RESUMEN
Our laboratory has established a comprehensive program to investigate the phytochemical composition and nutritional/medicinal properties of phenolic-enriched maple syrup extract (MSX). Previous studies support MSX's therapeutic potential in diverse disease models, primarily through its anti-inflammatory effects. We recently demonstrated MSX's ability to regulate inflammatory signaling pathways and modulate inflammatory markers and proteins in a lipopolysaccharide (LPS)-induced peritonitis mouse model. However, MSX's immunoregulatory properties remain unknown. Herein, we investigated MSX's immunoregulatory properties for the first time using an integrated approach, combining data-dependent acquisition (DDA) and data-independent acquisition (DIA) strategies in a proteomic analysis of spleen tissue collected from the aforementioned peritonitis mouse model. Additionally, we conducted immune cell activation assays using macrophages and T lymphocytes. The DIA analysis unveiled a distinctive expression pattern involving three proteins-Krt83, Thoc2, and Vps16-which were present in both the control and MSX-treated groups but absent in the LPS-induced model group. Furthermore, proteins Ppih and Dpp9 exhibited significant reductions in the MSX-treated group. Ingenuity pathway analysis indicated that MSX may modulate several critical signaling pathways, exerting a suppressive effect on immune responses in various cell types involved in both innate and adaptive immunity. Our in vitro cell assays supported findings from the proteomics, revealing that MSX significantly reduced the levels of interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) in LPS-stimulated human macrophage cells, as well as the levels of IL-2 in anti-CD3/anti-CD28-induced Jurkat T cells. Taken together, our investigations provide evidence that MSX exerts immune regulatory effects that impact both innate and adaptive immunity, which adds to the data supporting MSX's development as a functional food.
Asunto(s)
Acer , Peritonitis , Ratones , Animales , Humanos , Acer/química , Lipopolisacáridos/farmacología , Proteómica , Fenoles/farmacología , Inmunidad Adaptativa , Extractos Vegetales/química , Factor de Necrosis Tumoral alfa/genética , Peritonitis/tratamiento farmacológicoRESUMEN
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Asunto(s)
Inmunidad Innata , Neoplasias , Humanos , Receptores Toll-Like/metabolismo , Neoplasias/tratamiento farmacológico , Transducción de Señal , Inmunidad AdaptativaRESUMEN
The increase in life expectancy can be a consequence of the world's socioeconomic, sanitary and nutritional conditions. Some studies have demonstrated that individuals with a satisfactory diet variety score present a lower risk of malnutrition and better health status. Zinc and selenium are important micronutrients that play a role in many biochemical and physiological processes of the immune system. Deficient individuals can present both innate and adaptive immunity abnormalities and increased susceptibility to infections. Primary immunodeficiency diseases, also known as inborn errors of immunity, are genetic disorders classically characterized by an increased susceptibility to infection and/or dysregulation of a specific immunologic pathway. IgA deficiency (IgAD) is the most common primary antibody deficiency. This disease is defined as serum IgA levels lower than 7 mg/dL and normal IgG and IgM levels in individuals older than four years. Although many patients are asymptomatic, selected patients suffer from different clinical complications, such as pulmonary infections, allergies, autoimmune diseases, gastrointestinal disorders and malignancy. Knowing the nutritional status as well as the risk of zinc and selenium deficiency could be helpful for the management of IgAD patients. OBJECTIVES: to investigate the anthropometric, biochemical, and nutritional profiles and the status of zinc and selenium in patients with IgAD. METHODS: in this descriptive study, we screened 16 IgAD patients for anthropometric and dietary data, biochemical evaluation and determination of plasma and erythrocyte levels of zinc and selenium. RESULTS: dietary intake of zinc and selenium was adequate in 75% and 86% of the patients, respectively. These results were consistent with the plasma levels (adequate levels of zinc in all patients and selenium in 50% of children, 25% of adolescents and 100% of adults). However, erythrocyte levels were low for both micronutrients (deficiency for both in 100% of children, 75% of adolescents and 25% of adults). CONCLUSION: our results highlight the elevated prevalence of erythrocyte zinc and selenium deficiency in patients with IgAD, and the need for investigation of these micronutrients in their follow-up.
Asunto(s)
Deficiencia de IgA , Desnutrición , Selenio , Adolescente , Adulto , Niño , Humanos , Zinc , Inmunidad AdaptativaRESUMEN
With the constantly deeper understanding of individualized precision therapy, immunotherapy is increasingly developed and personalized. The tumor immune microenvironment (TIME) mainly consists of infiltrating immune cells, neuroendocrine cells, extracellular matrix, lymphatic vessel network, etc. It is the internal environment basis for the survival and development of tumor cells. As a characteristic treatment of traditional Chinese medicine, acupuncture has shown potentially beneficial impacts on TIME. The currently available information demonstrated that acupuncture could regulate the state of immunosuppression through a range of pathways. An effective way to understand the mechanisms of action of acupuncture was to analyze the response following treatment of the immune system. This research reviewed the mechanisms of acupuncture regulating tumor immunological status based on innate and adaptive immunity.
Asunto(s)
Terapia por Acupuntura , Inmunomodulación , Inmunoterapia , Terapia de Inmunosupresión , Inmunidad AdaptativaRESUMEN
Dendritic cells (DCs) are antigen presenting cells that link innate and adaptive immunity. DCs have been historically considered as the most effective and potent cell population to capture, process and present antigens to activate naïve T cells and originate favorable immune responses in many diseases, such as cancer. However, in the last decades, it has been observed that DCs not only promote beneficial responses, but also drive the initiation and progression of some pathologies, including inflammatory bowel disease (IBD). In line with those notions, different therapeutic approaches have been tested to enhance or impair the concentration and role of the different DC subsets. The blockade of inhibitory pathways to promote DCs or DC-based vaccines have been successfully assessed in cancer, whereas the targeting of DCs to inhibit their functionality has proved to be favorable in IBD. In this review, we (a) described the general role of DCs, (b) explained the DC subsets and their role in immunogenicity, (c) analyzed the role of DCs in cancer and therapeutic approaches to promote immunogenic DCs and (d) analyzed the role of DCs in IBD and therapeutic approaches to reduced DC-induced inflammation. Therefore, we aimed to highlight the "yin-yang" role of DCs to improve the understand of this type of cells in disease progression.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Neoplasias , Humanos , Células Dendríticas , Inmunidad Adaptativa , Neoplasias/metabolismo , Progresión de la EnfermedadRESUMEN
The aim of this study was to determine the impact of vitamin A deficiency (VAD)/supplementation (±VA) and group A RV (RVA) maternal immunization of RVA seropositive multiparous pregnant sows, on their immune responses (anamnestic response) and on passive protection of their piglets against RVA challenge. Our results showed that VAD- mock sows had increased RVA RNA shedding at 1-5 days post piglet RVA challenge, and their litters had increased RVA shedding and diarrhea frequency throughout the experiment. VAD decreased memory B cell frequencies while VA supplementation increased RVA specific IgA/IgG antibody (Ab) secreting cell (ASC) numbers in blood, milk, and tissues of RVA inoculated VAD sows. The increased numbers of RVA specific IgA/IgG ASCs in blood, milk/colostrum, intestinal contents, and tissues in VA supplemented VAD sows, suggest a role of VA in B cell immunity and trafficking to tissues. We also observed that RVA inoculated sows had the highest viral neutralizing Ab titers in serum and milk while VA supplementation of VAD sows and RVA inoculation increased IgA+ B cell frequencies in sow colostrum. In summary, we demonstrated that daily oral VA-supplementation (2nd trimester-throughout lactation) to RVA inoculated VAD sows improved the function of their gut-mammary-IgA immunological axis, reducing viral RNA shedding, diarrhea, and increasing weight gain in suckling piglets.
Asunto(s)
Rotavirus , Embarazo , Porcinos , Animales , Femenino , Vitamina A , Inmunidad Adaptativa , Leche , Inmunoglobulina A , Suplementos Dietéticos , Diarrea/prevención & controlRESUMEN
BACKGROUND: Cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) (K3)-a novel synthetic single-stranded DNA immune adjuvant for cancer immunotherapy-induces a potential Th1-type immune response against cancer cells. We conducted a phase I study of CpG ODN (K3) in patients with lung cancer to assess its safety and patients' immune responses. METHODS: The primary endpoint was the proportion of dose-limiting toxicities (DLTs) at each dose level. Secondary endpoints included safety profile, an immune response, including dynamic changes in immune cell and cytokine production, and progression-free survival (PFS). In a 3 + 3 dose-escalation design, the dosage levels for CpG ODN (K3) were 5 or 10 mg/body via subcutaneous injection and 0.2 mg/kg via intravenous administration on days 1, 8, 15, and 29. RESULTS: Nine patients (eight non-small-cell lung cancer; one small-cell lung cancer) were enrolled. We found no DLTs at any dose level and observed no serious treatment-related adverse events. The median observation period after registration was 55 days (range: 46-181 days). Serum IFN-α2 levels, but not inflammatory cytokines, increased in six patients after the third administration of CpG ODN (K3) (mean value: from 2.67 pg/mL to 3.61 pg/mL after 24 hours). Serum IFN-γ (mean value, from 9.07 pg/mL to 12.7 pg/m after 24 hours) and CXCL10 levels (mean value, from 351 pg/mL to 676 pg/mL after 24 hours) also increased in eight patients after the third administration. During the treatment course, the percentage of T-bet-expressing CD8+ T cells gradually increased (mean, 49.8% at baseline and 59.1% at day 29, p = 0.0273). Interestingly, both T-bet-expressing effector memory (mean, 52.7% at baseline and 63.7% at day 29, p = 0.0195) and terminally differentiated effector memory (mean, 82.3% at baseline and 90.0% at day 29, p = 0.0039) CD8+ T cells significantly increased. The median PFS was 398 days. CONCLUSIONS: This is the first clinical study showing that CpG ODN (K3) activated innate immunity and elicited Th1-type adaptive immune response and cytotoxic activity in cancer patients. CpG ODN (K3) was well tolerated at the dose settings tested, although the maximum tolerated dose was not determined. TRIAL REGISTRATION: UMIN-CTR number 000023276. Registered 1 September 2016, https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000026649.
Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inmunidad Adaptativa , Adyuvantes Inmunológicos/efectos adversos , Antineoplásicos/farmacología , Linfocitos T CD8-positivos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Citosina , Guanina , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Oligodesoxirribonucleótidos/efectos adversos , Fosfatos , Receptor Toll-Like 9RESUMEN
Cancer is a main life-threatening disease worldwide. Due to the adverse effects of conventional chemotherapies and radiotherapies, immunotherapy has emerged as a potent strategy to treat cancer. In cancer immunotherapy, cancer immune surveillance plays a crucial role in the cancer process, which contains various effector cells from innate and adaptive immunity. This review summarized the functions of innate and adaptive immune cells in cancer immunosurveillance and their main reported targets. Moreover, the potential targets about the modulatory effects of cancer immunosurveillance were predicted using network-based target analysis, with total predicted pathways not only reporting previously reported pathways, but also putative signaling pathways pending for investigation. In addition, the potential use of herbal medicines and their phytochemicals in the modulation of cancer immunosurveillance were also discussed. Taken together, this review paper aims to provide scientific insight into further drug development, particularly herbs, phytochemicals, and TCM formulae, in the modulatory effects of cancer immunosurveillance.
Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias , Plantas Medicinales , Inmunidad Adaptativa , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Monitorización Inmunológica , Fitoquímicos/farmacología , Fitoquímicos/uso terapéuticoRESUMEN
The goals of this study were to determine the impact of maternal PRRSV infection on offspring muscle and immune development and the potential of dietary soy isoflavones to mitigate those effects. Thirteen first-parity gilts ("gilts") were randomly allotted into one of three treatments: not infected and fed a diet devoid of isoflavones (CON), infected with porcine reproductive and respiratory syndrome virus (PRRSV) and fed the control diet (POS) or that supplemented with 1,500 mg/kg soy-derived isoflavones (ISF). Gilts were inoculated with PRRSV intranasally on gestational day (GD) 70. After farrowing (GD 114 ± 2), 1-2 offspring ("pigs") closest to the average litter weight were selected either at birth (3 ± 2 d of age) or weaning (21 ± 2 d of age) to determine body, muscle, and organ weights as well as muscle cell number and size. Four weaned pigs of average body weight within each litter were selected for postnatal immune challenge. At PND 52, pigs were injected with 5 µg/kg BW lipopolysaccharide (LPS) intraperitoneally. Serum was collected at 0, 4, and 8 h following LPS administration to analyze tumor necrosis factor alpha (TNF-α). At PND 59, pigs were administered a novel vaccine to elicit an adaptive immune response. At PND 59, 66, and 73, peripheral blood mononuclear cells were isolated and T-cell populations determined by flow cytometry. Both POS and ISF pigs exhibited persistent PRRSV infections throughout the study (PND 1-73). At PND 3, whole body, muscle, and organ weights were not different (P > 0.22) between groups, with the exception of relative liver weight, which was increased (P < 0.05) in POS compared with CON pigs. At PND 21, ISF pigs had reduced (P ≤ 0.05) whole body and muscle weights, but greater (P < 0.05) kidney weight compared with CON, and greater (P < 0.05) relative liver weight compared with CON and POS. Muscle fiber number and size were not different (P > 0.39) between groups at birth or weaning. After LPS administration, TNF-α was greatest in ISF pigs (P < 0.05) at both 0 and 8 h post-challenge. At the peak time-point of 4 h post-challenge, ISF pigs had the greatest concentration of TNF-α and CON pigs had the lowest, with POS pigs being intermediate (P = 0.01). After vaccination, ISF offspring had shifts in T-cell populations indicating an impaired immune response. These data indicate that maternal PRRSV infection may impact offspring organ growth and immune function, particularly when the dam is supplemented with isoflavones.
Gestational health challenges may influence growth performance and immunity of offspring pigs during postnatal life. In particular, porcine reproductive and respiratory syndrome virus (PRRSV) is endemic in the U.S. herd, but its effects on surviving offspring pigs are largely unknown. Further, dietary supplementation with soy isoflavones lessened the severity of PRRSV infections in weaning and growing pigs. Therefore, the goals of this study were to determine the impact of maternal PRRSV infection on offspring muscle and immune development and the potential of isoflavones to mitigate those effects. Isoflavone supplementation reduced viral load in dams 21 d after infection, but did not alter clinical illness indicators. Pig mortality was increased by PRRSV infection in dams, and surviving pigs were infected with PRRSV throughout the study. Interestingly, muscle and organ weights were not different among treatments at birth, but infected litters were lighter at weaning, likely due to postnatal infection. Muscle fiber number and size did not differ between treatments. Pigs born to infected dams had slower responses during innate immune stimulation and then failed to mount a proper vaccine response during adaptive immune stimulation. Overall, maternal infection altered offspring immune responses but not muscle fiber development. Isoflavone supplementation did not mitigate these effects.
Asunto(s)
Isoflavonas , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Inmunidad Adaptativa , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Isoflavonas/farmacología , Leucocitos Mononucleares , Lipopolisacáridos/farmacología , Fibras Musculares Esqueléticas , Embarazo , Sus scrofa , Porcinos , Factor de Necrosis Tumoral alfaRESUMEN
INTRODUCTION: The metabolic environment in ischemic and hypoxic tumors is known to contribute to cancer progression. Importantly, peculiar metabolic changes occurring in malignant cells (the increased glycolysis and the hampered Krebs cycle) may contribute to decreased antioxidant-dependent defense in ischemic and hypoxic tumors. AREAS COVERED: In the clinic, oxygen saturation of tumors is usually achieved by the application of water-soluble ozone and hyperbaric oxygen therapy. Tumor oxygenation has been shown to inhibit tumor growth and potentiate anti-tumor effects of chemoradiotherapy in animal experiments and the clinical setting. Tumor oxygenation could enhance anti-tumor effects achieved by tumor blood vessel occlusion or angiostatic therapy. EXPERT OPINION: Owing to a profound influence of ROS on both the innate and adaptive immunity, oxygen therapy, when combined simultaneously or sequentially with immunotherapeutic interventions (such as immune checkpoint inhibition, drug-induced immunostimulation, adoptive cell therapy, hyperthermia, etc.), could be considered as a novel highly-effective clinical biological approach to cancer treatment.
Asunto(s)
Neoplasias , Inmunidad Adaptativa , Animales , Protocolos Clínicos , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Oxígeno/metabolismoRESUMEN
Organic acids are active substances required for improving the productivity and wellbeing of aquatic animals. Herein, the study investigated the effects of sodium propionate on growth performance, antioxidative and immune responses, and growth-related genes expression in beluga sturgeon (Huso huso). For eight weeks, fish fed sodium propionate at 0, 1.2, 2.5, and 5 g kg-1. The final weight, weight gain, and SGR were substantially increased while FCR decreased by dietary sodium propionate at 2.5 and 5 g kg-1 (P < 0.05). The expression of Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) was markedly upregulated (P < 0.05) by dietary sodium propionate in the gills and livers of beluga. The highest mRNA level of GH and IGF-1 has been observed in fish fed a 2.5 g sodium propionate/kg diet. The red blood cells count, and hemoglobin level were meaningfully increased (P < 0.05) by 2.5 and 5 g sodium propionate/kg diet compared with 0 and 1.2 g kg-1 levels. Further, the hematocrit level was increased (P < 0.05) by a dietary 5 g sodium propionate/kg diet. The total protein level and lysozyme activity were meaningfully increased (P < 0.05) by 2.5 and 5 g sodium propionate/kg diet compared with 0 and 1.2 g kg-1 levels. The highest superoxide dismutase was observed in fish fed 2.5 g sodium propionate/kg diet. Catalase activity was significantly higher in fish fed 5 g kg-1 than 1.2 g kg-1. The glutathione peroxidase activity was markedly higher in fish fed 2.5, and 5 g kg-1 than fish fed control diet. The lowest malondialdehyde levels were observed in fish fed 1.2, and 2.5 g sodium propionate/kg diets. Moreover, the highest mucosal total protein, total immunoglobulin and lysozyme were recorded in fish fed 2.5, and 5 g sodium propionate/kg diets. The obtained results indicate that dietary sodium propionate is recommended at 2.5-5 g kg-1 to improve beluga sturgeon's growth performance, feed utilization, and wellbeing.
Asunto(s)
Alimentación Animal , Antioxidantes , Inmunidad Adaptativa , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Peces , Gelatina , Factor I del Crecimiento Similar a la Insulina/metabolismo , Muramidasa/metabolismo , PropionatosRESUMEN
Renibacterium salmoninarum is a Gram-positive, intracellular pathogen that causes Bacterial Kidney Disease (BKD) in several fish species in freshwater and seawater. Lumpfish (Cyclopterus lumpus) is utilized as a cleaner fish to biocontrol sea lice infestation in Atlantic salmon (Salmo salar) farms. Atlantic salmon is susceptible to R. salmoninarum, and it can transfer the infection to other fish species. Although BKD outbreaks have not been reported in lumpfish, its susceptibility and immune response to R. salmoninarum is unknown. In this study, we evaluated the susceptibility and immune response of lumpfish to R. salmoninarum infection. Groups of lumpfish were intraperitoneally (i.p.) injected with either R. salmoninarum (1×107, 1×108, or 1×109 cells dose-1) or PBS (control). R. salmoninarum infection kinetics and mortality were followed for 98 days post-infection (dpi). Transcript expression levels of 33 immune-relevant genes were measured in head kidney (n = 6) of fish infected with 1×109 cells/dose and compared to the control at 28 and 98 dpi. Infected lumpfish displayed characteristic clinical signs of BKD. Lumpfish infected with high, medium, and low doses had a survival rate of 65%, 93%, and 95%, respectively. Mortality in the high-dose infected group stabilized after 50 dpi, but R. salmoninarum persisted in the fish tissues until 98 dpi. Cytokines (il1ß, il8a, il8b), pattern recognition receptors (tlr5a), interferon-induced effectors (rsad2, mxa, mxb, mxc), and iron regulation (hamp) and acute phase reactant (saa5) related genes were up-regulated at 28 dpi. In contrast, cell-mediated adaptive immunity-related genes (cd4a, cd4b, ly6g6f, cd8a, cd74) were down-regulated at 28 dpi, revealing the immune suppressive nature of R. salmoninarum. However, significant upregulation of cd74 at 98 dpi suggests induction of cell-mediated immune response. This study showed that R. salmoninarum infected lumpfish in a similar fashion to salmonid fish species and caused a chronic infection, enhancing cell-mediated adaptive immune response.
Asunto(s)
Enfermedades de los Peces/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Enfermedades Renales/inmunología , Perciformes/microbiología , Inmunidad Adaptativa/genética , Animales , Carga Bacteriana , Técnicas Bacteriológicas , Enfermedad Crónica , Susceptibilidad a Enfermedades , Enfermedades de los Peces/microbiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Ontología de Genes , Infecciones por Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/microbiología , Riñón Cefálico/inmunología , Riñón Cefálico/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Celular/genética , Enfermedades Renales/genética , Enfermedades Renales/microbiología , Perciformes/genética , Perciformes/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Renibacterium , Especificidad de la Especie , Organismos Libres de Patógenos EspecíficosRESUMEN
Elucidation of the pharmacodynamic mechanisms of drugs capable of potentiating the effects of non-steroidal anti-inflammatory drugs is an important task. In this in vitro study, the ability of Traumeel S to influence the innate and acquired immunity was evaluated. Traumeel S was found to reduce activities of NADPH oxidase and neutrophil extracellular traps, as well as to evoke anti-inflammatory activity of lymphocyte subpopulations.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios/farmacología , Trampas Extracelulares/inmunología , Minerales/farmacología , NADPH Oxidasas/metabolismo , Extractos Vegetales/farmacología , Inmunidad Adaptativa/efectos de los fármacos , Antígenos HLA-DR/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología , Leucocitosis/inmunología , Subgrupos Linfocitarios/inmunología , Neutrófilos/inmunología , Linfocitos T/inmunología , Receptor fas/análisisRESUMEN
The novel coronavirus severe acute respiratory syndrome (SARS-CoV-2) has progressed rapidly from an outbreak to a global pandemic, with new variants rapidly emerging. Coronavirus disease 2019 (COVID-19), the disease resulting from SARS-CoV-2 infection, can lead to multiorgan damage. Due to the extremely contagious and fatal nature of the virus, it has been a priority of medical research to find effective means of treatment. Amid this search, the role of vitamin D in modulating various aspects of the innate and adaptive immune system has been discussed. This review aims to consolidate the research surrounding the role of vitamin D in the treatment and prevention of COVID-19. While there are some conflicting results reported, the consensus is that vitamin D has a host of immunomodulatory effects which may be beneficial in the context of COVID-19 and that low levels of vitamin D can result in dysfunction of crucial antimicrobial effects, potentially contributing to poor prognosis. Studies also show that the effects of low vitamin D can be mitigated via supplementation, although the benefits of vitamin D supplementation in the treatment of COVID-19 remain controversial.
Asunto(s)
COVID-19/prevención & control , Factores Inmunológicos/uso terapéutico , Vitamina D/uso terapéutico , Vitaminas/uso terapéutico , Inmunidad Adaptativa/efectos de los fármacos , Animales , COVID-19/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Vitamina D/farmacología , Vitaminas/farmacologíaRESUMEN
The coronavirus disease 2019 (COVID-19) pandemic has severely impacted daily life all over the world. Any measures to slow down the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to decrease disease severity are highly requested. Recent studies have reported inverse correlations between plasma levels of vitamin D and susceptibility to SARS-CoV-2 infection and COVID-19 severity. Therefore, it has been proposed to supplement the general population with vitamin D to reduce the impact of COVID-19. However, by studying the course of COVID-19 and the immune response against SARS-CoV-2 in a family with a mutated, non-functional vitamin D receptor, we here demonstrate that vitamin D signaling was dispensable for mounting an efficient adaptive immune response against SARS-CoV-2 in this family. Although these observations might not directly be transferred to the general population, they question a central role of vitamin D in the generation of adaptive immunity against SARS-CoV-2.
Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Raquitismo Hipofosfatémico Familiar/genética , Receptores de Calcitriol/genética , SARS-CoV-2/inmunología , Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , COVID-19/inmunología , Raquitismo Hipofosfatémico Familiar/inmunología , Femenino , Humanos , Memoria Inmunológica/inmunología , Recuento de Linfocitos , Vitamina D/sangre , Vitamina D/uso terapéuticoRESUMEN
Thalassemia, a chronic disease with chronic anemia, is caused by mutations in the ß-globin gene, leading to reduced levels or complete deficiency of ß-globin chain synthesis. Patients with ß-thalassemia display variable clinical severity which ranges from asymptomatic features to severe transfusion-dependent anemia and complications in multiple organs. They not only are at increased risk of blood-borne infections resulting from multiple transfusions, but they also show enhanced susceptibility to infections as a consequence of coexistent immune deficiency. Enhanced susceptibility to infections in ß-thalassemia patients is associated with the interplay of several complex biological processes. ß-thalassemia-related abnormalities of the innate immune system include decreased levels of complement, properdin, and lysozyme, reduced absorption and phagocytic ability of polymorphonuclear neutrophils, disturbed chemotaxis, and altered intracellular metabolism processes. According to available literature data, immunological abnormalities observed in patients with thalassemia can be caused by both the disease itself as well as therapies. The most important factors promoting such alterations involve iron overload, phenotypical and functional abnormalities of immune system cells resulting from chronic inflammation oxidative stress, multiple blood transfusion, iron chelation therapy, and splenectomy. Unravelling the mechanisms underlying immune deficiency in ß-thalassemia patients may enable the designing of appropriate therapies for this group of patients.
Asunto(s)
Susceptibilidad a Enfermedades/inmunología , Talasemia beta/inmunología , Inmunidad Adaptativa , Biomarcadores , Predisposición Genética a la Enfermedad , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunidad Innata , Talasemia beta/genéticaRESUMEN
The paradigm that autoimmune diseases are abberations in the adaptive immune system is over 50 years old, but recent data suggest a multitude of abnormalities in the innate immune system in lupus and other autoimmune diseases. This viewpoint elaborates the reasons that I think it is time to reexamine this paradigm and shift our research focus to the innate immune system in lupus and other prototypic autoimmune diseases.
Asunto(s)
Enfermedades Autoinmunes , Inflamación , Inmunidad Adaptativa/inmunología , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/inmunología , Femenino , Humanos , Inmunidad Innata/inmunología , Inflamación/etiología , Inflamación/inmunología , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/inmunología , MasculinoRESUMEN
BACKGROUND: Persistent systemic inflammation leads to multidistrectual body dysfunctions. Attenuation of inflammation may improve patients' functional and life prognoses. We hypothesized that essential amino acids (EAAs) given to elderly patients in rehabilitation after acute diseases may be associated with a reduced inflammatory state. Therefore, this retrospective study investigated whether the supplementation of EAAs - modulators of immune competence - was associated with a reduced inflammation rate in elderly patients. METHODS: The medical records of 282 patients admitted to the rehabilitation (rehab) institute after acute index events (surgery or medical diseases) (age: 81.18 ± 8.58 years; females: 67.9%) were analyzed. RESULTS: 46 patients (16.3% of the entire population) had received EAA supplements (S), whereas the remaining 236 patients had not (N-S). Systemic inflammation (I) (serum C-reactive protein (CRP) > 0.5 mg/dL) was present in 67.4% of the I-S group and 57.2% of the I-N-S group. During rehab, the I-S group (but not the I-N-S group) showed a reduction in CRP levels (p = 0.03) and an increase in circulating lymphocytes (p = 0.035), immune cells of the adaptive immune system. C-reactive protein levels remained virtually unchanged in non-inflamed patients who received supplements but increased in non-inflamed patients who did not receive supplements (p = 0.05). Stratified for developed infections, CRP levels reduced in S patients (p = 0.008) but did not in N-S patients. CONCLUSION: EAA supplementation was associated with reduced inflammation in both inflamed and infected patients. In addition, EAA supplementation was associated with increased circulating lymphocytes in inflamed patients.
Asunto(s)
Aminoácidos Esenciales/uso terapéutico , Proteína C-Reactiva/metabolismo , Inflamación/tratamiento farmacológico , Linfocitos/efectos de los fármacos , Inmunidad Adaptativa/efectos de los fármacos , Anciano de 80 o más Años , Suplementos Dietéticos , Femenino , Humanos , Inflamación/metabolismo , Linfocitos/metabolismo , Masculino , Estudios RetrospectivosRESUMEN
Multiple health benefits have been ascribed to brown seaweeds that are used traditionally as dietary component mostly in Asia. This systematic review summarizes information on the impact of brown seaweeds or components on inflammation, and inflammation-related pathologies, such as allergies, diabetes mellitus and obesity. We focus on oral supplementation thus intending the use of brown seaweeds as food additives. Despite the great diversity of experimental systems in which distinct species and compounds were tested for their effects on inflammation and immunity, a remarkably homogeneous picture arises. The predominant effects of consumption of brown seaweeds or compounds can be classified into three categories: (1) inhibition of reactive oxygen species, known to be important drivers of inflammation; (2) regulation, i.e., in most cases inhibition of proinflammatory NF-κB signaling; (3) modulation of adaptive immune responses, in particular by interfering with T-helper cell polarization. Over the last decades, several inflammation-related diseases have increased substantially. These include allergies and autoimmune diseases as well as morbidities associated with lifestyle and aging. In this light, further development of brown seaweeds and seaweed compounds as functional foods and nutriceuticals might contribute to combat these challenges.
Asunto(s)
Suplementos Dietéticos , Hipersensibilidad/dietoterapia , Inflamación/dietoterapia , Algas Marinas , Verduras , Inmunidad Adaptativa , Asia , Bases de Datos Factuales , Dieta , Alimentos Funcionales , Humanos , Hipersensibilidad/inmunología , Inflamación/inmunología , Obesidad , Especies Reactivas de OxígenoRESUMEN
Cordyceps sinensis (CS) is a traditional Chinese medicine that is known for treating various diseases, and particularly for exerting therapeutic effects in immune disorders. The adaptive immunoregulatory effects of CS aqueous extract (CSAE) on γ-irradiated mice have not been reported previously. The study aimed to evaluate the therapeutic effects of CSAE in mice immunosuppressed by irradiation. We observed that CSAE administration significantly increased body weight and spleen index, as well as the number of white blood cells, lymphocytes, and platelets in peripheral blood, T and B lymphocytes in spleen tissue, and total serum immunoglobulins in irradiated mice, whereas total serum pro-inflammatory cytokine levels were decreased. Collectively, CSAE maintained the structural integrity of spleen tissue and repaired its damage in irradiated mice as shown by hematoxylin and eosin staining, and decreased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive splenocytes. Mechanistically, CSAE upregulated Bcl-2, and downregulated Bax and cleaved caspase-3 in spleen of irradiated mice. However, there were no significant differences in red blood cells and neutrophils in different groups. The results revealed that CSAE had protective effects against irradiation-induced immunosuppression, which was likely associated with an antiapoptotic effect and the regulation of adaptive immunity.