Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 756: 110010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642632

RESUMEN

PARP1 plays a pivotal role in DNA repair within the base excision pathway, making it a promising therapeutic target for cancers involving BRCA mutations. Current study is focused on the discovery of PARP inhibitors with enhanced selectivity for PARP1. Concurrent inhibition of PARP1 with PARP2 and PARP3 affects cellular functions, potentially causing DNA damage accumulation and disrupting immune responses. In step 1, a virtual library of 593 million compounds has been screened using a shape-based screening approach to narrow down the promising scaffolds. In step 2, hierarchical docking approach embedded in Schrödinger suite was employed to select compounds with good dock score, drug-likeness and MMGBSA score. Analysis supplemented with decomposition energy, molecular dynamics (MD) simulations and hydrogen bond frequency analysis, pinpointed that active site residues; H862, G863, R878, M890, Y896 and F897 are crucial for specific binding of ZINC001258189808 and ZINC000092332196 with PARP1 as compared to PARP2 and PARP3. The binding of ZINC000656130962, ZINC000762230673, ZINC001332491123, and ZINC000579446675 also revealed interaction involving two additional active site residues of PARP1, namely N767 and E988. Weaker or no interaction was observed for these residues with PARP2 and PARP3. This approach advances our understanding of PARP-1 specific inhibitors and their mechanisms of action, facilitating the development of targeted therapeutics.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Simulación de Dinámica Molecular , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Dominio Catalítico , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Enlace de Hidrógeno
2.
Mini Rev Med Chem ; 24(2): 159-175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36994982

RESUMEN

Compounds from plants that are used in traditional medicine may have medicinal properties. It is well known that plants belonging to the genus Aconitum are highly poisonous. Utilizing substances derived from Aconitum sp. has been linked to negative effects. In addition to their toxicity, the natural substances derived from Aconitum species may have a range of biological effects on humans, such as analgesic, anti-inflammatory, and anti-cancer characteristics. Multiple in silico, in vitro, and in vivo studies have demonstrated the effectiveness of their therapeutic effects. In this review, the clinical effects of natural compounds extracted from Aconitum sp., focusing on aconitelike alkaloids, are investigated particularly by bioinformatics tools, such as the quantitative structure- activity relationship method, molecular docking, and predicted pharmacokinetic and pharmacodynamic profiles. The experimental and bioinformatics aspects of aconitine's pharmacogenomic profile are discussed. Our review could help shed light on the molecular mechanisms of Aconitum sp. compounds. The effects of several aconite-like alkaloids, such as aconitine, methyllycacintine, or hypaconitine, on specific molecular targets, including voltage-gated sodium channels, CAMK2A and CAMK2G during anesthesia, or BCL2, BCL-XP, and PARP-1 receptors during cancer therapy, are evaluated. According to the reviewed literature, aconite and aconite derivatives have a high affinity for the PARP-1 receptor. The toxicity estimations for aconitine indicate hepatotoxicity and hERG II inhibitor activity; however, this compound is not predicted to be AMES toxic or an hERG I inhibitor. The efficacy of aconitine and its derivatives in treating many illnesses has been proven experimentally. Toxicity occurs as a result of the high ingested dose; however, the usage of this drug in future research is based on the small quantity of an active compound that fulfills a therapeutic role.


Asunto(s)
Aconitum , Alcaloides , Medicamentos Herbarios Chinos , Humanos , Aconitina/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Alcaloides/farmacología , Alcaloides/uso terapéutico
3.
Cancer Res ; 84(3): 449-467, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038966

RESUMEN

The majority of patients with late-stage breast cancer develop distal bone metastases. The bone microenvironment can affect response to therapy, and uncovering the underlying mechanisms could help identify improved strategies for treating bone metastatic breast cancer. Here, we observed that osteoclasts reduced the sensitivity of breast cancer cells to DNA damaging agents, including cisplatin and the PARP inhibitor (PARPi) olaparib. Metabolic profiling identified elevated glutamine production by osteoclasts. Glutamine supplementation enhanced the survival of breast cancer cells treated with DNA damaging agents, while blocking glutamine uptake increased sensitivity and suppressed bone metastasis. GPX4, the critical enzyme responsible for glutathione oxidation, was upregulated in cancer cells following PARPi treatment through stress-induced ATF4-dependent transcriptional programming. Increased glutamine uptake and GPX4 upregulation concertedly enhanced glutathione metabolism in cancer cells to help neutralize oxidative stress and generate PARPi resistance. Analysis of paired patient samples of primary breast tumors and bone metastases revealed significant induction of GPX4 in bone metastases. Combination therapy utilizing PARPi and zoledronate, which blocks osteoclast activity and thereby reduces the microenvironmental glutamine supply, generated a synergistic effect in reducing bone metastasis. These results identify a role for glutamine production by bone-resident cells in supporting metastatic cancer cells to overcome oxidative stress and develop resistance to DNA-damaging therapies. SIGNIFICANCE: Metabolic interaction between osteoclasts and tumor cells contributes to resistance to DNA-damaging agents, which can be blocked by combination treatment with PARP and osteoclast inhibitors to reduce bone metastatic burden.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Osteoclastos/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Glutamina/farmacología , Neoplasias Óseas/secundario , ADN , Glutatión , Línea Celular Tumoral , Microambiente Tumoral
4.
Phytother Res ; 38(2): 1059-1070, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158648

RESUMEN

Though cornin is known to induce angiogenic, cardioprotective, and apoptotic effects, the apoptotic mechanism of this iridoid monoglucoside is not fully understood in prostate cancer cells to date. To elucidate the antitumor mechanism of cornin, cytotoxicity assay, cell cycle analysis, Western blotting, RT-qPCR, RNA interference, immunofluorescence, immunoprecipitation, reactive oxygen species (ROS) measurement, and inhibitor assay were applied in this work. Cornin exerted cytotoxicity, increased sub-G1 population, and cleaved PARP and caspase3 in LNCaP cells more than in DU145 cells. Consistently, cornin suppressed phosphorylation of signal transducer and activator of transcription 3 (STAT3) and disrupted the colocalization of STAT3 and androgen receptor (AR) in LNCaP and DU145 cells, along with suppression of AR, prostate-specific antigen (PSA), and 5α-reductase in LNCaP cells. Furthermore, cornin increased ROS production and the level of miR-193a-5p, while ROS inhibitor N-acetylcysteine disturbed the ability of cornin to attenuate the expression of AR, p-STAT3, PSA, pro-PARP, and pro-caspase3 in LNCaP cells. Notably, miR-193a-5p mimics the enhanced apoptotic effect of cornin, while miR-193a-5p inhibitor reverses the ability of cornin to abrogate AR, PSA, and STAT3 in LNCaP cells. Our findings suggest that ROS production and the disturbed crosstalk between STAT3 and AR by microRNA-193a-5p are critically involved in the apoptotic effect of cornin in prostate cancer cells.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antígeno Prostático Específico , Factor de Transcripción STAT3/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , MicroARNs/metabolismo , Apoptosis , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular
5.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38138165

RESUMEN

Background and Objectives: Cancer is the second-most-important deadly disease in the world, leading to severe socioeconomic consequences and posing a public threat. Consequently, breast and colorectal cancers are significant cancer types that affect women and men more commonly, respectively. Treatment failure or recurrent diseases frequently occur due to resistance, in addition to the side effects of the currently available anticancer agents. Therefore, in this study, herbal melanin anticancer activity was investigated against human breast adenocarcinoma (MDA-MB-231) and human colorectal (HCT 116) cell proliferation and the expression of downregulated anti-apoptotic proteins and upregulated pro-apoptotic p53. Materials and Methods: MDA-MB-231 and HCT 116 cells were monitored for their real-time proliferation properties using Xcelligence. Herbal melanin of various concentrations significantly inhibited MDA-MB-231 and HCT 116 cell proliferation. Then, the expression of proapoptotic and anti-apoptotic proteins such as p53, Bcl-2 and Bcl-xl was studied using Western blotting. Results: The Bcl-2 and Bcl-xl expressions were downregulated, while the p53 expression was upregulated after treatment with herbal melanin. Similarly, the expression of apoptotic proteins such as Bcl-2, Bcl-xl, XIAP, Survivin, Bid, Bax, p53, Cytochrome C, PARP genes and mRNA was studied after herbal melanin treatment using real-time PCR, which revealed the downregulation of Bcl-2, Bcl-xl, XIAP and Survivin and the upregulation of Bid, Bax, p53, Cytochrome C and PARP apoptotic protein expression. Also, caspase 3 and 9 expressions were monitored after the treatment with herbal melanin, which revealed the upregulation of both the MDA-MB-231 and HCT 116 cell types. Conclusions: Overall, herbal melanin can be used as an alternative anticancer agent against the MDA-MB-231 and HCT 116 cell types.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Femenino , Humanos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/farmacología , Proteínas Reguladoras de la Apoptosis/uso terapéutico , Células HCT116 , Proteína p53 Supresora de Tumor/genética , Survivin/metabolismo , Survivin/farmacología , Survivin/uso terapéutico , Melaninas/metabolismo , Melaninas/farmacología , Melaninas/uso terapéutico , Apoptosis , Proteína X Asociada a bcl-2/genética , Citocromos c/metabolismo , Citocromos c/farmacología , Citocromos c/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proliferación Celular , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/genética , Línea Celular Tumoral
6.
Birth Defects Res ; 115(18): 1685-1692, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37665042

RESUMEN

BACKGROUND: Bladder dysfunction has been linked to the progression of renal failure in children with neurogenic bladder (NB) dysfunction. The purpose of this study was to determine whether bladder injuries in fetal rats with myelomeningocele (MMC) may be treated with folic acid. METHODS: Pregnant Sprague-Dawley rats were randomly divided into three groups. On the 10th day of gestation, pregnant rats were intragastrically injected with all-trans retinoic acid (ATRA) (60 mg/kg) to induce MMC fetal rats. The same amount of olive oil was put into the control group to create normal fetal rats. The rats in the rescue group were given folic acid (40 mg/kg) by gavage 0.5 and 12 hr after ATRA therapy. Bladders were obtained via cesarean section on embryonic day E20.5 and examined for MMC. The histology of the fetuses was examined using hematoxylin and eosin staining, and immunohistochemistry (IHC) was utilized to determine the expression of α-smooth muscle actin (α-SMA) and neuron-specific nuclear-binding protein (NeuN). Furthermore, the levels of neuromuscular development-related and apoptotic proteins were determined by western blotting. RESULTS: The incidence of MMC in the model group was 60.6% (20/33) while it was much lower in the rescue group (21.4%). In comparison to the model group, the weight and crown-rump length of the fetal rats in the rescue group were significantly improved. IHC revealed that there was no significant difference in the expression of α-SMA and NeuN between the control and ATRA groups, while the expression levels decreased significantly in the MMC group. Western blot analysis showed that there was no significant difference between the model and ATRA groups, but the expression of the α-SMA protein and the ß3-tubulin was much lower in the MMC group than in the control group. After the administration of folic acid, the α-SMA and ß3-tubulin proteins considerably increased in the folic acid-rescued MMC group and folic acid-rescued ATRA group. Meanwhile, in the control group, the expression of cleaved caspase-3 in the bladder tissue was significantly higher, and the expression of poly (ADP-ribose) polymerase (PARP) protein was significantly lower compared to the control group. Folic acid therapy reduced cleaved caspase-3 expression while increasing PARP expression in comparison to the MMC group. CONCLUSIONS: NB in MMC fetal rats is associated with the reduction of bladder nerve and smooth muscle-related protein synthesis. However, folic acid therapy can help improve these functional deficiencies. Folic acid also exhibits strong anti-apoptotic properties against NB in MMC fetal rats.


Asunto(s)
Meningomielocele , Humanos , Niño , Ratas , Animales , Embarazo , Femenino , Meningomielocele/metabolismo , Ratas Sprague-Dawley , Caspasa 3 , Vejiga Urinaria/inervación , Vejiga Urinaria/patología , Tubulina (Proteína)/metabolismo , Cesárea , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Feto/metabolismo , Tretinoina/farmacología , Ácido Fólico/farmacología , Suplementos Dietéticos
7.
Phytother Res ; 37(10): 4473-4487, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37288731

RESUMEN

Though Morusin is known to induce apoptotic, antiprolifertaive, and autophagic effects through several signaling pathways, the underlying molecular mechanisms of Morusin still remain unclear until now. To elucidate antitumor mechanism of Morusin, cytotoxicity assay, cell cycle analysis, Western blotting, TUNEL assay, RNA interference, immunofluorescense, immunoprecipitation, reactive oxygen species (ROS) measurement, and inhibitor study were applied in this study. Morusin enhanced cytotoxicity, increased the number of TUNEL positive cells, sub-G1 population and induced the cleavages of PARP and caspase3, attenuated the expression of HK2, PKM2, LDH, c-Myc, and Forkhead Box M1 (FOXM1) along with the reduction of glucose, lactate, and ATP in DU145 and PC3 cells. Furthermore, Morusin disrupted the binding of c-Myc and FOXM1 in PC-3 cells, which was supported by String and cBioportal database. Notably, Morusin induced c-Myc degradation mediated by FBW7 and suppressed c-Myc stability in PC3 cells exposed to MG132 and cycloheximide. Also, Morusin generated ROS, while NAC disrupted the capacity of Morusin to reduce the expression of FOXM1, c-Myc, pro-PARP, and pro-caspase3 in PC-3 cells. Taken together, these findings provide scientific evidence that ROS mediated inhibition of FOXM1/c-Myc signaling axis plays a critical role in Morusin induced apoptotic and anti-Warburg effect in prostate cancer cells. Our findings support scientific evidence that ROS mediated inhibition of FOXM1/c-Myc signaling axis is critically involved in apoptotic and anti-Warburg effect of Morusin in prostate cancer cells.


Asunto(s)
Neoplasias de la Próstata , Transducción de Señal , Masculino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Apoptosis , Línea Celular Tumoral , Neoplasias de la Próstata/metabolismo , Proliferación Celular , Proteína Forkhead Box M1/metabolismo
8.
Zhonghua Zhong Liu Za Zhi ; 45(7): 584-593, 2023 Jul 23.
Artículo en Chino | MEDLINE | ID: mdl-37337129

RESUMEN

Poly ADP-ribose polymerase inhibitors (PARPi), which approved in recent years, are recommended for ovarian cancer, breast cancer, pancreatic cancer, prostate cancer and other cancers by The National Comprehensive Cancer Network (NCCN) and Chinese Society of Clinical Oncology (CSCO) guidelines. Because most of PARPi are metabolized by cytochrome P450 enzyme system, there are extensive interactions with other drugs commonly used in cancer patients. By setting up a consensus working group including pharmaceutical experts, clinical experts and methodology experts, this paper forms a consensus according to the following steps: determine clinical problems, data retrieval and evaluation, Delphi method to form recommendations, finally formation expert opinion on PARPi interaction management. This paper will provide practical reference for clinical medical staff.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Masculino , Femenino , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Consenso , Neoplasias Ováricas/tratamiento farmacológico , Interacciones Farmacológicas , Adenosina Difosfato Ribosa/uso terapéutico
9.
J Trace Elem Med Biol ; 79: 127213, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37244045

RESUMEN

BACKGROUND: Human Adenovirus (HAdV) can cause severe respiratory symptoms in people with low immunity and there is no targeted treatment for adenovirus infection. Anti-adenoviral drugs have high clinical significance for inhibiting adenovirus infection. Selenium (Se) plays an important role in anti-oxidation, redox signal transduction, and redox homeostasis. The excellent biological activity of Se is mainly achieved by being converted into selenocystine (SeC). Se participates in the active sites of various selenoproteins in the form of SeC. The ability of SeC to resist the virus has raised high awareness due to its unique antioxidative activity in recent years. The antiviral ability of the SeC was determined by detecting the infection rate of the virus in the cells. METHODS: The experiment mainly investigated the antiviral mechanism of SeC by locating the virus in the cell, detecting the generation of ROS, observing the DNA status of the cell, and monitoring the mitochondrial membrane potential. RESULTS: In the present study, SeC was designed to resist A549 cells infections caused by HAdV-14. SeC could prevent HAdV-14 from causing cell apoptosis-related to DNA damage. SeC significantly inhibited ROS generation and protect the cells from oxidative damage induced by ROS against HAdV-14. SeC induced the increase of antiviral cytokines such as IL-6 and IL-8 by activating the Jak2 signaling pathway, and repaired DNA lesions by suppressing ATR, p53, and PARP signaling pathways. CONCLUSION: SeC might provide an effective selenium species with antiviral properties for the therapies against HAdV-14.


Asunto(s)
Infecciones por Adenoviridae , Adenovirus Humanos , Selenio , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Adenovirus Humanos/genética , Selenio/farmacología , Selenio/metabolismo , Apoptosis , Antivirales/farmacología , Transducción de Señal
10.
J Med Chem ; 66(10): 6922-6937, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185020

RESUMEN

Synergistic drug combinations can extend the use of poly(ADP-ribose) polymerase inhibitors (PARPi) such as Olaparib to BRCA-proficient tumors and overcome acquired or de novo drug resistance. To identify new synergistic combinations for PARPi, we screened a "micro-library" comprising a mix of commercially available drugs and DNA-binding ruthenium(II) polypyridyl complexes (RPCs) for Olaparib synergy in BRCA-proficient triple-negative breast cancer cells. This identified three hits: the natural product Curcumin and two ruthenium(II)-rhenium(I) polypyridyl metallomacrocycles. All combinations identified were effective in BRCA-proficient breast cancer cells, including an Olaparib-resistant cell line, and spheroid models. Mechanistic studies indicated that synergy was achieved via DNA-damage enhancement and resultant apoptosis. Combinations showed low cytotoxicity toward non-malignant breast epithelial cells and low acute and developmental toxicity in zebrafish embryos. This work identifies RPC metallomacrocycles as a novel class of agents for cancer combination therapy and provides a proof of concept for the inclusion of metallocompounds within drug synergy screens.


Asunto(s)
Neoplasias Ováricas , Rutenio , Humanos , Animales , Femenino , Rutenio/farmacología , Rutenio/uso terapéutico , Pez Cebra , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , ADN , Línea Celular Tumoral
11.
Chin Clin Oncol ; 12(3): 21, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37211773

RESUMEN

BACKGROUND: Mutations in the BRCA1/2 (BRCA) genes are associated with response to poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi). In addition, there are different homologous recombination deficiency (HRD) biomarkers available in clinical practice [e.g., genome-wide loss-of-heterozygosity (gLOH) and myChoice® score] that identify patients who can benefit from PARPi. Inconsistencies in biomarkers used in PARPi clinical trials make it challenging to identify clinically relevant predictive biomarkers. This study aims to compare clinically available HRD biomarkers in terms of benefits from PARPi. METHODS: We performed database search for phase II or III randomized clinical trials comparing PARPi versus chemotherapy, and meta-analysis using generic inverse variance and a Random Effects model. Patients were classified according to their HRD status: (I) BRCAm (patients with BRCA mutation of germline or somatic origin); (II) non-BRCA HRD [patients BRCA wild-type (wt) with another HRD biomarker-gLOH or myChoice®]; and (III) homologous recombination proficiency (HRP) (BRCAwt and without HRD biomarkers). From those that were BRCAwt, we compared myChoice®+ with gLOH-high. RESULTS: Five studies (3,225 patients) analyzing PARPi in first line setting were included. Patients with BRCAmut had progression-free survival (PFS) with hazard ratio (HR) 0.33 [95% confidence interval (CI): 0.30-0.43]; patients with non-BRCA HRD had a PFS HR 0.49 (95% CI: 0.37-0.65), and patients with HRP had a PFS HR 0.78 (95% CI: 0.58-1.03). Eight studies (5,529 patients) with PARPi including first line and recurrence settings were included. BRCAmut had PFS HR 0.37 (95% CI: 0.30-0.48), BRCAwt & HRD 0.45 (95% CI: 0.37-0.55) and HRP 0.70 (95% CI: 0.57-0.85). Patients with BRCAwt & myChoice® ≥42 had PFS HR 0.43 (95% CI: 0.34-0.56), similar to patients with BRCAwt & gLOH-high with PFS HR 0.42 (95% CI: 0.28-0.62). CONCLUSIONS: Patients with HRD derived significantly more benefit from PARPi when compared to patients with HRP. The benefit of PARPi in patients with HRP tumors was limited. Careful cost-effectiveness analysis, and alternative therapies or clinical trial enrollment should strongly be considered for patients with HRP tumors. Among patients with BRCAwt, a similar benefit was found in patients with gLOH-high and those myChoice®+. The clinical development of further HRD biomarkers (e.g., Sig3) may help identify more patients who benefit from PARPi.


Asunto(s)
Proteína BRCA1 , Neoplasias Ováricas , Humanos , Femenino , Proteína BRCA1/genética , Proteína BRCA2/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Recombinación Homóloga , Biomarcadores
12.
Clin Transl Oncol ; 25(11): 3057-3072, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37079210

RESUMEN

Triple-negative breast cancer (TNBC) is the most invasive molecular subtype of breast cancer (BC), accounting for about nearly 15% of all BC cases reported annually. The absence of the three major BC hormone receptors, Estrogen (ER), Progesterone (PR), and Human Epidermal Growth Factor 2 (HER2) receptor, accounts for the characteristic "Triple negative" phraseology. The absence of these marked receptors makes this cancer insensitive to classical endocrine therapeutic approaches. Hence, the available treatment options remain solemnly limited to only conventional realms of chemotherapy and radiation therapy. Moreover, these therapeutic regimes are often accompanied by numerous treatment side-effects that account for early distant metastasis, relapse, and shorter overall survival in TNBC patients. The rigorous ongoing research in the field of clinical oncology has identified certain gene-based selective tumor-targeting susceptibilities, which are known to account for the molecular fallacies and mutation-based genetic alterations that develop the progression of TNBC. One such promising approach is synthetic lethality, which identifies novel drug targets of cancer, from undruggable oncogenes or tumor-suppressor genes, which cannot be otherwise clasped by the conventional approaches of mutational analysis. Herein, a holistic scientific review is presented, to undermine the mechanisms of synthetic lethal (SL) interactions in TNBC, the epigenetic crosstalks encountered, the role of Poly (ADP-ribose) polymerase inhibitors (PARPi) in inducing SL interactions, and the limitations faced by the lethal interactors. Thus, the future predicament of synthetic lethal interactions in the advancement of modern translational TNBC research is assessed with specific emphasis on patient-specific personalized medicine.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Mutaciones Letales Sintéticas , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Mutación
13.
Altern Ther Health Med ; 29(5): 410-416, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37052975

RESUMEN

Objective: Poly (ADP-ribose) polymerase-1 (PARP-1) is a regulatory enzyme involved in DNA damage repair, gene transcription, cell growth, death and apoptosis. In our study, we aimed to explore the dynamic role of PARP-1 in chondrocyte (CH) degeneration in vitro. Methods: We used the primary CHs and treated them with interleukin-1 beta for up to 5 days. (IL-1ß) to induce degeneration. Meanwhile, we used AG-14361 (AG) to inhibit endogenous PARP-1 expression. Cell survival and collagen II expression were used to define the cell function of CHs. In addition, other metabolic indicators were measured containing the reactive oxygen species (ROS) level, 8-Hydroxy-2'-deoxyguanosine (8-OH-dG), IL-1ß, tumor necrosis factor alpha (TNF-α) and caspase 3/9 expression. Results: With IL-1ß treatment, the PARP1 expression of CHs was gradually increased from day 1 to day 5, accompanied by a reduction in cell survival and collagen II expression, and an increase in ROS, 8-OH-dG, IL-1ß, TNF-α and caspase 3/9 levels. We suppressed PARP1 expression on the first day of IL-1ß stimulation and found severe destruction of cell survival and collagen II content with a higher expression of caspase 3/9. However, when we cultured the CHs with AG from day 3 of the 5-day IL-1ß stimulation, cell survival and collagen II expression were rescued, and the ROS, 8-OH-dG, IL-1ß, TNF-α, and caspase 3/9 were downregulated. Conclusions: On day 1 of degeneration, increased PARP-1 played a protective role in CHs. However, from days 3 to 5 of degeneration, the accumulated PARP-1 presented a more destructive function in CHs.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Factor de Necrosis Tumoral alfa , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/farmacología , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Caspasa 3/metabolismo , Caspasa 3/farmacología , Condrocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina/farmacología , Apoptosis
14.
Appl Biochem Biotechnol ; 195(11): 6994-7020, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36976504

RESUMEN

In China, a traditional Chinese medicine formulation called astragalus membranaceus (AM) has been utilised for more than 20 years to treat tumors with extraordinary effectiveness. The fundamental mechanisms, nevertheless, are still not well understood. The aim of this study is identifying its possible therapeutic targets and to evaluate the effects of AM in combination with a PARP inhibitor (olaparib) in the treatment of BRCA wild-type ovarian cancer. Significant genes were collected from Therapeutic Target Database and Database of Gene-Disease Associations. The components of AM were analyzed using the Traditional Chinese Medicine System Pharmacology (TCMSP) database to screen the active ingredients of AM based on their oral bioavailability and drug similarity index. In order to find intersection targets, Venn diagrams and STRING website diagrams were employed. STRING was also used to create a protein-protein interaction network. In order to create the ingredient-target network, Cytoscape 3.8.0 was used. DAVID database was utilized to carry out enrichment and pathway analyses. The binding ability of the active compounds of AM to the core targets of AM-OC was verified with molecular docking using AutoDock software. Experimental validations, including cell scratch, cell transwell, cloning experiment, were conducted to verify the effects of AM on OC cells. A total of 14 active ingredients of AM and 28 AM-OC-related targets were screened by network pharmacology analysis. The ten most significant Gene Ontology (GO) biological function analyses, as well as the 20 foremost Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways were selected. Moreover, molecular docking results showed that bioactive compound (quercetin) demonstrated a good binding ability with tumor protein p53 (TP53), MYC, vascular endothelial growth factor A (VEGFA), phosphatase and tensin homolog (PTEN), AKT serine/threonine kinase 1 (AKT1) and cyclin D1 (CCND1) oncogenes. According to experimental methods, in vitro OC cell proliferation and migration appeared to be inhibited by quercetin, which also increased apoptosis. In addition, the combination with olaparib further enhanced the effect of quercetin on OC. Based on network pharmacology, molecular docking, and experimental validation, the combination of PARP inhibitor and quercetin enhanced the anti-proliferative activity in BRCA wild-type ovarian cancer cells, which supplies the theoretical groundwork for additional pharmacological investigation.


Asunto(s)
Astragalus propinquus , Neoplasias Ováricas , Femenino , Humanos , Factor A de Crecimiento Endotelial Vascular , Simulación del Acoplamiento Molecular , Farmacología en Red , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Quercetina , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética
15.
Toxicol Lett ; 379: 20-34, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36905973

RESUMEN

Columbin (CLB) is the most abundant (>1.0%) furan-containing diterpenoid lactone in herbal medicine Tinospora sagittate (Oliv.) Gagnep. The furano-terpenoid was found to be hepatotoxic, but the exact mechanisms remain unknown. The present study demonstrated that administration of CLB at 50 mg/kg induced hepatotoxicity, DNA damage and up-regulation of PARP-1 in vivo. Exposure to CLB (10 µM) induced GSH depletion, over-production of ROS, DNA damage, up-regulation of PARP-1 and cell death in cultured mouse primary hepatocytes in vitro. Co-treatment of mouse primary hepatocytes with ketoconazole (10 µM) or glutathione ethyl ester (200 µM) attenuated the GSH depletion, over-production of ROS, DNA damage, up-regulation of PARP-1, and cell death induced by CLB, while co-exposure to L-buthionine sulfoximine (BSO, 1000 µM) intensified such adverse effects resulting from CLB exposure. These results suggest that the metabolic activation of CLB by CYP3A resulted in the depletion of GSH and increase of ROS formation. The resultant over-production of ROS subsequently disrupted the DNA integrity and up-regulated the expression of PARP-1 in response to DNA damage, and ROS-induced DNA damage was involved in the hepatotoxicity of CLB.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Diterpenos , Animales , Ratones , Butionina Sulfoximina/farmacología , Daño del ADN , Glutatión/metabolismo , Lactonas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
16.
Cell Rep ; 42(1): 112027, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36848231

RESUMEN

TET2 haploinsufficiency is a driving event in myeloid cancers and is associated with a worse prognosis in patients with acute myeloid leukemia (AML). Enhancing residual TET2 activity using vitamin C increases oxidized 5-methylcytosine (mC) formation and promotes active DNA demethylation via base excision repair (BER), which slows leukemia progression. We utilize genetic and compound library screening approaches to identify rational combination treatment strategies to improve use of vitamin C as an adjuvant therapy for AML. In addition to increasing the efficacy of several US Food and Drug Administration (FDA)-approved drugs, vitamin C treatment with poly-ADP-ribosyl polymerase inhibitors (PARPis) elicits a strong synergistic effect to block AML self-renewal in murine and human AML models. Vitamin-C-mediated TET activation combined with PARPis causes enrichment of chromatin-bound PARP1 at oxidized mCs and γH2AX accumulation during mid-S phase, leading to cell cycle stalling and differentiation. Given that most AML subtypes maintain residual TET2 expression, vitamin C could elicit broad efficacy as a PARPi therapeutic adjuvant.


Asunto(s)
Leucemia , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Humanos , Ratones , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Mutaciones Letales Sintéticas , Vitaminas
17.
Phytomedicine ; 108: 154528, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36343549

RESUMEN

BACKGROUND: Anaplastic thyroid cancer (ATC) is one of the fatal cancers and has not effective treatments. Alantolactone (ATL), a terpenoid extracted from traditional Chinese medicinal herb Inula helenium L., confers significant anti-inflammatory, antibacterial and antitumor activity. However, the activity and mechanisms of ATL in ATC remain unclear. PURPOSE: To investigate the potential anti-ATC effects in vitro and in vivo and the mechanisms involved. METHODS: The anti-proliferative activity of Alantolactone (ATL) against ATC cells was analyzed through CCK-8 and colony formation assays. Flow cytometry assay was performed to assess the cell cycle, cell apoptosis, ROS, and mitochondrial membrane potential (ΔΨm), whereas the cellular localization of cytochrome c and calreticulin were determined using cellular immunofluorescence assays. The lactate dehydrogenase (LDH) enzyme activity in the cell culture medium was measured using a commercial LDH kit, whereas ELISA was conducted to assess the secretory function of IL-1ß. Western blot assays were conducted to determine the expression or regulation of proteins associated with apoptosis and pyroptosis. Subcutaneous tumor model of nude mice was established to evaluate the anticancer activity of ATL in vivo. The expression of Ki67, cyclin B1, cleaved-PARP, cleaved-caspase 3, and IL-1ß in the animal tumor tissues was profiled using immunohistochemistry analyses. RESULTS: Our data showed that ATL significantly inhibited the proliferation and colony formation activity of ATC cells. ATL induced ATC cell cycle arrest at G2/M phase, and downregulated the expression of cyclin B1 and CDC2. Furthermore, ATL induced concurrent apoptosis and pyroptosis in the ATC cells, and the cleavage of PARP and GSDME. It also significantly increased the release of LDH and IL-1ß. Mechanically, ATL-mediated increase in ROS suppressed the Bcl-2/Bax ratio, downregulated the mitochondrial membrane potential and increased the release of cytochrome c, leading to caspase 9 and caspase 3 cleavage. We also found that ATL induced the translocation of an immunogenic cell death marker (calreticulin) to the cell membrane. In addition, it inhibited the growth of the ATC subcutaneous xenograft model, and activated proteins associated with apoptosis and pyroptosis, with a high safety profile. CONCLUSION: Taken together, these results firstly demonstrated that ATL exerted an anti-ATC activity by inducing concurrent apoptosis and GSDME-dependent pyroptosis through ROS-mediated mitochondria-dependent caspase activation. Meanwhile, these cell deaths exhibited obvious characteristics of immunogenic cell death, which may synergistically increase the potential of cancer immunotherapy in ATC. Further studies are needed to explore deeper mechanisms for the anti- ATC activity of ATL.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Ratones , Animales , Humanos , Caspasa 3/metabolismo , Piroptosis , Caspasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ciclina B1/metabolismo , Calreticulina/metabolismo , Calreticulina/farmacología , Citocromos c/metabolismo , Ratones Desnudos , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Apoptosis , Mitocondrias , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/metabolismo , Línea Celular Tumoral
18.
J Ethnopharmacol ; 302(Pt A): 115899, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36336219

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hypericum perforatum L., commonly known as St. John's Wort (SJW), represents one of the best-known and most thoroughly researched medicinal plant species. The ethnobotanical usage and bioactivities related to H. perforatum include treatment of skin diseases, wounds and burns, gastrointestinal problems, urogenital diseases and psychiatric disorders, particularly depression. In the last decade, many studies focused on the bioactive constituents responsible for the antihyperglycemic and antidiabetic activity of SJW extracts. However, the mechanism by which H. perforatum extract exhibits these properties is still unclear. Hence, the current study was designed to gain insight into the underlying biochemical and molecular mechanisms by which wildly growing H. perforatum exerts its antihyperglycemic and antidiabetic activities. MATERIAL AND METHODS: Plant material of H. perforatum was harvested from a natural population in the Republic of North Macedonia during full flowering season. Methanol (80% v/v) was used to extract bioactive components from HH powder. The dissolved HH dry extract (in 0.3% CMC) was given daily as a single treatment (200 mg/kg bw) during 14 days both in healthy and streptozotocin-induced diabetic rats. As a positive control, we applied glibenclamide. The activity of key enzymes involved in carbohydrate methabolisam in the liver were assessed, along with substrate concentration, as well as AMPK mRNA levels, PKCε concentration, plasma insulin level and pancreatic PARP activity. RESULTS: Compared to diabetic rats, treatment of diabetic rats with HH extract resulted with decreased activity of hepatic enzymes glucose-6-phospatase and fructose-1,6-bisphosphatase, increased liver glycogen and glucose-6-phosphate content, which resulted with reduced blood glucose concentration up to normoglycaemia. Non-significant changes were observed in the activity of hexokinase, glycogen phosphorylase and glucose-6-phospahte dehydrogenase. HH-treatment also caused an increase in plasma insulin concentration and increase in pancreatic PARP activity. Finally, HH treatment of diabetic rats showed significant increase in AMPK expression and decrease of PKCε concentration. CONCLUSION: We present in vivo evidence that HH- extract exert insulinotropic effects and regulate endogenous glucose production mostly by suppressing liver gluconeogenesis. The HH-treatment did not effected glycogenolysys and glycolysis. Finally, we confirm the antihyperglycemic and antidiabetic effect of HH-extract and the mechanism of this effect involves amelioration of AMPK and PKCε changes in the liver.


Asunto(s)
Diabetes Mellitus Experimental , Hypericum , Ratas , Animales , Hypericum/química , Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Experimental/tratamiento farmacológico , Gluconeogénesis , Proteína Quinasa C-epsilon , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Aceites de Plantas/uso terapéutico , Insulina , Glucosa
19.
Clin Cancer Res ; 29(2): 432-445, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36374558

RESUMEN

PURPOSE: Cholangiocarcinoma (CCA) is usually diagnosed at advanced stages, with limited therapeutic options. Preclinical models focused on unresectable metastatic CCA are necessary to develop rational treatments. Pathogenic mutations in IDH1/2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30%-50% of patients with CCA. Several types of tumor cells harboring these mutations exhibit homologous recombination deficiency (HRD) phenotype with enhanced sensitivity to PARP inhibitors (PARPi). However, PARPi treatment has not yet been tested for effectiveness in patient-derived models of advanced CCA. EXPERIMENTAL DESIGN: We have established a collection of patient-derived xenografts from patients with unresectable metastatic CCA (CCA_PDX). The CCA_PDXs were characterized at both histopathologic and genomic levels. We optimized a protocol to generate CCA tumoroids from CCA_PDXs. We tested the effects of PARPis in both CCA tumoroids and CCA_PDXs. Finally, we used the RAD51 assay to evaluate the HRD status of CCA tissues. RESULTS: This collection of CCA_PDXs recapitulates the histopathologic and molecular features of their original tumors. PARPi treatments inhibited the growth of CCA tumoroids and CCA_PDXs with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1. In line with these findings, only CCA_PDX and CCA patient biopsy samples with mutations of BRCA2 showed RAD51 scores compatible with HRD. CONCLUSIONS: Our results suggest that patients with advanced CCA with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1, are likely to benefit from PARPi therapy. This collection of CCA_PDXs provides new opportunities for evaluating drug response and prioritizing clinical trials.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Evaluación Preclínica de Medicamentos , Xenoinjertos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Conductos Biliares Intrahepáticos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética
20.
Biol Trace Elem Res ; 201(5): 2458-2469, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35922740

RESUMEN

Doxorubicin (DOXR) is an important chemotherapeutic drug used in cancer treatment for many years. Several studies reported that the use of DOXR increased toxicity by causing an increase in oxidative stress (OS), especially in the heart. In this study, we investigated the protective effect of selenium (Se) and the role of transient receptor potential melastatin-2 (TRPM2) channel activation by using N-(p-amylcinnamoyl) anthranilic acid (ACA) in a model of DOXR-induced cardiotoxicity. Sixty female rats were equally divided into the control, dimethyl sulfoxide (DMSO), DOXR, DOXR + Se, DOXR + ACA, and DOXR + Se + ACA groups. Glutathione (GSH), glutathione peroxidase (GSH-Px), caspases (Cas) 3 and 9, interleukin 1ß (IL-1ß), tumor necrosis factor-α (TNF-α), reactive oxygen species (ROS), poly [ADP-ribose] polymerase 1 (PARP-1), and TRPM2 channel levels were measured by ELISA. In addition, histopathological examination was performed in cardiac tissues and TNF-α, caspase 3, and TRPM2 channel expression levels were determined immunohistochemically. The levels of GSH, GSH-Px, caspases 3 and 9, IL-1ß, TNF-α, ROS, PARP-1, and TRPM2 channel in serum, and cardiac tissue in the DOXR group were higher than in the control and DMSO groups (p < 0.05). However, these parameters in Se and/or ACA treatment groups were lower than in the DOXR group (p < 0.05). Also, we determined that Se and/or ACA treatment together with DOXR application decreased the TNF-α, Cas-3, and TRPM2 channel expression levels in the cardiac tissue. The data showed that administration of Se and/or ACA treatment together with DOXR may be used as a therapeutic agent in preventing DOXR-induced cardiotoxicity.


Asunto(s)
Selenio , Canales Catiónicos TRPM , Ratas , Femenino , Animales , Selenio/farmacología , Selenio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Canales Catiónicos TRPM/metabolismo , Dimetilsulfóxido/farmacología , Cardiotoxicidad/prevención & control , Estrés Oxidativo , Glutatión/metabolismo , Doxorrubicina/toxicidad , Apoptosis , Calcio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA