , beta-Galactosidasa/genética , Acetilcoenzima A/metabolismo , Chlamydomonas reinhardtii/genética , Ácidos Grasos/metabolismo , Lípidos/biosíntesis , Lípidos/genética , Mutación , Nitrógeno/metabolismo , Fotosíntesis/genética , Plastidios/enzimología , Almidón/biosíntesis , Almidón/metabolismo , Inanición , Triglicéridos/genética , beta-Galactosidasa/metabolismo
19.
J Virol Methods ; 233: 56-61, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27016178

RESUMEN

The TZM-bl pseudovirus assay is commonly used to evaluate the efficacy of neutralizing antibodies and small molecular inhibitors in HIV-1 research. Here, to determine the optimal measurement method for screening anti-HIV-1 inhibitors, we compared three measurement methods based on firefly luciferase and ß-galactosidase activities. The 50% tissue culture infective doses (TCID50) of the pseudoviruses were determined using the luciferase, ß-galactosidase colorimetric, and 5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside (X-gal) staining assays. Three commercial reverse-transcriptase inhibitors (azidothymidine, nevirapine, and lamivudine) were tested as reference drugs to compare the reproducibility, linear correlation, and half maximal inhibitory concentration (IC50) values determined using these methods. In the TCID50 assay, the sensitivity of ß-galactosidase colorimetric assay was almost 562 times lower than that of the other two methods. Reproducible dose-response curves were obtained for the inhibitors with all methods; the IC50 values of the inhibitors were not significantly different. Linear regression analysis showed linear correlation between methods. Compared to the ß-galactosidase colorimetric assay, the other two methods have the advantage of high sensitivity and are less affected by interference. In conclusion, the luciferase and X-gal staining assays, which can be applied either alone or combined, are recommended for anti-HIV-1 inhibitor screening.


Asunto(s)
Fármacos Anti-VIH/farmacología , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Genes Reporteros , VIH-1/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Células HEK293 , Infecciones por VIH/virología , VIH-1/genética , Células HeLa , Humanos , Concentración 50 Inhibidora , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
20.
Neuroscience ; 310: 106-13, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26391921

RESUMEN

The gene encoding the neural cell adhesion molecule Cntn5 (a.k.a. NB-2) has been put forward as a candidate in neurodevelopmental disorders, like autism spectrum disorder (ASD), by recent genetic findings. Little is known about the expression pattern and function of the gene, and its functional involvement in brain development has remained elusive. So far, most research has focused on its early postnatal expression in the auditory system, where the absence of Cntn5 causes abnormal responses to acoustic stimuli and a decrease in fiber density. The current study shows that the Cntn5 gene is expressed in forebrain structures during embryonic development, starting at E15.5, and that it continues to be expressed into adulthood. Sites of strong expression included the thalamus, the caudate putamen (CPu) and to a lesser extent layer Va of the cerebral cortex. Cntn5-positive thalamic nuclei include the laterodorsal (LD), ventrolateral (VL) and posterior group (Po), which contain glutamatergic neurons. Visualization of the expression pattern through the Tau-LacZ fusion protein coded by an insert in the Cntn5 gene, demonstrated that Cntn5-positive nuclei of the thalamus project to the cortex, based on co-localization with thalamocortical markers L1 and Calretinin. These results indicate that the cell adhesion functions of Cntn5 are exploited for circuit formation and connectivity in early development and for synaptic maintenance during adulthood. Subtle alterations in the formation of the thalamocortical circuit may contribute to neurodevelopmental disorders, such as ASD.


Asunto(s)
Corteza Cerebral , Contactinas/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/metabolismo , Tálamo , Animales , Animales Recién Nacidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Mezclas Complejas/metabolismo , Contactinas/genética , Embrión de Mamíferos , Ratones , Ratones Transgénicos , Vías Nerviosas/fisiología , Tálamo/embriología , Tálamo/crecimiento & desarrollo , Tálamo/metabolismo , Factores de Transcripción/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA