Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMB Rep ; 54(10): 528-533, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34488936

RESUMEN

Osteoarthritis (OA) is a degenerative disorder that can result in the loss of articular cartilage. No effective treatment against OA is currently available. Thus, interest in natural health products to relieve OA symptoms is increasing. However, their qualities such as efficacy, toxicity, and mechanism are poorly understood. In this study, we determined the efficacy of avenanthramide (Avn)-C extracted from oats as a promising candidate to prevent OA progression and its mechanism of action to prevent the expression of matrix-metalloproteinases (MMPs) in OA pathogenesis. Interleukin-1 beta (IL-1ß), a proinflammatory cytokine as a main causing factor of cartilage destruction, was used to induce OAlike condition of chondrocytes in vitro. Avn-C restrained IL-1ß- mediated expression and activity of MMPs, such as MMP-3, -12, and -13 in mouse articular chondrocytes. Moreover, Avn-C alleviated cartilage destruction in experimental OA mouse model induced by destabilization of the medial meniscus (DMM) surgery. However, Avn-C did not affect the expression of inflammatory mediators (Ptgs2 and Nos) or anabolic factors (Col2a1, Aggrecan, and Sox9), although expression levels of these genes were upregulated or downregulated by IL-1ß, respectively. The inhibition of MMP expression by Avn-C in articular chondrocytes was mediated by p38 kinase and c-Jun N-terminal kinase (JNK) signaling, but not by ERK or NF-κB. Interestingly, Avn-C added with SB203580 and SP600125 as specific inhibitors of p38 kinase and JNK, respectively, enhanced its inhibitory effect on the expression of MMPs in IL-1ß treated chondrocytes. Taken together, these results suggest that Avn-C is an effective candidate to prevent OA progression and a natural health product to relieve OA pathogenesis. [BMB Reports 2021; 54(10): 528-533].


Asunto(s)
Condrocitos/metabolismo , Osteoartritis/tratamiento farmacológico , ortoaminobenzoatos/farmacología , Animales , Avena/metabolismo , Condrocitos/efectos de los fármacos , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Interleucina-1beta/efectos de los fármacos , Interleucina-1beta/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasas de la Matriz/efectos de los fármacos , Metaloproteinasas de la Matriz/genética , Ratones , FN-kappa B/metabolismo , Osteoartritis/patología , Extractos Vegetales/farmacología , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacos , ortoaminobenzoatos/metabolismo
2.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946373

RESUMEN

The oat (Avena sativa L.) is a grain of the Poaceae grass family and contains many powerful anti-oxidants, including avenanthramides as phenolic alkaloids with anti-inflammatory, anti-oxidant, anti-itch, anti-irritant, and anti-atherogenic activities. Here, the treatment of germinating oats with methyl jasmonate (MeJA) or abscisic acid (ABA) resulted in 2.5-fold (582.9 mg/kg FW) and 2.8-fold (642.9 mg/kg FW) increase in avenanthramide content, respectively, relative to untreated controls (232.6 mg/kg FW). Moreover, MeJA and ABA co-treatment synergistically increased avenanthramide production in germinating oats to 1505 mg/kg FW. Individual or combined MeJA and ABA treatment increased the expression of genes encoding key catalytic enzymes in the avenanthramide-biosynthesis pathway, including hydroxycinnamoyl-CoA:hydrocyanthranilate N-hydroxycinnamoyl transferase (HHT). Further analyses showed that six AsHHT genes were effectively upregulated by MeJA or ABA treatment, especially AsHHT4 for MeJA and AsHHT5 for ABA, thereby enhancing the production of all three avenanthramides in germinating oats. Specifically, AsHHT5 exhibited the highest expression following MeJA and ABA co-treatment, indicating that AsHHT5 played a more crucial role in avenanthramide biosynthesis in response to MeJA and ABA co-treatment of germinating oats. These findings suggest that elicitor-mediated metabolite farming using MeJA and ABA could be a valuable method for avenanthramide production in germinating oats.


Asunto(s)
Ácido Abscísico/metabolismo , Acetatos/metabolismo , Avena/crecimiento & desarrollo , Ciclopentanos/metabolismo , Germinación , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , ortoaminobenzoatos/metabolismo , Antioxidantes/metabolismo , Avena/efectos de los fármacos , Producción de Cultivos , Germinación/efectos de los fármacos
3.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244300

RESUMEN

This work describes the chemical synthesis, combinatorial selection, and enzymatic evaluation of peptidomimetic fluorescent substrates specific for the trypsin-like (ß2) subunit of the 20S human proteasome. After deconvolution of a library comprising nearly 6000 compounds composed of peg substituted diaminopropionic acid DAPEG building blocks, the sequence ABZ-Dap(O2(Cbz))-Dap(GO1)-Dap(O2(Cbz))-Arg-ANB-NH2, where ABZ is 2-aminobenzoic acid, and ANB- 5 amino 2- nitro benzoic acid was selected. Its cleavage followed sigmoidal kinetics, characteristic for allosteric enzymes, with Km = 3.22 ± 0.02 µM, kcat = 245 s-1, and kcat/Km = 7.61 × 107 M-1 s-1. This process was practically halted when a selective inhibitor of the ß2 subunit of the 20S human proteasome was supplemented to the reaction system. Titration of the substrate resulting in decreased amounts of proteasome 20S produced a linear signal up to 10-11 M. Using this substrate, we detected human proteasome 20S in human urine samples taken from the bladders of cancer patients. This observation could be useful for the noninvasive diagnosis of this severe disease.


Asunto(s)
Colorantes Fluorescentes/química , Peptidomiméticos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Tripsina/aislamiento & purificación , Humanos , Cinética , Modelos Moleculares , Co-Represor 1 de Receptor Nuclear , Complejo de la Endopetidasa Proteasomal/química , Especificidad por Sustrato , Neoplasias de la Vejiga Urinaria/metabolismo , ortoaminobenzoatos/metabolismo
4.
J Agric Food Chem ; 68(8): 2347-2356, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32026690

RESUMEN

Avenanthramides (AVNs) are a unique kind of polyphenols that were only detected in the oats and have been demonstrated to exhibit strong antioxidant activities but low bioavailability. The purpose of the present research was to evaluate the absorption rates and mechanisms of AVNs (AVN 2c, AVN 2f, and AVN 2p) using a human colon adenocarcinoma cell line (Caco-2) cell model and clarify the influence of the absorption process on the antioxidant capacities of AVNs. Furthermore, the absorption rates and antioxidant activities of ferulic acid and caffeic acid were compared with those of AVNs. Results showed that the apparent absorption rates (Papp) of AVN 2c, AVN 2f, and AVN 2p were 0.65 ± 0.05 × 10-6, 1.18 ± 0.16 × 10-6, and 1.44 ± 0.09 × 10-6 cm/s, respectively, which were significantly lower than those of caffeic acid (3.76 ± 0.31 × 10-6 cm/s) and ferulic acid (1.69 ± 0.13 × 10-5 cm/s). Moreover, the metabolites (caffeic acid, ferulic acid, and AVN 2f) of AVNs after absorption were detected and quantified by high-performance liquid chromatography-mass spectrometry. Before absorption, although the antioxidant capacities of AVNs were significantly stronger than those of ferulic acid and caffeic acid, there was an opposite result after absorption. In addition, AVNs transported the Caco-2 monolayer by paracellular diffusion and were affected by monoamine oxidase and efflux transporters (P-gp, MRP2) during absorption. The co-administration of quercetin could significantly improve the absorption rates of AVNs.


Asunto(s)
Antioxidantes/metabolismo , Extractos Vegetales/metabolismo , ortoaminobenzoatos/metabolismo , Antioxidantes/química , Avena/química , Transporte Biológico , Células CACO-2 , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas , Modelos Biológicos , Extractos Vegetales/química , ortoaminobenzoatos/química
5.
Sci Rep ; 9(1): 19768, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875008

RESUMEN

Epigenetic mechanisms can establish and maintain mitotically stable patterns of gene expression while retaining the DNA sequence. These mechanisms can be affected by environmental factors such as nutrients. The importance of intracellular dosages of nutrient metabolites such as acetyl coenzyme A and S-adenosylmethionine, which are utilized as donors for post-translational modifications, is well-known in epigenetic regulation; however, the significance of indirect metabolites in epigenetic regulation is not clear. In this study, we screened for metabolites that function as epigenetic modulators. Because the expression of genes related to hypothalamic function is reportedly affected by nutritional conditions, we used a neural cell culture system and evaluated hypothalamic-linked loci. We supplemented the culture medium with 129 metabolites separately during induction of human-iPS-derived neural cells and used high-throughput ChIP-qPCR to determine the epigenetic status at 37 hypothalamus-linked loci. We found three metabolites (kynurenine, 3-OH-kynurenine, and anthranilate) from tryptophan pathways that increased H3K4 trimethylation and H2AS40 O-GlcNAcylation, resulting in upregulated gene expression at most loci, except those encoding pan-neural markers. Dietary supplementation of these three metabolites and the resulting epigenetic modification were important for stability in gene expression. In conclusion, our findings provide a better understanding of how nutrients play a role in epigenetic mechanisms.


Asunto(s)
Epigénesis Genética , Sitios Genéticos , Histonas/metabolismo , Hipotálamo/metabolismo , Quinurenina/análogos & derivados , ortoaminobenzoatos/metabolismo , Glicosilación , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Quinurenina/metabolismo , Metilación
6.
J Food Biochem ; 43(4): e12799, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31353574

RESUMEN

Oat is the nutritious crop containing various compounds with antioxidant properties, such as polyphenols. In this study, we investigated the effect of germination and ultrafiltration process on polyphenol and avenanthramide contents in oat as well as their cytoprotective effect. Germination of oat for 48 hr significantly increased avenanthramide (5.5 to 11.3 mg/g) and polyphenol (115 to 155 mg GAE/g) contents. The compounds were more concentrated after ultrafiltration using 10 kDa membranes (polyphenol, 206 GAE/g; avenanthramide, 18 mg/g). In addition, oat extracts significantly reduced the cellular ROS level against tert-butyl hydroperoxide (t-BHP) stimulation in HepG2 cells. In the mechanistic study, oat extracts induced Nrf2 translocation to the nucleus by inhibition of Keap1 expression, resulting into upregulation of γ-GCS and NQO1. In conclusion, oat germination and ultrafiltration processes increased the polyphenol content, including that of avenanthramide. These extracts protected cells from t-BHP by radical scavenging activities and induced Nrf2 pathway activation. PRACTICAL APPLICATIONS: This study presents the method for avenanthramide-concentrated extract which is unique bioactive compounds in oat. In addition, antioxidant activity and their mechanisms of the avenanthramide-enriched extracts were evaluated. The polyphenol compounds including avenanthramide were found to increase after germination and ultrafiltration, thereby improving the radical scavenging ability. These results can be utilized as data for the development of health-promoting materials using oats.


Asunto(s)
Avena/crecimiento & desarrollo , Extractos Vegetales/farmacología , Polifenoles/análisis , Polifenoles/farmacología , ortoaminobenzoatos/farmacología , Avena/química , Avena/genética , Avena/metabolismo , Germinación , Células Hep G2 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/análisis , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Polifenoles/aislamiento & purificación , Polifenoles/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semillas/química , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Ultrafiltración , ortoaminobenzoatos/análisis , ortoaminobenzoatos/aislamiento & purificación , ortoaminobenzoatos/metabolismo
7.
Pest Manag Sci ; 75(5): 1464-1472, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30450808

RESUMEN

BACKGROUND: The black cutworm Agrotis ipsilon is the most destructive early season insect pest of corn. In this study, the control efficiency of cyantraniliprole seed treatment against A. ipsilon was evaluated, and the residual concentrations of cyantraniliprole and its metabolite J9Z38 in the stalks of corn seedlings and soil were investigated. RESULTS: Plant pot experiments showed that A. ipsilon larval mortality was greater than 92% and that the percentage of corn seedlings damaged by A. ipsilon was less than 24% when corn seeds were treated with cyantraniliprole at 2 and 4 g AI kg-1 seed. Cyantraniliprole seed treatment at a dosage of 2 g AI kg-1 seed significantly reduced A. ipsilon infestation compared to chlorantraniliprole and clothianidin seed treatments in corn fields. Cyantraniliprole seed treatment resulted in more persistent control efficiency of A. ipsilon in spring than in summer. Cyantraniliprole and J9Z38 residues in corn stalks and soil degraded more slowly in the spring than in the summer. CONCLUSION: Cyantraniliprole used as a seed treatment can protect corn plants from A. ipsilon infestations throughout the seedling stage. The high biological activity of cyantraniliprole was consistent with the residue levels of cyantraniliprole in the corn stalks and soil. © 2018 Society of Chemical Industry.


Asunto(s)
Lepidópteros , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/metabolismo , Pirazoles/metabolismo , Semillas/metabolismo , Suelo/química , Zea mays/metabolismo , ortoaminobenzoatos/metabolismo , Animales
8.
J Agric Food Chem ; 66(30): 8005-8014, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29985603

RESUMEN

Avenanthramides (AVAs), unique phytochemicals in oat, have attracted an increasing amount of attention due to their outstanding health benefits. However, the chemical profile and the levels of AVAs in commercial oat products as well as their health benefits have not been examined in detail. In the present study, a total of 29 AVA aglycones and AVA glucosides were identified and characterized from oat bran using NMR (1D and 2D NMR) and LC-MS techniques. Among them, 17 novel AVA glucosides were reported in oat bran for the first time. The most abundant AVA glucoside, 2c-3'- O-glc, had a similar growth inhibitory activity with the major AVA, 2c, against HCT-116 and HT-29 human colon cancer cells, indicating glucosylation does not affect the growth inhibitory effects of AVAs. Furthermore, the levels of all individual AVAs in 13 commercial oat products were analyzed using HPLC-MS/MS. The total AVAs contents in various oat products ranged from 9.22 to 61.77 mg/kg (fresh weight).


Asunto(s)
Avena/química , Glucósidos/química , Extractos Vegetales/química , ortoaminobenzoatos/química , Avena/metabolismo , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/fisiopatología , Fibras de la Dieta/análisis , Fibras de la Dieta/metabolismo , Glucósidos/metabolismo , Células HT29 , Humanos , Estructura Molecular , Extractos Vegetales/metabolismo , Espectrometría de Masas en Tándem , ortoaminobenzoatos/metabolismo
9.
J Agric Food Chem ; 66(2): 498-504, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29298067

RESUMEN

Oats, in addition to cholesterol-lowering properties, contain unique antioxidants called avenanthramides (Avns), which inhibit both inflammatory cytokines and adhesion molecules in endothelial cells in culture. This study evaluated the effects of Avns of oats on atherosclerosis in Ldlr-/- mice, one of the most commonly used atherosclerosis mouse models with their similar cholesterol distributions to humans. The Ldlr-/- mice were fed a low fat, high fat, high fat containing regular oat brans with low levels of Avns (HFLA), or high fat containing regular oat brans with high levels of Avns (HFHA) diet. After 16 weeks of intervention, blood cholesterol and extent of aortic lesions were evaluated. We found that both oat-based diets reduced high fat diet-induced atheroma lesions in the aortic valve (p < 0.01). Furthermore, the effects of oat-based diets are more profound in HFHA mice than mice fed HFLA. Total plasma cholesterol levels were similarly reduced in both oat-supplemented mice. We concluded that oat bran diets reduce atheroma lesions and higher levels of Avns further reduce aortic lesions compared to regular oat bran. These preliminary in vivo data indicate that consumption of oats bran, with high Avns, has demonstrable beneficial effects on prevention of cardiovascular disease.


Asunto(s)
Aterosclerosis/dietoterapia , Avena/metabolismo , Extractos Vegetales/metabolismo , Receptores de LDL/deficiencia , ortoaminobenzoatos/metabolismo , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Avena/química , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Fibras de la Dieta/metabolismo , Suplementos Dietéticos/análisis , Humanos , Masculino , Ratones , Extractos Vegetales/análisis , Receptores de LDL/genética , ortoaminobenzoatos/análisis
10.
Oncotarget ; 8(23): 37186-37199, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28415603

RESUMEN

Factor Xa (FXa) plays a significant role in the blood coagulation cascade and is a promising target for anticoagulation drugs. Three oral FXa inhibitors have been approved by FDA for treating thrombotic diseases. In this study, 43 novel compounds were synthesized anthranilamide-based FXa inhibitors aiming to ameliorate the toxicity of traditional FXa inhibitors in clinic. The data indicated that the compounds 6a, 6a-b, 6a-e, 6k, 6k-a and 6k-b showed remarkable FXa inhibitory activity and excellent selectivity over thrombin in vitro. Selected compounds also exhibited anticoagulant activities in vitro consequently and were potent novel anti-coagulators in further.


Asunto(s)
Anticoagulantes/síntesis química , Inhibidores del Factor Xa/uso terapéutico , Factor Xa/metabolismo , Trombosis/tratamiento farmacológico , ortoaminobenzoatos/síntesis química , Adulto , Anticoagulantes/metabolismo , Coagulación Sanguínea , Biología Computacional , Inhibidores del Factor Xa/síntesis química , Inhibidores del Factor Xa/metabolismo , Humanos , Masculino , Modelos Moleculares , Terapia Molecular Dirigida , Plasma/metabolismo , Rivaroxabán/uso terapéutico , Trombina/metabolismo , ortoaminobenzoatos/metabolismo
11.
J Complement Integr Med ; 13(2): 129-36, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26641976

RESUMEN

BACKGROUND: Human milk contains a number of nutrients and bioactive ingredients which play an important role in the growth and development of infants. One important nutrient and bioactive ingredient of human milk is L-tryptophan. L-Tryptophan is an essential aromatic α-amino acid and is required in the diet of children and adult humans. As an essential amino acid, it is needed for protein synthesis and as a precursor of key biomolecules such as serotonin, melatonin, tryptamine, niacin, quinolinic acid and kynurenic acid, nicotinamide adenine dinucleotide. The aim of the study was to evaluate the antioxidant, anti-inflammatory and antiproliferative properties of tryptophan isolated from enzymatic hydrolysates from human milk and its metabolites on human glioma U251 cells and to evaluate the effects of human recombinant (hrIFNγ) on molecular ions of tryptophan and its metabolites in human glial U251 cells. METHODS: The cytotoxicity was determined by MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay. The antioxidant property was assessed by the oxygen radical scavenging capacity (ORAC) method. The anti-inflammatory effect was determined by the enzyme-linked immunosorbent assay (ELISA) against cytokines IL-6 and TNF-α. The effects of recombinant human (rhIFNγ) on molecular ions of tryptophan and its catabolites were evaluated by mass spectrometry. The tryptophan was isolated from milk peptides following enzymatic digestion, followed by separation by chromatographic and mass spectrometric methods. RESULTS: Tryptophan from human milk exhibited profoundly higher oxygen radical absorption capacity (7,986±468 µm Trolox equivalent (TE)/g) than that of whole human milk (80.4±13.3 µm TE/g). Tryptophan showed a moderate degree of anti-inflammatory activity against TNF-α and IL-6. rhIFNγ inhibited tryptophan metabolism. A low concentration of L-tryptophan (10-25 µg/mL) inhibited nearly 25% of cell growth. When U251 cells were treated with 25 µg/mL L-tryptophan and subsequently challenged with 30 ng/mL of human recombinant IFNγ, a significant inhibitory effect on cell growth was observed. Low concentrations of Xanthurenic acid, L-kynurenine, and 3-OH DL kynurenine were found to inhibit cell growth except melatonin and 3-OH anthranilic acid. Melatonin was a strong inducer of TNF-α in RAW cells, whereas 3-OH kynurenine at 25, 50 and 100 µg/mL inhibited IL-6 in RAW cells. No significant change was observed in the IL-8 profile in tryptophan-treated U251 cells except that L-kynurenine at 10 µg/mL produced significantly high level of an inflammatory cytokine IL-8. Melatonin, 3-OH, DL kynurenine at high concentrations (100 µg/mL) induced proliferation of U251 cells. Melatonin seemed to show synergistic effects with recombinant human IFNγ (rhINFγ) in promoting growth of human glioma cells. While treatment of U251 cells with tryptophan alone and subsequent treatment with rhIFNγ inhibited the growth of human cancer glioma cells, and conversely melatonin combined with rhIFNγ promoted growth of the U251 cells. CONCLUSIONS: The findings from this study suggest that human milk-derived tryptophan and its metabolites possess strong antioxidant properties. Such effects might play a significant role in regulating the cell proliferation and growth of human cancer cells in a concentration-dependent manner.


Asunto(s)
Antioxidantes/farmacología , Leche Humana/química , Triptófano/farmacología , Antiinflamatorios/farmacología , Antioxidantes/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Inhibidores de Crecimiento/farmacología , Humanos , Interferón gamma/efectos de los fármacos , Interleucina-6/metabolismo , Quinurenina/metabolismo , Melatonina/metabolismo , Neuroglía/efectos de los fármacos , Capacidad de Absorbancia de Radicales de Oxígeno , Ácido Quinolínico/metabolismo , Proteínas Recombinantes/efectos de los fármacos , Triptófano/aislamiento & purificación , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Xanturenatos/metabolismo , ortoaminobenzoatos/metabolismo
12.
Fungal Genet Biol ; 89: 102-113, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26701311

RESUMEN

Small peptides formed from non-ribosomal peptide synthetases (NRPS) are bioactive molecules produced by many fungi including the genus Aspergillus. A subset of NRPS utilizes tryptophan and its precursor, the non-proteinogenic amino acid anthranilate, in synthesis of various metabolites such as Aspergillus fumigatus fumiquinazolines (Fqs) produced by the fmq gene cluster. The A. fumigatus genome contains two putative anthranilate synthases - a key enzyme in conversion of anthranilic acid to tryptophan - one beside the fmq cluster and one in a region of co-linearity with other Aspergillus spp. Only the gene found in the co-linear region, trpE, was involved in tryptophan biosynthesis. We found that site-specific mutations of the TrpE feedback domain resulted in significantly increased production of anthranilate, tryptophan, p-aminobenzoate and fumiquinazolines FqF and FqC. Supplementation with tryptophan restored metabolism to near wild type levels in the feedback mutants and suggested that synthesis of the tryptophan degradation product kynurenine could negatively impact Fq synthesis. The second putative anthranilate synthase gene next to the fmq cluster was termed icsA for its considerable identity to isochorismate synthases in bacteria. Although icsA had no impact on A. fumigatus Fq production, deletion and over-expression of icsA increased and decreased respectively aromatic amino acid levels suggesting that IcsA can draw from the cellular chorismate pool.


Asunto(s)
Antranilato Sintasa/genética , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Retroalimentación Fisiológica , Proteínas Fúngicas/genética , Metabolismo Secundario/genética , Triptófano/metabolismo , Secuencia de Aminoácidos , Aminoácidos , Antranilato Sintasa/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Familia de Multigenes , Mutación , Péptido Sintasas/genética , Quinazolinas/metabolismo , ortoaminobenzoatos/metabolismo
13.
Bioorg Med Chem Lett ; 25(6): 1338-42, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25677667
14.
J Inorg Biochem ; 135: 28-39, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24650572

RESUMEN

Recent studies showed that the metal-coordinated non-steroidal anti-inflammatory drug (NSAID), copper indomethacin, reduced aberrant crypt formation in the rodent colon cancer model, while also exhibiting gastrointestinal sparing properties. In the present study, the stability and biological activity of three BiNSAIDs of the general formula [Bi(L)3]n, where L=diflunisal (difl), mefenamate (mef) or tolfenamate (tolf) were examined. NMR spectroscopy of high concentrations of BiNSAIDs (24h in cell medium, 37°C) indicated that their structural stability and interactions with cell medium components were NSAID specific. Assessment of cell viability using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium]bromide (MTT) assay showed that the toxicity ranking of the BiNSAIDs paralleled those of the respective free NSAIDs: diflH

Asunto(s)
Antiinflamatorios no Esteroideos/química , Bismuto/química , Complejos de Coordinación/química , Diflunisal/química , Ácido Mefenámico/química , ortoaminobenzoatos/química , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon , Complejos de Coordinación/metabolismo , Complejos de Coordinación/toxicidad , Diflunisal/metabolismo , Diflunisal/toxicidad , Evaluación Preclínica de Medicamentos , Estabilidad de Medicamentos , Humanos , Concentración 50 Inhibidora , Ácido Mefenámico/metabolismo , Ácido Mefenámico/toxicidad , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/toxicidad
15.
Appl Environ Microbiol ; 79(13): 4024-30, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23603682

RESUMEN

Muconic acid is the synthetic precursor of adipic acid, and the latter is an important platform chemical that can be used for the production of nylon-6,6 and polyurethane. Currently, the production of adipic acid relies mainly on chemical processes utilizing petrochemicals, such as benzene, which are generally considered environmentally unfriendly and nonrenewable, as starting materials. Microbial synthesis from renewable carbon sources provides a promising alternative under the circumstance of petroleum depletion and environment deterioration. Here we devised a novel artificial pathway in Escherichia coli for the biosynthesis of muconic acid, in which anthranilate, the first intermediate in the tryptophan biosynthetic branch, was converted to catechol and muconic acid by anthranilate 1,2-dioxygenase (ADO) and catechol 1,2-dioxygenase (CDO), sequentially and respectively. First, screening for efficient ADO and CDO from different microbial species enabled the production of gram-per-liter level muconic acid from supplemented anthranilate in 5 h. To further achieve the biosynthesis of muconic acid from simple carbon sources, anthranilate overproducers were constructed by overexpressing the key enzymes in the shikimate pathway and blocking tryptophan biosynthesis. In addition, we found that introduction of a strengthened glutamine regeneration system by overexpressing glutamine synthase significantly improved anthranilate production. Finally, the engineered E. coli strain carrying the full pathway produced 389.96 ± 12.46 mg/liter muconic acid from simple carbon sources in shake flask experiments, a result which demonstrates scale-up potential for microbial production of muconic acid.


Asunto(s)
Vías Biosintéticas/fisiología , Biotecnología/métodos , Ácido Sórbico/análogos & derivados , ortoaminobenzoatos/metabolismo , Catecol 1,2-Dioxigenasa/metabolismo , Cromatografía Líquida de Alta Presión , Escherichia coli , Glutamato-Amoníaco Ligasa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Plásmidos/genética , Ácido Sórbico/metabolismo , Triptófano/biosíntesis
16.
Biochemistry ; 52(10): 1776-87, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23363292

RESUMEN

Anthranilate phosphoribosyltransferase (AnPRT, EC 2.4.2.18) is a homodimeric enzyme that catalyzes the reaction between 5'-phosphoribosyl 1'-pyrophosphate (PRPP) and anthranilate, as part of the tryptophan biosynthesis pathway. Here we present the results of the first chemical screen for inhibitors against Mycobacterium tuberculosis AnPRT (Mtb-AnPRT), along with crystal structures of Mtb-AnPRT in complex with PRPP and several inhibitors. Previous work revealed that PRPP is bound at the base of a deep cleft in Mtb-AnPRT and predicted two anthranilate binding sites along the tunnel leading to the PRPP binding site. Unexpectedly, the inhibitors presented here almost exclusively bound at the entrance of the tunnel, in the presumed noncatalytic anthranilate binding site, previously hypothesized to have a role in substrate capture. The potencies of the inhibitors were measured, yielding Ki values of 1.5-119 µM, with the strongest inhibition displayed by a bianthranilate compound that makes hydrogen bond and salt bridge contacts with Mtb-AnPRT via its carboxyl groups. Our results reveal how the substrate capture mechanism of AnPRT can be exploited to inhibit the enzyme's activity and provide a scaffold for the design of improved Mtb-AnPRT inhibitors that may ultimately form the basis of new antituberculosis drugs with a novel mode of action.


Asunto(s)
Antranilato Fosforribosiltransferasa/antagonistas & inhibidores , Antranilato Fosforribosiltransferasa/química , Mycobacterium tuberculosis/enzimología , Antranilato Fosforribosiltransferasa/genética , Antituberculosos/farmacología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Fosforribosil Pirofosfato/metabolismo , Especificidad por Sustrato , ortoaminobenzoatos/metabolismo
17.
Plant Physiol ; 153(4): 1795-807, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20519632

RESUMEN

Volatile methyl esters are common constituents of plant volatiles with important functions in plant defense. To study the biosynthesis of these compounds, especially methyl anthranilate and methyl salicylate, we identified a group of methyltransferases that are members of the SABATH enzyme family in maize (Zea mays). In vitro biochemical characterization after bacterial expression revealed three S-adenosyl-L-methionine-dependent methyltransferases with high specificity for anthranilic acid as a substrate. Of these three proteins, Anthranilic Acid Methyltransferase1 (AAMT1) appears to be responsible for most of the S-adenosyl-L-methionine-dependent methyltransferase activity and methyl anthranilate formation observed in maize after herbivore damage. The enzymes may also be involved in the formation of low amounts of methyl salicylate, which are emitted from herbivore-damaged maize. Homology-based structural modeling combined with site-directed mutagenesis identified two amino acid residues, designated tyrosine-246 and glutamine-167 in AAMT1, which are responsible for the high specificity of AAMTs toward anthranilic acid. These residues are conserved in each of the three main clades of the SABATH family, indicating that the carboxyl methyltransferases are functionally separated by these clades. In maize, this gene family has diversified especially toward benzenoid carboxyl methyltransferases that accept anthranilic acid and benzoic acid.


Asunto(s)
Metiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , S-Adenosilmetionina/metabolismo , Zea mays/enzimología , ortoaminobenzoatos/metabolismo , Animales , ADN Complementario/genética , Metiltransferasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido , Spodoptera , Especificidad por Sustrato , Zea mays/genética
18.
J Biol Chem ; 281(13): 8371-8, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16431905

RESUMEN

Protein products of the suf operon are involved in iron-sulfur metabolism. SufC is an ATPase that can interact with SufB in the absence of nucleotide. We have studied the transient kinetics of the SufC ATPase mechanism using the fluorescent ATP analogue, 2'(3')-O-N-methylanthraniloyl-ATP (mantATP). mantATP initially binds to SufC weakly. A conformational change of the SufC.mantATP complex then occurs followed by the very slow cleavage of mantATP to mantADP and the rapid release of Pi. In the presence of SufB, the cleavage step is accelerated and the release of mantADP is inhibited. Both of these effects promote the formation of a SufC.mantADP complex. In the absence and presence of SufB, mantADP remains more tightly bound to SufC than mantATP. These studies provide a basis for how the SufB and -C proteins interact in the processes involved in regulating iron-sulfur transfer.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Cromatografía Líquida de Alta Presión , Escherichia coli/genética , Polarización de Fluorescencia , Colorantes Fluorescentes/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Cinética , Operón , Fósforo/metabolismo , Conformación Proteica , Thermotoga maritima/química , ortoaminobenzoatos/metabolismo
19.
Plant J ; 39(4): 560-72, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15272874

RESUMEN

Oat leaves produce phytoalexins, avenanthramides, in response to infection by pathogens or treatment with elicitors. The metabolism of avenanthramides was investigated using low molecular weight, partially deacetylated chitin as an elicitor. When oat leaf segments are floated on the elicitor solution, avenanthramides accumulate in the solution. The transfer of elicited oat leaves to solutions containing stable-isotope-labeled avenanthramides resulted in a rapid decrease in the labeled avenanthramides, suggesting the metabolism of avenanthramides. The rate of decrease was enhanced by elicitor treatment, and was dependent on the species of avenanthramides, with avenanthramide B decreasing most rapidly. The rates of biosynthesis and metabolism of avenanthramides A and B were measured using a model of isotope-labeling dynamics. Avenanthramide B was found to be more actively biosynthesized and metabolized than avenanthramide A. Radiolabeled avenanthramide B was incorporated into the cell wall fraction and 99% of incorporated activity was released by alkaline treatment. Gel filtration indicated that high-molecular-weight compounds derived from avenanthramide B were released by alkaline treatment. The decrease in stable-isotope-labeled avenanthramides was suppressed by catalase, salicylhydroxamic acid, and sodium ascorbate, suggesting the involvement of peroxidase in the metabolism. Consistent with this, peroxidase activity that accepts avenanthramide B as a substrate was induced in apoplastic fractions by elicitor treatment. The appearance of multiple basic isoperoxidases was observed by activity staining with 3-amino-9-ethylcarbazole coupled with isoelectric focusing of proteins from elicitor-treated leaves. These findings suggest that accumulated avenanthramides are further metabolized in apoplasts in oat leaves by inducible isoperoxidases.


Asunto(s)
Avena/química , Extractos Vegetales/metabolismo , ortoaminobenzoatos/metabolismo , Quitina/farmacología , Marcaje Isotópico , Estructura Molecular , Peroxidasa/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Radioisótopos/química , Sesquiterpenos , Terpenos , Factores de Tiempo , Fitoalexinas
20.
Biotechnol Appl Biochem ; 39(Pt 1): 123-8, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12962543

RESUMEN

Hairy roots were induced from both cotyledon and hypocotyl explants of Isatis indigotica Fort. (indigo woad) through transformation with Agrobaterium rhizogenes strain A4, R1601 and ATCC15834. The results showed that the cotyledons were the preferred explants to hypocotyls and A4 was the most suitable A. rhizogenes strain for the transformation and induction of hairy roots of I. indigotica. High-voltage paper electrophoresis (HVPE) analysis demonstrated the production of mannopine in hairy roots and confirmed the successful transfer of Ri T-DNA (root-inducing transferred DNA) of A. rhizogenes into the I. indigotica genome. Five organic acids, namely CPQ [3-(2-carboxyphenol)-4(3 H )-quinazolinone], syringic acid, salicylic acid, benzoic acid and 2-aminobenzoic acid, which were considered as main antiviral components of I. indigotica, were detected in natural roots, hairy roots and liquid media with high-performance capillary electrophoresis. The results showed CPQ production in hairy roots was significantly higher than that in natural roots. Our results also revealed that all the five organic acids could be excreted from hairy roots into liquid media, and the concentrations of organic acids in the liquid media paralleled those in hairy roots. The hairy roots of I. indigotica grew fast and showed an S-shaped growth curve that reached its apex on the day 24 of culture with a 20-fold increase in fresh weight compared with the starting inoculums. The accumulation of the two organic acids CPQ and syringic acid in liquid media paralleled the growth of hairy roots. MS [Murashige, T. and Skoog, F. (1962) Physiol. Plant. 15, 473-497] medium or half-strength MS medium supplemented with 30 g/l maltose was found to be best for hairy-root culture and accumulation of CPQ.


Asunto(s)
Ácido Benzoico/análisis , Ácido Gálico/análogos & derivados , Ácido Gálico/análisis , Isatis/citología , Raíces de Plantas/química , Ácido Salicílico/análisis , Ácido Benzoico/metabolismo , Técnicas de Cultivo , Ácido Gálico/metabolismo , Isatis/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Ácido Salicílico/metabolismo , ortoaminobenzoatos/análisis , ortoaminobenzoatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA