RESUMEN
Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.
Asunto(s)
Yodo , Isoindoles , Compuestos de Organoselenio , Selenio , Yodo/química , Indicadores y Reactivos , Compuestos de Organoselenio/química , Lactonas/química , CarbonoRESUMEN
Aldehyde-containing metabolites are reactive electrophiles that have attracted extensive attention due to their widespread occurrence in organisms and natural foods. Herein we described a newly-designed Girard's reagent, 1-(4-hydrazinyl-4-oxobutyl)pyridin-1-ium bromide (HBP), as charged tandem mass (MS/MS) tags to facilitate selective capture, sensitive detection and semi-targeted discovery of aldehyde metabolites via hydrazone formation. After HBP labeling, the detection signals of the test aldehydes were increased by 21-2856 times, with the limits of detection were 2.5-7 nM. Upon isotope-coded derivatization with a pair of labeling reagents, HBP-d0 and its deuterium-labeled counterpart HBP-d5, the aldehyde analytes were converted to hydrazone derivatives, which generated characteristic neutral fragments of 79 Da and 84 Da, respectively. The isobaric HBP-d0/HBP-d5 labeling based LC-MS/MS method was validated by relative quantification of human urinary aldehydes (slope=0.999, R2 > 0.99, RSDs ≤ 8.5%) and discrimination analysis between diabetic and control samples. The unique isotopic doubles (Δm/z = 5 Da) by dual neutral loss scanning (dNLS) provided a generic reactivity-based screening strategy that allowed non-targeted profiling and identification of endogenous aldehydes even amidst noisy data. The LC-dNLS-MS/MS screening of cinnamon extracts led to finding 61 possible natural aldehydes and guided discovery of 10 previously undetected congeners in this medicinal plant.
Asunto(s)
Aldehídos , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Aldehídos/análisis , Isótopos , Indicadores y Reactivos , Marcaje Isotópico/métodosRESUMEN
Humans mainly ingest arsenic through contaminated drinking water, causing serious health effects. The World Health Organization (WHO) has set the permissible limit of arsenic in drinking water at 0.01 mg/L and concentrations should be regularly determined to ensure a safe supply. In this study, a leucomalachite green (LMG) pectin-based hydrogel reagent was prepared that selectively reacted with arsenic over other metals including manganese, copper, lead, iron, and cadmium. Pectin, optimized at 0.2% (w/v), was used to form the hydrogel matrix. Arsenic reacts with potassium iodate in sodium acetate buffer medium to liberate iodine that then oxidizes LMG entrapped in pectin hydrogel to form a blue product. Camera-based photometry/ImageJ software was used to monitor the color intensity, eliminating the need for a spectrophotometer. The intensity of gray in the red channel was chosen as optimal for the red, green, and blue (RGB) analysis. The colorimetric assay revealed a dynamic detection range toward arsenic solution standards of 0.003-1 mg/L, covering the WHO recommendation of below 0.01 mg/L arsenic in drinking water. The assay gave recovery rates between 97 and 109% at a 95% confidence interval, with precision of 4-9%. Concentrations of arsenic in the spiked drinking water, tap water, and pond water samples monitored by the developed method agreed well with conventional inductively coupled plasma optical emission spectrometry. This assay showed promise for on-site quantitative analysis of arsenic in water samples.
Asunto(s)
Arsénico , Agua Potable , Contaminantes Químicos del Agua , Humanos , Arsénico/análisis , Agua Potable/análisis , Colorimetría/métodos , Indicadores y Reactivos , Hidrogeles , Pectinas , Espectrofotometría , Contaminantes Químicos del Agua/análisisRESUMEN
There are at least 500 naturally occurring amino acids, of which only 20 standard proteinogenic amino acids are used universally across all organisms in the synthesis of peptides and proteins. Non-standard amino acids can be incorporated into proteins or are intermediates and products of metabolic pathways. While the analysis of standard amino acids is well-defined, the analysis of non-standard amino acids can be challenging due to the wide range of physicochemical properties, and the lack of both reference standards and information in curated databases to aid compound identification. It has been shown that the use of an AccQ·Tag™ derivatization kit along with LC-MS/MS is an attractive option for the analysis of free standard amino acids in complex samples because it is fast, sensitive, reproducible, and selective. It has been demonstrated that the most abundant quantitative transition for MS/MS analysis of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatized amino acids corresponds to the fragmentation of the molecule at the 6-aminoquinoline carbonyl group producing a common m/z 171 fragment ion and occurs at similar mass spectrometry collision energy and cone voltages. In this study, the unique properties of AQC derivatized amino acids producing high intensity common fragment ions, along with chromatographic separation of amino acids under generic chromatography conditions, were used to develop a novel screening method for the detection of trace levels of non-standard amino acids in complex matrices. Structural elucidation was carried out by comparing the MS/MS fragment ion mass spectra generated with in silico predicted fragmentation spectra to enable a putative identification, which was confirmed using an appropriate analytical standard. This workflow was applied to screen human plasma samples for bioactive thiol-group modified cysteine amino acids and S-allylmercaptocysteine (SAMC), S-allylcysteine sulfoxide (SACS or alliin) and S-propenylcysteine (S1PC) are reported for the first time to be present in human plasma samples after the administration of garlic supplements.
Asunto(s)
Aminoácidos , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Indicadores y Reactivos , Cromatografía Líquida de Alta Presión/métodosRESUMEN
Binding between streptavidin, or its homologues, to biotin is one of the most widely exploited biological interactions in the biomedical sciences. Controlling the extent of biotinylation is important for meeting the requirements of the intended design and to preserve the native function of the biotin recipient. Within the protein world, a"trial-and-error" optimization approach toward biotinylation reaction conditions is often necessary due to widely varying properties of proteins. Therefore, product analysis is important. We show here that a oligonucleotide-blocked streptavidin, effectively "monovalent streptavidin", can tag biotin moieties individually and the tagged products visualized via a polyacrylamide gel shift assay to reveal the product distribution, i.e., [protein-(biotin)n] products where n = 1, 2, 3, etc. This is in contrast, and complementary, to current commercially available analytical reagents for biotinylation characterization, which use an absorbance or fluorescence signal to yield the mean number of biotin moieties.
Asunto(s)
Biotina , Proteínas , Estreptavidina/química , Biotina/química , Biotinilación , Proteínas/metabolismo , Indicadores y ReactivosRESUMEN
INTRODUCTION: An analysis of the literature on the painkillers long used in traditional medicine, which are isolated from plant materials, has shown that many of them are alkylamides of various carboxylic acids. This fact served as the basis for the study of a large group of N-alkyl-4- methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamides as potential new analgesics. The objects of the study were synthesized in the traditional way involving the initial conversion of 4-methyl- 2,2-dioxo-1H-2λ6,1- benzothiazine-3-carboxylic acid to imidazolide, in which imidazolide was used as an acylating agent. The method is simple to implement and, as a rule, gives high yields of final alkylamides. However, in reaction with sterically hindered tert-butylamine, along with the "normal" product, an unexpected formation of N-tert-butyl-4-methyl-1-(4-methyl-2,2-dioxo-1H-2λ6,1- benzothiazine-3-carbonyl)-2,2-dioxo-2λ6,1-benzothiazine-3-carboxamide was observed, which was characterized by X-ray diffraction analysis as a monosolvate with N,N-dimethylformamide. These synthetic problems can be avoided using a more powerful acylating agent, 4-methyl-2,2-dioxo-1H- 2λ6,1- benzothiazine-3-carbonyl chloride. BACKGROUND: A large group of new N-alkyl-4-methyl-2,2-dioxo-1H-2λ6,1-benzothiazine-3- carboxamides was synthesized. OBJECTIVE: On the basis of molecular docking, some derivatives of N-alkyl-4-methyl-2,2-dioxo-1H- 2λ6,1-benzothiazine-3-carboxamides have been designed. Their preliminary structure-activity relationships (SAR) have been studied. The most rational approaches to the synthesis of lead compounds have been developed. The most active compounds have shown high anti-inflammatory and analgesic activities. METHODS: The structure of all compounds prepared has been confirmed by the data of elemental analysis, 1H- and 13C NMR spectroscopy, and electrospray ionization liquid chromato-mass spectrometry. For rational drug design, optimization of further pharmacological screening and prediction of a possible mechanism of pharmacological action, molecular docking has been performed. For the determination of activity, pharmacological studies have been carried out. RESULTS: Pharmacological tests have determined that the transition from N-aryl(heteroaryl) alkylamides to "pure" N-alkylamides we carried out is accompanied by a significant reduction and even complete loss of anti-inflammatory effect with remaining analgesic activity. CONCLUSION: According to the studies, compounds from N-alkyl-4-methyl-2,2-dioxo-1H-2λ6,1- benzothiazine-3-carboxamides are potential anti-inflammatory and analgesic agents.
Asunto(s)
Analgésicos , Antiinflamatorios , Simulación del Acoplamiento Molecular , Analgésicos/farmacología , Analgésicos/química , Antiinflamatorios/farmacología , Relación Estructura-Actividad , Indicadores y Reactivos/farmacologíaRESUMEN
Chemical proteomics is a powerful technology that can be used in the studies of the functions of uncharacterized proteins in the human proteome. It relies on a suitable bioconjugation strategy for protein labeling. This could be either a UV-responsive photo-crosslinker or an electrophilic warhead embedded in chemical probes that can form covalent bonds with target proteins. Here, we report a new protein-labeling strategy in which a nitrile oxide, a highly reactive intermediate that reacts with proteins, can be efficiently generated by the treatment of oximes with a water-soluble and a minimally toxic oxidant, phenyliodine bis (trifluoroacetate) (PIFA). The resulting intermediate can rapidly bioconjugate with amino acid residues of target proteins, thus enabling target identification of oxime-containing bioactive molecules. Excellent chemoselectivity of cysteine residues by the nitrile oxide was observed, and over 4000 reactive and/or accessible cysteines, including KRAS G12C, have been successfully characterized by quantitative chemical proteomics. Some of these residues could not be detected by conventional cysteine reagents, thus demonstrating the complementary utility of this method.
Asunto(s)
Cisteína , Oxidantes , Humanos , Cisteína/química , Indicadores y Reactivos , Proteoma/química , ÓxidosRESUMEN
Transition-metal-catalyzed cross-coupling reactions are widely used in both academia and industry for the construction of carbon-carbon and carbon-heteroatom bonds. The vast majority of cross-coupling reactions utilize aryl (pseudo)halides as the electrophilic coupling partner. Carboxylic acid derivatives (RC(O)X) represent a complementary class of electrophiles that can engage in decarbonylative couplings to produce analogous products. This decarbonylative approach offers the advantage that RC(O)X are abundant and inexpensive. In addition, decarbonylative coupling enables both intramolecular (between R and X of the carboxylic acid derivative) as well as intermolecular bond-forming reactions (in which an exogeneous nucleophile is coupled with the R group derived from RC(O)X). In these intermolecular reactions, the X-substituent on the carboxylic acid can be tuned to facilitate both oxidative addition and transmetalation, thus eliminating the need for an exogeneous base. This Account details our group's development of a diverse variety of base-free decarbonylative coupling reactions catalyzed by group 10 metals. Furthermore, it highlights how catalyst design can be guided by stoichiometric organometallic studies of these systems.Our early studies focused on intramolecular decarbonylative couplings that transform RC(O)X to the corresponding R-X with extrusion of CO. We first identified Pd and Ni monodentate phosphine catalysts that convert aryl thioesters (ArC(O)SR) to the corresponding thioethers (ArSR). We next expanded this reactivity to fluoroalkyl thioesters, using readily available fluoroalkyl carboxylic acids as the fluoroalkyl (RF) source. A Ni-phosphinoferrocene catalyst proved optimal, and the large bite angle bidentate ligand was necessary to promote the challenging RF-S bond-forming reductive elimination step.We next pursued intramolecular decarbonylative couplings of aroyl halides. Palladium-based catalysts bearing dialkylbiaryl ligands (e.g., BrettPhos) were identified as optimal for converting aroyl chlorides (ArC(O)Cl) to aryl chlorides (ArCl). These ligands were selected based on their ability to facilitate the key C-Cl bond-forming reductive elimination step of the catalytic cycle. In contrast, all attempts to convert aroyl fluorides [ArC(O)F)] to aryl fluorides (ArF) were unsuccessful with either Pd- or Ni-based catalysts. Organometallic studies of the Ni-system show that C(O)-F oxidative addition and CO deinsertion proceed smoothly, but the resulting nickel(II) aryl fluoride intermediate fails to undergo C-F bond-forming reductive elimination.In contrast to its inertness to reductive elimination, this nickel(II) aryl fluoride proved highly reactive toward transmetalation. The fluoride ligand serves as an internal base, such that no additional base is required. We leveraged this "transmetalation active" intermediate to achieve base-free Ni-catalyzed intermolecular decarbonylative coupling reactions between aroyl fluorides and boron reagents to access both biaryl and aryl-boronate ester products. By tuning the electrophile, transmetalating reagent, and catalyst, this same approach also proved applicable to base-free intermolecular decarbonylative fluoroalkylation (between difluoromethylacetyl fluoride and arylboronate esters) and aryl amination (between phenol esters and silyl amines).Moving forward, a key goal is to identify catalyst systems that enable more challenging bond constructions via this manifold. In addition, CO inhibition remains a major issue leading to the requirement for high temperatures and high catalyst loadings. Identifying catalysts that are resistant to CO binding and/or approaches to remove CO under mild conditions will be critical for making these reactions more practical and scalable.
Asunto(s)
Fluoruros , Níquel , Níquel/química , Fluoruros/química , Ligandos , Catálisis , Ácidos Carboxílicos/química , Ésteres , Indicadores y Reactivos , CarbonoRESUMEN
In this research, a novel sample pretreatment of whole wheat bread, granola, and crispy seaweed samples was developed for iron(III) determination by digital image colorimetry. The developed method was compared with UV-visible spectrophotometry. The procedure involved weighing the sample (â¼0.1 g) and mixing it with a mixture of concentrated nitric acid (65%) and hydrogen peroxide (30%) (2 : 1 v/v). Then, the mixture was irradiated with UV light until it became dry. The residue was then dissolved in deionized water. The sample solution was diluted with deionized water before forming a complex with Terminalia chebula Retz. extract in acetate buffer. Under the optimal conditions, the color of the complexes was violet. When analyzed with an inhouse developed smartphone-based digital image colorimeter, the linear range was 1.0-6.0 mg L-1 with a correlation coefficient of >0.993. The percentage recoveries were in the range of 84.8-90.2. The limit of detection (LOD) and the limit of quantification (LOQ) were 1.06 and 3.55 mg L-1, respectively. From the results, it can be concluded that the developed method is accurate, simple, cost-effective, and environmentally friendly. The statistical paired t-test proved that there was no significant difference in the results when compared with a UV-visible microplate reader using gallic acid as the color forming reagent and a flame atomic absorption spectrophotometer as a reference instrument at 95% confidence level.
Asunto(s)
Algas Marinas , Terminalia , Terminalia/química , Grano Comestible , Colorimetría , Hierro , Indicadores y Reactivos , Extractos Vegetales/química , Teléfono Inteligente , Verduras , AguaRESUMEN
A novel diphasic sheeting device (DSD) including complemental feeding stage and complemental disintegrating stage for dislodging features of Cd(II), was investigated. The complemental feeding stage included feeding liquor and Bis(2,4,4 trimethylamyl) dithiophosphonic acid (Cyanex-301) as the carrier in petroleum, and the complemental disintegrating stage included Cyanex-301 as the carrier in petroleum and hydrochloric acid as the disintegrating reagent. The impacts of volumetric ratio of sheeting liquor and feeding liquor(S/F), initial molarity of Cd(II) and ion intensity of the feeding liquor, pH, volumetric ratio of sheeting liquor and disintegrating reagent (S/D), molarity of hydrochloric acid liquor, Cyanex-301 molarity in the complemental disintegrating stage on dislodging of Cd(II), the virtues of DSD compared to the traditional sheeting device, the constancy of system, the reuse of sheeting liquor, and the retention of the sheeting stage were also investigated. Experimental results illustrated that the optimum dislodging conditions of Cd(II) were achieved as hydrochloric acid molarity was 4.00 mol/L, Cyanex-301 molarity was 0.150 mol/L, and S/D was 1:1 in the complemental disintegrating stage, S/F was 1:10, and pH was 5.00 in the complemental feeding stage. The ion intensity of the complemental feeding stage had no distinct impact on the dislodging feature of Cd(II). When initial Cd(II) molarity was 3.20 × 10-4 mol/L, the Cd(II) dislodging percentage was up to 92.9% in 210 min. The dynamic formula was inferred on the basis of the theorem of mass transferring and the interfacial chemistry.
Asunto(s)
Compuestos Organotiofosforados , Petróleo , Cadmio , Ácido Clorhídrico , Indicadores y ReactivosRESUMEN
The present study provides design guidance for unique multipotent molecules that sense and generate singlet oxygen (1 O2 ). A rhodamine 6G-aminomethylanthracene-linked donor-acceptor molecule (RA) is designed and synthesized for demonstrating wavelength-dependent functionalities as follows; (i) RA acts as a conventional fluorogenic 1 O2 sensor molecule like the commercially available reagent, singlet oxygen sensor green (SOSG), when it absorbs ultraviolet (UV)-visible light and reacts with 1 O2 . (ii) RA acts as a temporally controlled 1 O2 sensing reagent under the longer wavelength (â¼700â nm) photosensitization. RA enters an intermediate state after capturing 1 O2 and does not become strongly fluorescent until it is exposed to UV, blue, or green light. (iii) RA acts as an efficient photosensitizer to generate 1 O2 under green light illumination. The spin-orbit charge transfer mediated intersystem crossing (SOCT-ISC) process achieves this function, and RA shows a potential cancer-killing effect on pancreatic cancer cells. The wavelength-switchable functionalities in RA offer to promise molecular tools to apply 1 O2 in a spatiotemporal manner.
Asunto(s)
Fármacos Fotosensibilizantes , Oxígeno Singlete , Rodaminas , Indicadores y Reactivos , AntracenosRESUMEN
The Dess-Martin periodinane (DMP) reagent-mediated reactions of tertiary enaminones with potassium thiocyanate for the synthesis of thiazole-5-carbaldehydes are developed. The product formation involves cascade hydroxyl thiocyanation of the CâC double bond, intramolecular hydroamination of the C≡N bond, and thiazole annulation by condensation on the ketone carbonyl site, representing novel reaction pathways in the reactions between enaminones and thiocyanate salt. DMP plays dual roles in mediating the free radical thiocyanation and inducing the unconventional selective thiazole-5-carbaldehyde formation by masking the in situ generated formyl group during the reaction process.
Asunto(s)
Tiazoles , Tiocianatos , Indicadores y ReactivosRESUMEN
The chemical reactivity of 3-[(E)-3-(dimethylamino)-2-propenoyl]-4-hydroxy-1-methy-2(1H)-quinolinone (1) towards some phosphorus reagents was studied. The enaminone 1 was cyclized into pyranoquinolinylphosphonate 2 via treatment with diethyl phosphite in basic medium. However, its reaction with triethoxy phosphonoacetate gave the substituted oxopyranylphosphonate 3. Using the same reaction conditions, both thioxopyridinylphosphonate 4 and oxopyranylphosphonate 5 were produced via a reaction of enaminone 1 with both diethyl 2-amino-2-thioxoethylphosphonate and diethyl vinylphosphonate, respectively, in low yields. In addition, the two novel oxopyridinylphosphonates 6 and 7 were obtained by treatment of enaminone 1 with a diethyl cyanomethylphosphonate reagent. Two oaxathiaphosphininyl derivatives, 8 and 9, were obtained by treatment of the enaminone 1 with O, O-diethyl dithiophosphoric acid under different reaction conditions. Diazaphosphininyl 11 and oxazaphosphininyl 12 derivatives were obtained in excellent yields using a P-phenylphosphonic diamide reagent under different reaction conditions. The treatment of the enaminone 1 with phosphorus pentasulfide produced the non-phosphorylated product thioxothiopyranoquinolinone 13. Finally, the enaminone was turned into oxathiaphosphininyl 14 using Lawesson's reagent. The possible reaction mechanisms of the formation of these products were discussed. The structures of newly isolated products were established by elemental analysis and spectral tools. The compounds were evaluated for their antioxidant activities.
Asunto(s)
Organofosfonatos , Fosfitos , Quinolonas , Antioxidantes/farmacología , Diamida , Indicadores y Reactivos , Ácido Fosfonoacético , Fósforo , Quinolonas/farmacologíaRESUMEN
Lecithin-dependent thermolabile hemolysin (LDH) is a virulence factor excreted by Vibrio parahaemolyticus, a marine bacterium that causes important losses in shrimp farming. In this study, the function of LDH was investigated through its inhibition by metal ions (Mg2+, Ca2+, Mn2+, Co2+, Ni2+ and Cu2+) and chemical modification reagents: ß-mercaptoethanol (ßME), phenylmethylsulfonyl fluoride (PMSF) and diethyl pyrocarbonate (DEPC). LDH was expressed in the Escherichia coli strain BL-21, purified under denaturing conditions, and the enzymatic activity was evaluated. Cu2+, Ni2+, Co2+ and Ca2+ at 1 mmol/L inhibited the LDH esterase activity by 20−95%, while Mg2+ and Mn2+ slightly increased its activity. Additionally, PMSF and DEPC at 1 mmol/L inhibited the enzymatic activity by 40% and 80%, respectively. Dose-response analysis showed that DEPC was the best-evaluated inhibitor (IC50 = 0.082 mmol/L), followed by Cu2+ > Co2+ > Ni2+ and PMSF (IC50 = 0.146−1.5 mmol/L). Multiple sequence alignment of LDH of V. parahaemolyticus against other Vibrio species showed that LDH has well-conserved GDSL and SGNH motifs, characteristic of the hydrolase/esterase superfamily. Additionally, the homology model showed that the conserved catalytic triad His-Ser-Asp was in the LDH active site. Our results showed that the enzymatic activity of LDH from V. parahaemolyticus was modulated by metal ions and chemical modification, which could be related to the interaction with catalytic amino acid residues such as Ser153 and/or His 393.
Asunto(s)
Proteínas Hemolisinas , Vibrio parahaemolyticus , Aminoácidos , Dietil Pirocarbonato , Escherichia coli/metabolismo , Esterasas , Proteínas Hemolisinas/metabolismo , Hidrolasas , Indicadores y Reactivos , Iones , Lecitinas , Mercaptoetanol , Fluoruro de Fenilmetilsulfonilo , Vibrio parahaemolyticus/metabolismo , Factores de VirulenciaRESUMEN
The preparation of valuable and industrially relevant organophosphorus compounds currently depends on indirect multistep procedures involving difficult-to-handle white phosphorus as a common P atom source. Herein, we report a practical and versatile method for the synthesis of a variety of monophosphorus compounds directly from the bench-stable allotrope red phosphorus (Pred ). The relatively inert Pred was productively functionalised by using the cheap and readily available radical reagent tri-n-butyltin hydride, and subsequent treatment with electrophiles yields useful P1 compounds. Remarkably, these transformations require only modest inert-atmosphere techniques and use only reagents that are inexpensive and commercially available, making this a convenient and practical methodology accessible in most laboratory settings.
Asunto(s)
Compuestos Organofosforados , Fósforo , Indicadores y ReactivosRESUMEN
This work presents the development of a microplate spectrophotometric method for determination of indole-3-carbinol in dietary supplements. The colorimetric procedure is based on the reaction of indole-3-carbinol with the p-dimethylaminocinnamaldehyde (DMACA) reagent under acidic conditions. The absorbance of the colored product measured at 675 nm was used to determine the target analyte. To achieve optimal spectrophotometric performance, the DMACA reagent concentration, the hydrochloric acid concentration, and the reaction time were optimized. The developed technique performed well under the optimal conditions, with a linear calibration range of 30 to 300 mg L-1 and a high correlation coefficient (r2 = 0.9954). The limit of detection and limit of quantification were 7.8 mg L-1 and 26.2 mg L-1, respectively. This approach demonstrated good repeatability (intra- and inter-day precision) with a % RSD lower than 9.4%, good accuracy with acceptable relative recoveries in the range of 98 to 106%, and high sample throughput (24 detection per min). This simple, rapid, and multi-sample analysis approach for routine analysis of indole-3-carbinol has the potential to be used for the quality control of dietary supplements.
Asunto(s)
Suplementos Dietéticos , Ácido Clorhídrico , Cinamatos , Indicadores y Reactivos , IndolesRESUMEN
The 5-substituted 2-selenouridines are natural components of the bacterial tRNA epitranscriptome. Because selenium-containing biomolecules are redox-active entities, the oxidation susceptibility of 2-selenouridine (Se2U) was studied in the presence of hydrogen peroxide under various conditions and compared with previously reported data for 2-thiouridine (S2U). It was found that Se2U is more susceptible to oxidation and converted in the first step to the corresponding diselenide (Se2U)2, an unstable intermediate that decomposes to uridine and selenium. The reversibility of the oxidized state of Se2U was demonstrated by the efficient reduction of (Se2U)2 to Se2U in the presence of common reducing agents. Thus, the 2-selenouridine component of tRNA may have antioxidant potential in cells because of its ability to react with both cellular ROS components and reducing agents. Interestingly, in the course of the reactions studied, we found that (Se2U)2 reacts with Se2U to form new 'oligomeric nucleosides' as linear and cyclic byproducts.
Asunto(s)
Nucleósidos , Selenio , Indicadores y Reactivos , Compuestos de Organoselenio , Oxidación-Reducción , ARN de Transferencia/metabolismo , Sustancias Reductoras , Uridina/análogos & derivados , Uridina/metabolismoRESUMEN
Halides adjacent to nitrogen are conventionally more reactive in Pd-catalyzed cross-couplings of dihalogenated N-heteroarenes. However, a very sterically hindered N-heterocyclic carbene ligand is shown to promote room-temperature cross-coupling at C4 of 2,4-dichloropyridines with high selectivity (â¼10:1). This work represents the first highly selective method with a broad scope for C4-coupling of these substrates where selectivity is clearly under ligand control. Under the optimized conditions, diverse substituted 2,4-dichloropyridines and related compounds undergo cross-coupling to form C4-C(sp2) and C4-C(sp3) bonds using organoboron, -zinc, and -magnesium reagents. The synthetic utility of this method is highlighted in multistep syntheses that combine C4-selective cross-coupling with subsequent nucleophilic aromatic substitution reactions. The majority of the products herein (71%) have not been previously reported, emphasizing the ability of this methodology to open up underexplored chemical space. Remarkably, we find that ligand-free "Jeffery" conditions enhance the C4 selectivity of Suzuki coupling by an order of magnitude (>99:1). These ligand-free conditions enable the first C5-selective cross-couplings of 2,5-dichloropyridine and 2,5-dichloropyrimidine.
Asunto(s)
Paladio , Catálisis , Indicadores y Reactivos , Ligandos , Paladio/químicaRESUMEN
Spectrophotometry was used to determine trace amounts of Zirconium(IV), Mercury(II) and Uranium(VI) in environmental, biological, pharmaceutical and industrial samples. The determination depend on the complexation reactions between albendazole reagent and metal ions [Zr(IV), Hg(II) and U(VI)] at 555 nm, 485 nm and 510 nm, respectively. The experimental conditions were explored to reach the optimum conditions for albendazole-metal ions interaction, including detection of a suitable wavelength, medium (pH), reagent concentration, surfactants effect, reaction time and temperature. Under optimum conditions, the complexes displayed apparent molar absorptivities of 0.8350 × 104, 0.6210 × 104 and 0.7012 × 104 L mol-1 cm-1; Sandell's sensitivity of 0.01092, 0.03230 and 0.03394 µg cm-2 and with linearity ranges of 1.0-120.0, 3.0-200.0 and 1.0-150.0 µg mL-1 for the developed methods, respectively. Furthermore, Elemental analysis, thermal analysis (TGA, DTG), IR, 1HNMR, spectroscopies, electrical molar conductivity and magnetic moment measurements were used to determine the structures and characteristics of the complexes. A careful examination of the IR spectra revealed that the ligand interacted with all of the metal ions described as a bidentate via the oxygen of the carbonyl of the ester moiety and the nitrogen atom of the heterocyclic CN group. An octahedral geometry for Zr(IV), Hg(II) and U(VI) complexes has been postulated based on magnetic and electronic spectrum data. The band gap values indicated that these complexes were semi-conductors and belong to the same class of extremely effective solar materials. The albendazole ligand and its complexes have been biologically tested against a variety of bacterial and fungal strains, and molecular docking studies have been conducted to evaluate the optimal binding site and its inhibitory action.