Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Zhen Ci Yan Jiu ; 49(4): 358-366, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649203

RESUMEN

OBJECTIVES: To analyze the effects of electroacupuncture (EA) at "Fenglong" (ST40) and "Zusanli" (ST36) of different intensities and durations on rats with non-alcoholic fatty liver disease (NAFLD) based on the protein kinase R-like endoplasmic reticulum kinase (PERK)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP) signaling pathway, so as to explore its mechanism underlying improvement of NAFLD. METHODS: SD rats were randomly divided into normal diet group, high-fat model group, sham EA group, strong stimulation EA (SEA) group, and weak stimulation EA (WEA) group, with 15 rats in each group. Each group was further divided into 2, 3, and 4-week subgroups. NAFLD rat model was established by feeding a high-fat diet. After successful modeling, rats in the SEA and WEA groups received EA at bilateral ST40 and ST36 with dense and sparse waves (4 Hz/20 Hz) at current intensities of 4 mA (SEA group) and 2 mA (WEA group), lasting for 20 minutes, once a day, 5 days a week with 2 days of rest. The sham EA group only had the EA apparatus connected without electricity. Different duration subgroups were intervened for 2, 3, and 4 weeks. After the intervention, the contents of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in rats were detected by an automatic biochemical analyzer;liver morphological changes were observed by Oil Red O staining;real-time fluorescence quantitative PCR and Western blot were used to detect the expression of PERK, ATF4, and CHOP mRNAs and proteins in the rat liver tissue. RESULTS: In the high-fat model group, there was a significant accumulation of red lipid droplets in the liver cells, which was reduced significantly in the SEA group at the 4th week. Compared with the normal diet group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.01) in the high-fat model group . Compared with the high-fat model group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, CHOP mRNAs and proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups. Compared with the sham EA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were decreased (P<0.01, P<0.05) in the SEA and WEA groups, the expression of PERK, ATF4, and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at the 2nd, 3rd, and 4th week, the expression of PERK and CHOP proteins at the 2nd, 3rd, 4th week and ATF4 protein at 2nd week in the liver tissue were decreased (P<0.01, P<0.05) in the WEA group. Compared with the SEA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.05, P<0.01) in the WEA group. Compared with the 2-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and PERK proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups at 3rd and 4th week, the expression of ATF4 proteins in the liver tissue was decreased (P<0.01) in the SEA group at 3rd and 4th week, and the expression of CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at 4th week and in the WEA group at 3rd and 4th week. Compared with the 3-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were significantly decreased (P<0.05, P<0.01) in the SEA and WEA groups at 4th week, the expression of PERK and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA and WEA groups at 4th week, and the expression of ATF4 protein in the liver tissue was decreased (P<0.05) in the SEA group at 4th week. CONCLUSIONS: EA at ST40 and ST36 can significantly improve liver function in NAFLD rats, and its mechanism of action may involve inhibiting PERK expression thereby targeting the downstream ATF4/CHOP signaling pathway to suppress endoplasmic reticulum stress, exerting a liver protective effect;the optimal effect was observed with EA intensity of 4 mA for 4 weeks.


Asunto(s)
Factor de Transcripción Activador 4 , Puntos de Acupuntura , Electroacupuntura , Hígado , Enfermedad del Hígado Graso no Alcohólico , Ratas Sprague-Dawley , Transducción de Señal , Factor de Transcripción CHOP , eIF-2 Quinasa , Animales , Ratas , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/genética , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética
2.
Discov Med ; 36(183): 753-764, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665024

RESUMEN

BACKGROUND: Dental fluorosis is a discoloration of the teeth caused by the excessive consumption of fluoride. It represents a distinct manifestation of chronic fluorosis in dental tissues, exerting adverse effects on the human body, particularly on teeth. The transmembrane protein 16a (TMEM16A) is expressed at the junction of the endoplasmic reticulum and the plasma membrane. Alterations in its channel activity can disrupt endoplasmic reticulum calcium homeostasis and intracellular calcium ion concentration, thereby inducing endoplasmic reticulum stress (ERS). This study aims to investigate the influence of calcium supplements and TMEM16A on ERS in dental fluorosis. METHODS: C57BL/6 mice exhibiting dental fluorosis were subjected to an eight-week treatment with varying calcium concentrations: low (0.071%), medium (0.79%), and high (6.61%). Various assays, including Hematoxylin and Eosin (HE) staining, immunohistochemistry, real-time fluorescence quantitative polymerase chain reaction (qPCR), and Western blot, were employed to assess the impact of calcium supplements on fluoride content, ameloblast morphology, TMEM16A expression, and endoplasmic reticulum stress-related proteins (calreticulin (CRT), glucose-regulated protein 78 (GRP78), inositol requiring kinase 1α (IRE1α), PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6)) in the incisors of mice affected by dental fluorosis. Furthermore, mice with dental fluorosis were treated with the TMEM16A inhibitor T16Ainh-A01 along with a medium-dose calcium to investigate the influence of TMEM16A on fluoride content, ameloblast morphology, and endoplasmic reticulum stress-related proteins in the context of mouse incisor fluorosis. RESULTS: In comparison to the model mice, the fluoride content in incisors significantly decreased following calcium supplements (p < 0.01). Moreover, the expression of TMEM16A, CRT, GRP78, IRE1α, PERK, and ATF6 were also exhibited a substantial reduction (p < 0.01), with the most pronounced effect observed in the medium-dose calcium group. Additionally, the fluoride content (p < 0.05) and the expression of CRT, GRP78, IRE1α, PERK, and ATF6 (p < 0.01) were further diminished following concurrent treatment with the TMEM16A inhibitor T16Ainh-A01 and a medium dose of calcium. CONCLUSIONS: The supplementation of calcium or the inhibition of TMEM16A expression appears to mitigate the detrimental effects of fluorosis by suppressing endoplasmic reticulum stress. These findings hold implications for identifying potential therapeutic targets in addressing dental fluorosis.


Asunto(s)
Calcio , Suplementos Dietéticos , Fluorosis Dental , Animales , Masculino , Ratones , Factor de Transcripción Activador 6/metabolismo , Adenina/análogos & derivados , Ameloblastos/metabolismo , Ameloblastos/patología , Ameloblastos/efectos de los fármacos , Anoctamina-1/metabolismo , Anoctamina-1/antagonistas & inhibidores , Anoctamina-1/genética , Calcio/metabolismo , Modelos Animales de Enfermedad , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/metabolismo , Fluoruros/toxicidad , Fluoruros/efectos adversos , Fluorosis Dental/patología , Fluorosis Dental/metabolismo , Fluorosis Dental/etiología , Indoles , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores
3.
Chem Biol Interact ; 382: 110592, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270086

RESUMEN

Depleted uranium (DU) can cause damage to the body, but its effects on the thyroid are unclear. The purpose of this study was to investigate the DU-induced thyroid damage and its potential mechanism in order to find new targets for detoxification after DU poisoning. A model of acute exposure to DU was constructed in rats. It was observed that DU accumulated in the thyroid, induced thyroid structure disorder and cell apoptosis, and decreased the serum T4 and FT4 levels. Gene screening showed that thrombospondin 1 (TSP-1) was a sensitive gene of DU, and the expression of TSP-1 decreased with the increase of DU exposure dose and time. TSP-1 knockout mice exposed to DU had more severe thyroid damage and lower serum FT4 and T4 levels than wild-type mice. Inhibiting the expression of TSP-1 in FRTL-5 cells aggravated DU-induced apoptosis, while exogenous TSP-1 protein alleviated the decreased viability in FRTL-5 cells caused by DU. It was suggested that DU may caused thyroid damage by down-regulating TSP-1. It was also found that DU increased the expressions of PERK, CHOP, and Caspase-3, and 4-Phenylbutyric (4-PBA) alleviated the DU-induced FRTL-5 cell viability decline and the decrease levels of rat serum FT4 and T4 caused by DU. After DU exposure, the PERK expression was further up-regulated in TSP-1 knockout mice, and the increased expression of PERK was alleviated in TSP-1 over-expressed cells, as well as the increased expression of CHOP and Caspase-3. Further verification showed that inhibition of PERK expression could reduce the DU-induced increased expression of CHOP and Caspase-3. These findings shed light on the mechanism that DU may activate ER stress via the TSP 1-PERK pathway, thereby leading to thyroid damage, and suggest that TSP-1 may be a potential therapeutic target for DU-induced thyroid damage.


Asunto(s)
Trombospondina 1 , Uranio , Ratas , Ratones , Animales , Caspasa 3/metabolismo , Trombospondina 1/genética , Trombospondina 1/farmacología , Uranio/farmacología , Glándula Tiroides/metabolismo , Apoptosis , Ratones Noqueados , Estrés del Retículo Endoplásmico , eIF-2 Quinasa/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
4.
Biomed Pharmacother ; 158: 114123, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36521248

RESUMEN

Lathyrol is a natural product isolated from the traditional Chinese medicine Semen Euphorbiae with unknown anti-tumor effects. We found that lathyrol had significant inhibitory effect on lung cancer cells by inducing apoptosis and inhibiting proliferation. Subsequently, we demonstrated for the first time that endoplasmic reticulum (ER) stress is a key anti-tumor mechanism of lathyrol. Furthermore, we found that lathyrol can induce ER stress in lung cancer cells by upregulating the protein expression levels of GRP78, PERK, p-eIF2α, CHOP, and ATF4, and the inhibitory effect of lathyrol on lung cancer cells was significantly reversed when cells were pretreated with ER stress inhibitor. In addition, we found that inhibition of SERCA2 resulted in depletion of the ER Ca2+ pool followed by a sustained increase in cytoplasmic Ca2+ levels, eventually leading to ER stress induced tumor cell apoptosis and proliferation inhibition. Lathyrol targeted SERCA2 to cause a significant upregulation of Ca2+ levels, and the inhibitory effect of lathyrol on lung cancer cells was significantly reversed after pretreatment with SERCA2 agonist. Taken together, our data suggest that lathyrol exerts its anti-tumor effect primarily by targeting SERCA2. Our findings highlight the potential for lathyrol as a new candidate drug for the treatment of lung cancer.


Asunto(s)
Apoptosis , Neoplasias Pulmonares , Humanos , Factor de Transcripción Activador 4/metabolismo , Proliferación Celular , eIF-2 Quinasa/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Neoplasias Pulmonares/tratamiento farmacológico , Factor de Transcripción CHOP/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
5.
Dis Markers ; 2022: 9340353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523813

RESUMEN

Mycoplasma pneumoniae pneumonia (MPP) is usually found in school-aged children and relapses easily because of antibiotic resistance. The Qingfei Tongluo formula (QTF) is a clinically used traditional Chinese medicine to treat MPP. Our previous study demonstrated that QTF exhibited ameliorative effects on the experimental MPP mice model. In this study, the function and underlying QTF mechanism in MPP was attempted to be further explored. Mycoplasma pneumoniae (MP) was applied to infect A549 cells and BALB/c mice to mimic MPP in vitro and in vivo. Cytokine release and reactive oxygen species (ROS) production were analyzed using enzyme-linked immunosorbent assay (ELISA) assay and flow cytometry. Western blot analysis was used to detect the protein involved in ER stress. MP infection was found to enhance cytokine release and ER stress in vitro and in vivo, and this effect could be alleviated by QTF. Moreover, protein kinase RNA-like endoplasmic reticulum kinase (PERK) knockdown alleviated MP infection-induced cytokine release, ROS production, and ER stress in A549 cells while the PERK overexpression exhibited the opposite effects. In conclusion, QTF alleviated MP infection-induced cytokine release, ROS production, and ER stress via PERK signaling pathway inhibition.


Asunto(s)
Medicamentos Herbarios Chinos , Neumonía por Mycoplasma , eIF-2 Quinasa , Animales , Ratones , Citocinas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , eIF-2 Quinasa/efectos de los fármacos , eIF-2 Quinasa/metabolismo , Retículo Endoplásmico/metabolismo , Ratones Endogámicos BALB C , Neumonía por Mycoplasma/tratamiento farmacológico , Neumonía por Mycoplasma/metabolismo , Proteínas Quinasas , Especies Reactivas de Oxígeno , Transducción de Señal
6.
Phytomedicine ; 107: 154350, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36194974

RESUMEN

BACKGROUND: Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common functional gastrointestinal disease. Tong-Xie-Yao-Fang (TXYF), the traditional Chinese herbal medicine prescription, is a classic and effective prescription for the treatment of IBS-D, but its mechanism of action is not fully clarified. OBJECTIVE: To evaluate the efficacy of TXYF in the treatment of IBS-D and to explore its potential mechanism of action. METHODS: Changes in the serum levels of 50 free amino acids were targeted for detection by high-performance liquid chromatography (HPLC), and the expression of glucose-regulated protein 78 (GRP78), general control nonderepressible 2 (GCN2), and endoplasmic reticulum-resident kinase (PERK) was detected by immunohistochemistry examinations in healthy volunteers and IBS-D patients. The IBS-D rat was constructed by the three-factor superposition method of neonatal maternal separation, 2,4,6-trinitrobenzene sulfonic acid enema, and chronic unpredictable stress stimulation. The treatment effect of TXYF on IBS-D rats was observed by recording the body weight, grasp force, fecal water content (FWC), and abdominal withdrawal reflex (AWR) of rats before and after treatment. The effects of GCN2/PERK-eukaryotic initiation factor-2 (eIF2α) -activating transcription Factor 4 (ATF4) pathway proteins and gene expression were analyzed by western blotting, reverse transcription-polymerase chain reaction (RT-qPCR), and immunohistochemistry evaluations. RESULTS: Compared with healthy volunteers, IBS-D patients exhibited lower levels of cysteine, γ-aminoacetic acid (GABA), homoproline, and lysine, and immunohistochemistry showed strong activation of GRP78, a marker of endoplasmic reticulum stress. Differential expression of GCN2 and PERK proteins was detected in IBS-D patients and rat colons. In the IBS-D rats, TXYF improved the body weight and grasp force, reduced the FWC, and improved the AWR score. TXYF increased the levels of p-GCN2 and GCN2 and reduced the levels of GRP78, p-PERK, PERK, p-eIF2α, and eIF2α, thereby affecting the expression of the apoptosis-related transcription factors ATF4, CHOP, Caspase-3, and Bcl-2. CONCLUSION: Our study showed that TXYF improved IBS-D by inhibiting apoptosis. The anti-apoptosis effects were potentially mediated by regulating the GCN2/PERK-eIF2a-ATF4 signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Síndrome del Colon Irritable , Factor de Transcripción Activador 4/metabolismo , Animales , Peso Corporal , Caspasa 3/metabolismo , Cisteína/farmacología , Cisteína/uso terapéutico , Diarrea/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Factor 2 Eucariótico de Iniciación/metabolismo , Glicina/farmacología , Glicina/uso terapéutico , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/metabolismo , Lisina , Privación Materna , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Transducción de Señal , Ácido Trinitrobencenosulfónico/farmacología , Ácido Trinitrobencenosulfónico/uso terapéutico , Agua , eIF-2 Quinasa/metabolismo , Ácido gamma-Aminobutírico
7.
Can J Gastroenterol Hepatol ; 2022: 6413783, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262827

RESUMEN

Aims: In this report, it was investigated that hepatoma cells can cause downregulation of cytotoxic T lymphocyte (CTL) function and tea polyphenols (TPs) can reverse downregulation of CTL function. Methods: The expression of GRP78, PD-1, and TIM-3 was detected by western blotting in CTLL-2 cocultured with Hepa1-6 cells. Moreover, perforin (PRF1) and granzyme B (GzmB) protein levels and ER morphology were examined by ELISA and TEM, respectively. After 4-phenylbutyric acid (4-PBA) or tunicamycin (TM) treatment, programmed cell death protein 1 (PD-1), and mucin domain 3 (TIM-3), PRF1, and GzmB were measured by western blotting and ELISA. After sh-CHOP or GSK2656157 (PERK inhibitor) stimulation, the activation of the PERK-CHOP pathway was detected in CTLL-2 cells. Finally, changes in PD-1, TIM-3, PRF1, and GzmB levels were detected to verify the reversal of CTL depletion by TP. Results: The expression of GRP78, PD-1, and TIM-3 clearly increased, and swelling was observed for the endoplasmic reticulum (ER) in CTLL-2 cells cocultured with hepatoma cells. Concurrently, the levels of PRF1 and GzmB decreased. CTLL-2 depletion was induced after stimulation with TM and differed from 4-PBA stimulation. Treatment with sh-CHOP or GSK2656157 caused a decrease in PD-1 and TIM-3 expression, whereas the expression of PRF1 and GzmB clearly increased. After adding TP, the function of CTLs increased markedly. Conclusion: Hepatoma cells induced the depletion of CTLs through the ER stress PERK-CHOP pathway, and TP reversed this depletion by downregulating ER stress.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Receptor de Muerte Celular Programada 1 , Tunicamicina/farmacología , Factor de Transcripción CHOP/metabolismo , Granzimas/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A , eIF-2 Quinasa/metabolismo , Linfocitos T Citotóxicos/metabolismo , Perforina , Polifenoles , Apoptosis , Ratones Endogámicos , Neoplasias Hepáticas/tratamiento farmacológico , Transducción de Señal , Mucinas ,
8.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806203

RESUMEN

Chronic treatment with acetaminophen (APAP) induces cysteine (Cys) and glutathione (GSH) deficiency which leads to adverse metabolic effects including muscle atrophy. Mammalian cells respond to essential amino acid deprivation through the phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). Phosphorylated eIF2α leads to the recruitment of activating transcription factor 4 (ATF4) to specific CCAAT/enhancer-binding protein-ATF response element (CARE) located in the promoters of target genes. Our purpose was to study the activation of the eIF2α-ATF4 pathway in response to APAP-induced Cys deficiency, as well as the potential contribution of the eIF2α kinase GCN2 and the effect of dietary supplementation with Cys. Our results showed that chronic treatment with APAP activated both GCN2 and PERK eIF2α kinases and downstream target genes in the liver. Activation of the eIF2α-ATF4 pathway in skeletal muscle was accompanied by muscle atrophy even in the absence of GCN2. The dietary supplementation with cysteine reversed APAP-induced decreases in plasma-free Cys, liver GSH, muscle mass, and muscle GSH. Our new findings demonstrate that dietary Cys supplementation also reversed the APAP-induced activation of GCN2 and PERK and downstream ATF4-target genes in the liver.


Asunto(s)
Factor de Transcripción Activador 4 , Factor 2 Eucariótico de Iniciación , Acetaminofén/efectos adversos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Cisteína/metabolismo , Suplementos Dietéticos , Factor 2 Eucariótico de Iniciación/metabolismo , Glutatión/metabolismo , Mamíferos/metabolismo , Atrofia Muscular/inducido químicamente , Fosforilación , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
9.
Food Chem Toxicol ; 163: 112986, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35398186

RESUMEN

Mylabris, as a natural product of traditional Chinese medicine (TCM), exhibiting typical antitumor activity, and cantharidin (CTD) is the major bioactive component. However, drug-induced nephrotoxicity (DIN) extremely limited its clinical application. In this study, we proved that activation of the endoplasmic reticulum (ER) stress-dependent PERK/CHOP pathway exerts a toxic role in rats and HK-2 cells through inducing autophagy and apoptosis. Results showed that CTD could cause renal function damage, cytotoxicity, and apoptosis. The ER dilatation and autolysosomes were observed after CTD treatment. Furthermore, the distribution of LC3, ATF4, and CHOP proteins was observed in the nucleus and cytoplasm. In addition, the mRNA levels of ER stress-regulated genes (PERK, eIF2α, CHOP, and ATF4) were increased, and the expression levels of GRP78, ATF4, CHOP, LC3, Beclin-1, Atg3, Atg7, Caspase 3, and Bax/Bcl-2 proteins were increased both in vitro and in vivo. Consistently, this upregulation could be inhibited by an ER stress inhibitor 4-Phenylbutyric acid (4-PBA), indicating that ER stress is partly responsible for activation of autophagy and apoptosis in CTD-induced DIN. In conclusion, CTD could induce DIN by triggering ER stress, further activating autophagy and apoptosis both in vivo and in vitro.


Asunto(s)
Cantaridina , Estrés del Retículo Endoplásmico , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis , Autofagia , Cantaridina/efectos adversos , Ratas , Transducción de Señal , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo
10.
Cell Rep ; 38(1): 110197, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986346

RESUMEN

AMP-activated protein kinase (AMPK) regulates the balance between cellular anabolism and catabolism dependent on energy resources to maintain proliferation and survival. Small-compound AMPK activators show anti-cancer activity in preclinical models. Using the direct AMPK activator GSK621, we show that the unfolded protein response (UPR) is activated by AMPK in acute myeloid leukemia (AML) cells. Mechanistically, the UPR effector protein kinase RNA-like ER kinase (PERK) represses oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and pyrimidine biosynthesis and primes the mitochondrial membrane to apoptotic signals in an AMPK-dependent manner. Accordingly, in vitro and in vivo studies reveal synergy between the direct AMPK activator GSK621 and the Bcl-2 inhibitor venetoclax. Thus, selective AMPK-activating compounds kill AML cells by rewiring mitochondrial metabolism that primes mitochondria to apoptosis by BH3 mimetics, holding therapeutic promise in AML.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Imidazoles/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Pirimidinonas/farmacología , Sulfonamidas/farmacología , Respuesta de Proteína Desplegada/fisiología , eIF-2 Quinasa/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/farmacología , Apoptosis/fisiología , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Femenino , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Células THP-1 , Células U937 , Adulto Joven
11.
J Pharmacol Sci ; 148(1): 162-171, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34924122

RESUMEN

Alzheimer's disease (AD) is characterized by progressive cognitive decline, and the number of affected individuals has increased worldwide. However, there are no effective treatments for AD. Therefore, it is important to prevent the onset of dementia. Oxidative stress and endoplasmic reticulum (ER) stress are increased in the brains of AD patients, and are postulated to induce neuronal cell death and cognitive dysfunction. In this study, Centella asiatica, a traditional Indian medicinal herb, were fractionated and compared for their protective effects against glutamate and tunicamycin damage. Araliadiol was identified as a component from the fraction with the highest activity. Further, murine hippocampal cells (HT22) were damaged by glutamate, an oxidative stress inducer. C. asiatica and araliadiol suppressed cell death and reactive oxygen species production. HT22 cells were also injured by tunicamycin, an ER stress inducer. C. asiatica and araliadiol prevented cell death by mainly inhibiting PERK phosphorylation; additionally, C. asiatica also suppressed the expression levels of GRP94 and BiP. In Y-maze test, oral administration of araliadiol (10 mg/kg/day) for 7 days ameliorated the arm alternation ratio in mice with scopolamine-induced cognitive impairment. These results suggest that C. asiatica and its active component, araliadiol, have neuroprotective effects, which may prevent cognitive dysfunction.


Asunto(s)
Muerte Celular/efectos de los fármacos , Centella/química , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores , Fitoterapia , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Triterpenos/administración & dosificación , Triterpenos/farmacología , Administración Oral , Animales , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Hipocampo/citología , Hipocampo/patología , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos ICR , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Triterpenos/aislamiento & purificación , eIF-2 Quinasa/metabolismo
12.
J Pharm Pharmacol ; 74(1): 32-40, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34791341

RESUMEN

OBJECTIVES: Chrysophanol (CHR), also well-known as Rhei radix et rhizome, is a crucial component in traditional Chinese medicine. It has been widely studied as a potential treatment for many diseases due to its anti-inflammatory effects. However, there are very few studies to establish the potential therapeutic effect of CHR in cell and animal models of Alzheimer's disease (AD). Therefore, we aim to investigate whether CHR could be used as a potential therapeutic approach to patients with AD and further disclose the underlying mechanism. Increasing studies have shown that endoplasmic reticulum (ER) calcium (Ca2+) homeostasis emerges as a central player in AD pathogenesis. Moreover, augmentation of ER stress (ERS) promotes neuronal apoptosis, and excessive oxidative stress is an inducer of ERS. Therefore, we believe that ERS-mediated apoptosis may be one of the causes of AD. METHODS: This study examined the neuroprotective effects of CHR on AD rats and AD cell models and explored its potential mechanism. KEY FINDINGS: CHR could reduce the damage of neurons. In AD cell models, CHR significantly inhibited Aß 25-35-induced neuronal damage, reduced the number of apoptotic cells and improved cell survival rate. Western blot showed that the expression of caspases 3, 9 and 12 was decreased after CHR treatment, and CHR also affected the ERS signalling pathway. In addition, the higher expression of pro-apoptotic proteins in the AD cell model was reduced after CHR treatment by inhibiting GRP78 signalling. Further studies have shown that overexpressed protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) inhibited the regulatory effect of CHR on PERK and weakened the neuroprotective effect of CHR on the AD cell model. CONCLUSIONS: This study revealed a novel mechanism through which CHR plays a neuroprotective role by regulating ERS when it comes to the therapy of AD.


Asunto(s)
Antraquinonas , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Antraquinonas/metabolismo , Antraquinonas/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , eIF-2 Quinasa/metabolismo
13.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830138

RESUMEN

Many anti-cancer drugs, including paclitaxel and etoposide, have originated and been developed from natural products, and traditional herbal medicines have fewer adverse effects and lesser toxicity than anti-tumor reagents. Therefore, we developed a novel complex herbal medicine, JI017, which mediates endoplasmic reticulum (ER) stress and apoptosis through the Nox4-PERK-CHOP signaling pathway in ovarian cancer cells. JI017 treatment increases the expression of GRP78, ATF4, and CHOP and the phosphorylation of PERK and eIF2α via the upregulation of Nox4. Furthermore, it increases the release of intracellular reactive oxygen species (ROS), the production of intracellular Ca2+, and the activation of exosomal GRP78 and cell lysate GRP78. Combination treatment using the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (TG) and JI017 reportedly induces increased ER stress and cell death in comparison to the control; however, knockdown experiments of PERK and CHOP indicated suppressed apoptosis and ER stress in JI017-treated ovarian cancer cells. Furthermore, targeting Nox4 using specific siRNA and pharmacological ROS inhibitors, including N-acetylcystein and diphenylene iodonium, blocked apoptosis and ER stress in JI017-treated ovarian cancer cells. In the radioresistant ovarian cancer model, when compared to JI017 alone, JI017 co-treatment with radiation induced greater cell death and resulted in overcoming radioresistance by inhibiting epithelial-mesenchymal-transition-related phenomena such as the reduction of E-cadherin and the increase of N-cadherin, vimentin, Slug, and Snail. These findings suggest that JI017 is a powerful anti-cancer drug for ovarian cancer treatment and that its combination treatment with radiation may be a novel therapeutic strategy for radioresistant ovarian cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , NADPH Oxidasa 4/metabolismo , Neoplasias Ováricas/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , NADPH Oxidasa 4/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Plantas Medicinales/química , Transducción de Señal/genética , Factor de Transcripción CHOP/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , eIF-2 Quinasa/genética
14.
Cell Death Dis ; 12(11): 1038, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725321

RESUMEN

Cancer cells experience endoplasmic reticulum (ER) stress due to activated oncogenes and conditions of nutrient deprivation and hypoxia. The ensuing unfolded protein response (UPR) is executed by ATF6, IRE1 and PERK pathways. Adaptation to mild ER stress promotes tumor cell survival and aggressiveness. Unmitigated ER stress, however, will result in cell death and is a potential avenue for cancer therapies. Because of this yin-yang nature of ER stress, it is imperative that we fully understand the mechanisms and dynamics of the UPR and its contribution to the complexity of tumor biology. The PERK pathway inhibits global protein synthesis while allowing translation of specific mRNAs, such as the ATF4 transcription factor. Using thapsigargin and tunicamycin to induce acute ER stress, we identified the transcription factor C/EBPδ (CEBPD) as a mediator of PERK signaling to secretion of tumor promoting chemokines. In melanoma and breast cancer cell lines, PERK mediated early induction of C/EBPδ through ATF4-independent pathways that involved at least in part Janus kinases and the STAT3 transcription factor. Transcriptional profiling revealed that C/EBPδ contributed to 20% of thapsigargin response genes including chaperones, components of ER-associated degradation, and apoptosis inhibitors. In addition, C/EBPδ supported the expression of the chemokines CXCL8 (IL-8) and CCL20, which are known for their tumor promoting and immunosuppressive properties. With a paradigm of short-term exposure to thapsigargin, which was sufficient to trigger prolonged activation of the UPR in cancer cells, we found that conditioned media from such cells induced cytokine expression in myeloid cells. In addition, activation of the CXCL8 receptor CXCR1 during thapsigargin exposure supported subsequent sphere formation by cancer cells. Taken together, these investigations elucidated a novel mechanism of ER stress-induced transmissible signals in tumor cells that may be particularly relevant in the context of pharmacological interventions.


Asunto(s)
Proteína delta de Unión al Potenciador CCAAT/metabolismo , Quimiocina CCL20/metabolismo , Estrés del Retículo Endoplásmico , Inmunomodulación , Interleucina-8/metabolismo , Transducción de Señal , eIF-2 Quinasa/metabolismo , Proteína delta de Unión al Potenciador CCAAT/genética , Línea Celular Tumoral , Quimiocina CCL20/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunomodulación/efectos de los fármacos , Interleucina-8/genética , Quinasas Janus/metabolismo , Modelos Biológicos , Comunicación Paracrina/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Tapsigargina/farmacología , Transcripción Genética/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética
15.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502057

RESUMEN

Cereulide is one of the main food-borne toxins for vomiting synthesized by Bacillus cereus, and it widely contaminates meat, eggs, milk, and starchy foods. However, the toxicological effects and mechanisms of the long-time exposure of cereulide in vivo remain unknown. In this study, oral administration of 50 and 200 µg/kg body weight cereulide in the mice for 28 days caused oxidative stress in liver and kidney tissues and induce abnormal expression of inflammatory factors. In pathogenesis, cereulide exposure activated endoplasmic reticulum stress (ER stress) via the pathways of inositol-requiring enzyme 1α (IRE1α)/Xbox binding protein (XBP1) and PRKR-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (eIF2α), and consequently led to the apoptosis and tissue damages in mouse liver and kidney. In vitro, we confirmed that the accumulation of reactive oxygen species (ROS) caused by cereulide is the main factor leading to ER stress in HepaRG and HEK293T cells. Supplementation of sodium butyrate (NaB) inhibited the activations of IRE1α/XBP1 and PERK/eIF2α pathways caused by cereulide exposure in mice, and reduced the cell apoptosis in liver and kidney. In conclusion, this study provides a new insight in understanding the toxicological mechanism and prevention of cereulide exposure.


Asunto(s)
Toxinas Bacterianas/toxicidad , Depsipéptidos/toxicidad , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Animales , Apoptosis , Línea Celular Tumoral , Estrés del Retículo Endoplásmico , Células HEK293 , Humanos , Riñón/metabolismo , Hígado/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , eIF-2 Quinasa/metabolismo
16.
Am J Chin Med ; 49(7): 1723-1738, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34488550

RESUMEN

Type 1 diabetes (T1D) is an autoimmune and inflammatory disease with excessive loss of pancreatic islet [Formula: see text]-cells. Accumulating evidence indicated that endoplasmic reticulum (ER) stress played a critical role in [Formula: see text]-cells loss, leading to T1D. Therefore, promoting the survival of pancreatic [Formula: see text]cells would be beneficial for patients with T1D. Puerarin is a natural isoflavone that has been demonstrated to be able to decrease blood glucose in patients with T1D. However, it remains unknown whether puerarin improves ER stress to prevent [Formula: see text]-cells from apoptosis. Here, we sought to investigate the role of puerarin in ER stress-associated apoptosis and explore its underlying mechanism in the mouse insulinoma cell line (MIN6). Flow cytometry and cell counting kit-8 (CCK8) experiments showed that puerarin caused a significant increase in the viability of MIN6 cells injured by H2O2. Furthermore, the protein kinase R-like ER kinase (PERK) signal pathway, a critical branch of ER stress response, was found to be involved in this process. Puerarin inhibited the phosphorylation of PERK, subsequently suppressed the phosphorylation of eukaryotic initiation factor 2[Formula: see text] (eIF2[Formula: see text], then decreased the activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, ultimately attenuating ER stress to prevent MIN6 cells from apoptosis. In addition, puerarin inhibited the activation of Janus kinase 2 (JAK2)/signal transducer and activators of transcription 3 (STAT3), which suppressed the PERK signal cascade with decreased ATF4 and CHOP levels. Taken together, our results firstly demonstrated that puerarin could prevent MIN6 cells from apoptosis at least in part by inhibiting the PERK-eIF2[Formula: see text]-ATF4-CHOP axis under ER stress conditions, which might be mediated by inactivation of the JAK2/STAT3 signal pathway. Therefore, investigating the mechanism underlying the effects of puerarin might highlight the potential roles of puerarin developing into an antidiabetic drug.


Asunto(s)
Células Secretoras de Insulina/efectos de los fármacos , Isoflavonas/farmacología , Factor de Transcripción Activador 4/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Janus Quinasa 2/metabolismo , Ratones , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo
17.
Cancer Biomark ; 31(1): 13-25, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33749640

RESUMEN

BACKGROUND: Protein kinase R (PKR) can suppress various types of solid tumors by inducing cellular oxidative stress and apoptosis. Likewise, Slaidorside, a plant flavonoid, was shown to have anti-tumorigenesis in many solid tumors. OBJECTIVE: This study evaluated anti-tumorigenesis of Salidroside in HT29 colorectal cancer and investigated if the underlying mechanism involves activation of PKR. METHODS: Control or PKR deficient cells were cultured in DMEM media treated with 100 µM Salidroside and cell survival, apoptosis, and other biochemical-related markers were evaluated. RESULTS: Salidroside significantly reduced cell survival and proliferation and increased the release of lactate dehydrogenase (LDH) and levels of single-stranded DNA (ssDNA). It also increased the protein levels of caspases 3 and 8. Concomitantly, Salidroside increased the protein level and activity of PKR and increased the expression of its downstream targets, p-eIF2α (Ser51), p53 MAPK, and p53. On the contrary, it inhibited the nuclear activation of STAT-3 and NF-κB p65. In PKR deficient cells, the partial effects of Salidroside on cell survival, proliferation, and apoptotic markers were observed coincided with no effects on the expression of eIF-2α, and JNK, p53, p38 MAPK, and caspase 8 but with a significant decrease in the nuclear activities of STAT3 and NF-κB. CONCLUSION: Salidroside suppresses the tumorigenesis of HT29 CRC by increasing activation of eIF-2α and JNK and upregulation of p53, p38 MAPK, and caspase-8 through upregulating and activation of PKR. However, the tumor suppressor effect of Salidroside requires also inhibition of STAT3 and NF-κB in a PKR-independent mechanism.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Glucósidos/uso terapéutico , Células HT29/efectos de los fármacos , FN-kappa B/metabolismo , Fenoles/uso terapéutico , Rhodiola/química , Factor de Transcripción STAT3/metabolismo , eIF-2 Quinasa/metabolismo , Glucósidos/farmacología , Humanos , Fenoles/farmacología
18.
Arch Oral Biol ; 125: 105093, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33667956

RESUMEN

OBJECTIVES: The present study aimed to investigated the effect and mechanism of Ca2+ treatment on fluoride in ameloblast-lineage cells (ALCs). MATERIALS AND METHODS: The effects of fluoride and different Ca2+ levels treatment on the proliferative activity, cell apoptosis, cell cycle, intracellular free Ca2+, were firstly determined. Kallikrein 4 (KLK4), glucose-responsive protein 78 (GRP78), Protein kinase R -like endoplasmic reticulum kinase (PERK), the α subunit of eukaryotic initiation factor 2 (eIF2α), activating transcription factor 4 (ATF4), CCAAT enhancer-binding protein homologous protein (CHOP), were investigated in ALCs. RESULTS: The proliferative activity was obviously inhibited under concentrations of single fluoride high than 1 mM, and indicated highest proliferation at single 2.5 mM Ca2+ concentration in ALC cells. In addition, we found that single fluoride markedly induced intracellular free Ca2+ increasing, G2/M phase arrest, apoptosis. GRP78 and endoplasmic reticulum stress pathway of PERK/eIF2α/ATF4/CHOP were significantly increased, while the proliferation and KLK4 were markedly reduced in ALCs. Ca2+ additional treatment can obviously reverse the effect of fluoride-induced apoptosis and inhibition of KLK4. The effect of GRP78 and endoplasmic reticulum stress pathway of PERK/eIF2α/ATF4/CHOP were also alleviated under Ca2+ additional treatment in ALCs. More important, the results of 2.5 mmol/L Ca2+ treatment on the proliferation, cell cycle and apoptosis suggest this concentration is relatively better to mediate the intracellular Ca2+ homeostasis in ALCs. CONCLUSIONS: In sum, Ca2+-supplementation exerts antagonistic the toxic effects on fluoride and this inhibitory effect suggests the potential implications for Ca2+-supplementation on fluorosis.


Asunto(s)
Factor de Transcripción Activador 4 , Factor 2 Eucariótico de Iniciación , Factor de Transcripción Activador 4/metabolismo , Ameloblastos/metabolismo , Apoptosis , Calcio , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Fluoruros/toxicidad , Calicreínas , Transducción de Señal , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo
19.
J Physiol Biochem ; 77(2): 331-339, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33635524

RESUMEN

The unfolded protein response (UPR) plays a pivotal role in some exercise training-induced physiological adaptation. Our aim was to evaluate the changes in the protein kinase R-like endoplasmic reticulum kinase (PERK) arm of the UPR and hypertrophy signaling pathway following 8 weeks of resistance training and creatine (Cr) supplementation in rats. Thirty-two adult male Wistar rats (8 weeks old) were randomly divided into 4 groups of 8: untrained + placebo (UN+P), resistance training + placebo (RT+P), untrained + Cr (UN+Cr), and resistance training + Cr (RT+Cr). Trained animals were submitted to the ladder-climbing exercise training 5 days per week for a total of 8 weeks. Cr supplementation groups received creatine diluted with 1.5 ml of 5% dextrose orally. The flexor hallucis longus (FHL) muscle was extracted 48 h after the last training session and used for western blotting. After training period, the RT+Cr and RT+P groups presented a significant increase in phosphorylated and phosphorylated/total ratio hypertrophy indices, phosphorylated and phosphorylated/total ratio PERK pathway proteins, and other downstream proteins of the PERK cascade compared with their untrained counterparts (P < 0.05). The increase in hypertrophy indices were higher but PERK pathway proteins were lower in the RT-Cr group than in the RT+P group (P < 0.05). There was no significant difference between the untrained groups (P > 0.05). Our study suggests that resistance training in addition to Cr supplementation modifies PERK pathway response and improves skeletal muscle hypertrophy.


Asunto(s)
Creatina/administración & dosificación , Hipertrofia/genética , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/métodos , Procesamiento Proteico-Postraduccional , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Adaptación Fisiológica , Animales , Suplementos Dietéticos , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Hipertrofia/etiología , Hipertrofia/metabolismo , Masculino , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Entrenamiento de Fuerza , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo
20.
J Sci Food Agric ; 101(5): 2125-2134, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32978773

RESUMEN

BACKGROUND: Heat stress seriously affects animal health and induces enormous financial losses in poultry production. Exploring the appropriate means for ameliorating unfavorable effects caused by heat stress is essential. We investigated whether taurine supplementation could attenuate breast muscle loss in chronic heat-stressed broilers, as well as its mechanism. We designed three groups: a normal control group (22 °C), a heat stress group (32 °C) and a taurine treatment group (32 °C, basal diet + 5 g·kg-1 taurine). RESULTS: We found that taurine significantly moderated the decreases of breast muscle mass and yield, as well as the increases of serum aspartate aminotransferase activity and serum urine acid level in chronic heat-stressed broilers. Additionally, supplementary taurine significantly alleviated elevations of the cytoplasm Ca2+ concentration, protein expressions of GRP78 and p-PERK, mRNA expressions of Ca2+ channels (RyR1, IP3R3) and endoplasmic reticulum (ER) stress factors (GRP78, GRP94, PERK, EIF2α, ATF4, IRE1, XBP1, ATF6 and CHOP), apoptosis (Caspase-3 and TUNEL), protein catabolism, and the reduction of taurine transporter (TauT) mRNA expression in the breast muscle induced by chronic heat stress. CONCLUSION: Supplementary taurine could attenuate chronic heat stress-induced breast muscle loss via reversing ER stress-induced apoptosis and suppressing protein catabolism. © 2020 Society of Chemical Industry.


Asunto(s)
Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Trastornos de Estrés por Calor/veterinaria , Músculo Esquelético/metabolismo , Enfermedades de las Aves de Corral/tratamiento farmacológico , Taurina/administración & dosificación , eIF-2 Quinasa/metabolismo , Alimentación Animal/análisis , Animales , Pollos , Suplementos Dietéticos/análisis , Femenino , Trastornos de Estrés por Calor/tratamiento farmacológico , Trastornos de Estrés por Calor/metabolismo , Trastornos de Estrés por Calor/fisiopatología , Respuesta al Choque Térmico/efectos de los fármacos , Masculino , Músculo Esquelético/crecimiento & desarrollo , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/metabolismo , Enfermedades de las Aves de Corral/fisiopatología , Transducción de Señal/efectos de los fármacos , eIF-2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA