Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63.923
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Nat Med ; 78(3): 576-589, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38662301

RESUMEN

This study aimed to compare fat accumulation in young and aged mice raised on a high-fat diet and to characterize the obesity-reducing effects of a Kampo medicine, bofutsushosan (BTS; fangfengtongshengsan in Chinese). Aged mice fed a high-fat diet containing 2% BTS extract for 28 days exhibited a significant reduction in weight gain and accumulation of visceral and subcutaneous fat, which were greater degree of reduction than those of the young mice. When the treatment period was extended to two months, the serum aspartate aminotransferase and alanine aminotransferase levels and the accumulation of fat droplets in the hepatocytes decreased. The mRNA expression of mitochondrial uncoupling protein 1 (UCP1) in the brown adipose tissue was significantly reduced in the aged mice compared to the young mice but increased by 2% in the BTS-treated aged mice. Additionally, the effect of BTS extract on oleic acid-albumin-induced triglyceride accumulation in hepatoblastoma-derived HepG2 cells was significantly inhibited in a concentration-dependent manner. Evaluation of the single crude drug extracts revealed that Forsythia Fruit, Schizonepeta Spike, and Rhubarb were the active components in BTS extract. These results suggest that BTS extract is effective against visceral, subcutaneous, and ectopic fats in the liver, which tend to accumulate with aging. Thus, BTS extract is useful in preventing and ameliorating the development of obesity and metabolic syndrome.


Asunto(s)
Envejecimiento , Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Obesidad , Animales , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Masculino , Dieta Alta en Grasa/efectos adversos , Envejecimiento/efectos de los fármacos , Humanos , Células Hep G2 , Ratones Endogámicos C57BL , Proteína Desacopladora 1/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Aspartato Aminotransferasas/sangre
2.
J Ethnopharmacol ; 330: 118244, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38663781

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bupleuri Radix (BR) has been recognized as an essential herbal medicine for relieving liver depression for thousands of years. Contemporary research has provided compelling evidence of its pharmacological effects, including anti-inflammatory, immunomodulatory, metabolic regulation, and anticancer properties, positioning it as a promising treatment option for various liver diseases. Hepatitis, steatohepatitis, cirrhosis, and liver cancer are among the prevalent and impactful liver diseases worldwide. However, there remains a lack of comprehensive systematic reviews that explore the prescription, bio-active components, and underlying mechanisms of BR in treating liver diseases. AIM OF THE REVIEW: To summarize the BR classical Chinese medical prescription and ingredients in treating liver diseases and their mechanisms to inform reference for further development and research. MATERIALS AND METHODS: Literature in the last three decades of BR and its classical Chinese medical prescription and ingredients were collated and summarized by searching PubMed, Wiley, Springer, Google Scholar, Web of Science, CNKI, etc. RESULTS: BR and its classical prescriptions, such as Xiao Chai Hu decoction, Da Chai Hu decoction, Si Ni San, and Chai Hu Shu Gan San, have been utilized for centuries as effective therapies for liver diseases, including hepatitis, steatohepatitis, cirrhosis, and liver cancer. BR is a rich source of active ingredients, such as saikosaponins, polysaccharides, flavonoids, sterols, organic acids, and so on. These bioactive compounds exhibit a wide range of beneficial effects, including anti-inflammatory, antioxidant, immunomodulatory, and lipid metabolism regulation. However, it is important to acknowledge that BR and its constituents can also possess hepatotoxicity, which is associated with cytochrome P450 (CYP450) enzymes and oxidative stress. Therefore, caution should be exercised when using BR in therapeutic applications to ensure the safe and appropriate utilization of its potential benefits while minimizing any potential risks. CONCLUSIONS: To sum up, BR, its compounds, and its based traditional Chinese medicine are effective in liver diseases through multiple targets, multiple pathways, and multiple effects. Advances in pharmacological and toxicological investigations of BR and its bio-active components in the future will provide further contributions to the discovery of novel therapeutics for liver diseases.


Asunto(s)
Bupleurum , Medicamentos Herbarios Chinos , Hepatopatías , Animales , Humanos , Bupleurum/química , Enfermedad Crónica , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Hepatopatías/tratamiento farmacológico , Hepatopatías/metabolismo , Medicina Tradicional China/métodos , Fitoquímicos/uso terapéutico , Fitoquímicos/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/química
3.
J Ethnopharmacol ; 330: 118067, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636574

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jingfang Baidu Powder (JFBDP) is a classic traditional Chinese medicine prescription. Although Jingfang Baidu powder obtained a general consensus on clinical efficacy in treating pneumonia, there were many Chinese herbal drugs in formula, complex components, and large oral dosage, which brings certain obstacles to clinical application. AIM OF THE STUDY: Therefore, screening of the active fraction that exerts anti-pneumonia helps improve the pharmaceutical preparation, improve the treatment compliance of patients, and further contribute to the clinical application, and the screening of the new active ingredients with anti-pneumonia. The histopathological observation, real-time quantitative PCR, western blotting, and immunofluorescence were applied to evaluate the anti-pneumonia efficacy of active fractions from JFBDP. RESULTS: Three fractions from JFBDP inhibit the gene expression of IL-1ß, IL-10, CCL3, CCL5, and CCL22 in lung tissue infected by Klebsiella at various degrees, and presented a good dose-response relationship. JF50 showed stronger anti-inflammatory effects among three fractions including JF30, JF50, and JF75. Besides, JF50 significantly reduced the protein expression of TLR4 and Myd88 in lung tissue infected with Klebsiella, and it also significantly inhibited p-ERK and p-NF-κB p65. JF50 significantly inhibits the protein expression of Caspase 3, Caspase 8, and Caspase 9 in lung tissue infected with Klebsiella at the dose of 25 mg/kg and 50 mg/kg. CONCLUSION: JF50 improves lung pathological damage in Klebsiella pneumonia mice by inhibiting the TLR4/Myd88/NF-κB-ERK signaling pathway, and inhibiting apoptosis of lung tissue cells. These findings provide a reference for further exploring the active substance basis of Jingfang Baidu Powder in treating bacterial pneumonia.


Asunto(s)
Medicamentos Herbarios Chinos , Infecciones por Klebsiella , Factor 88 de Diferenciación Mieloide , Polvos , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Factor 88 de Diferenciación Mieloide/metabolismo , Ratones , Masculino , Infecciones por Klebsiella/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL
4.
J Ethnopharmacol ; 330: 118193, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636578

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Saiga antelope horn (SAH) is a traditional Chinese medicine for treating hypertension with liver-yang hyperactivity syndrome (Gan-Yang-Shang-Kang, GYSK), that has a long history of clinical application and precise efficacy, but its mechanism and functional substances are still unknown. Based on the demand for alternative research on the rare and endangered SAH, the group designed and carried out the following studies. AIM OF THE STUDY: The purpose of this research was to demonstrate the functional substances and mechanisms of SAH in the treatment of GYSK hypertension. MATERIALS AND METHODS: The GYSK-SHR model was constructed by administering a decoction of aconite to spontaneously hypertensive rats (SHRs). Blood pressure (BP), behavioural tests related to GYSK, and pathological changes in the kidneys, heart and aorta were measured to investigate the effects of SAH on GYSK-SHRs. Proteomic analysis was used to identify the keratins and peptides of SAH. Moreover, network pharmacology and plasma metabolomics studies were carried out to reveal the mechanisms by which functional peptides in SAH regulate GYSK-hypertension. RESULTS: SAH has a significant antihypertensive effect on GYSK hypertensive animals. It has also been proven to be effective in protecting the function and structural integrity of the kidneys, heart and aorta. Moreover, SAH improved the abnormalities of 31 plasma biomarkers in rats. By constructing a "biomarker-target-peptide" network, 10 functional peptides and two key targets were screened for antihypertensive effects of SAH. The results indicated that SAH may exert a therapeutic effect by re-establishing the imbalance of renin-angiotensin (RAS) system. CONCLUSIONS: Functional peptides from keratin contained in SAH are the main material basis for the treatment of GYSK-hypertension and exhibited the protective effect on the GYSK-SHR model through the RAS system.


Asunto(s)
Antihipertensivos , Hipertensión , Medicina Tradicional China , Metabolómica , Farmacología en Red , Ratas Endogámicas SHR , Animales , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Masculino , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Ratas , Medicina Tradicional China/métodos , Presión Sanguínea/efectos de los fármacos , Antílopes , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cuernos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Modelos Animales de Enfermedad
5.
J Ethnopharmacol ; 330: 118212, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636577

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The combination of Aconitum carmichaelii Debx (Chuanwu, CW) and Pinellia ternata (Thunb.) Breit (Banxia, BX) forms an herbal pair within the eighteen incompatible medicaments (EIM), indicating that BX and CW are incompatible. However, the scientific understanding of this incompatibility mechanism, especially the corresponding drug-drug interaction (DDI), remains complex and unclear. AIM OF THE STUDY: This study aims to explain the DDI and potential incompatibility mechanism between CW and BX based on pharmacokinetics and cocktail approach. MATERIALS AND METHODS: Ultraperformance liquid chromatography-tandem mass spectrometry methods were established for pharmacokinetics and cocktail studies. To explore the DDI between BX and CW, in the pharmacokinetics study, 10 compounds were determined in rat plasma after administering CW and BX-CW herbal pair extracts. In the cocktail assay, the pharmacokinetic parameters of five probe substrates were utilized to assess the influence of BX on cytochrome P450 (CYP) isoenzyme (dapsone for CYP3A4, phenacetin for CYP1A2, dextromethorphan for CYP2D6, tolbutamide for CYP2C9, and omeprazole for CYP2C19). Finally, the DDI and incompatibility mechanism of CW and BX were integrated to explain the rationality of EIM theory. RESULTS: BX not only enhances the absorption of aconitine and benzoylaconine but also accelerates the metabolism of mesaconitine, benzoylmesaconine, songorine, and fuziline. Moreover, BX affects the activity of CYP enzymes, which regulate the metabolism of toxic compounds. CONCLUSIONS: BX altered the activity of CYP enzymes, consequently affecting the metabolism of toxic compounds from CW. This incompatibility mechanism may be related to the increased absorption of these toxic compounds in vivo.


Asunto(s)
Aconitum , Interacciones de Hierba-Droga , Pinellia , Ratas Sprague-Dawley , Aconitum/química , Pinellia/química , Animales , Masculino , Ratas , Sistema Enzimático del Citocromo P-450/metabolismo , Espectrometría de Masas en Tándem , Extractos Vegetales/farmacocinética , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/química , Interacciones Farmacológicas
6.
J Ethnopharmacol ; 330: 118211, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636580

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qilong capsule (QC) is developed from the traditional Chinese medicine formula Buyang Huanwu Decoction, which has been clinically used to invigorate Qi and promote blood circulation to eliminate blood stasis. Myocardial ischemia‒reperfusion injury (MIRI) can be attributed to Qi deficiency and blood stasis. However, the effects of QC on MIRI remain unclear. AIM OF THE STUDY: This study aimed to investigate the protective effect and possible mechanism of QC on platelet function in MIRI rats. MATERIALS AND METHODS: The left anterior descending artery of adult Sprague‒Dawley rats was ligated for 30 min and then reperfused for 120 min with or without QC treatment. Then, the whole blood viscosity, plasma viscosity, coagulation, platelet adhesion rate, platelet aggregation, and platelet release factors were evaluated. Platelet CD36 and its downstream signaling pathway-related proteins were detected by western blotting. Furthermore, the active components of QC and the molecular mechanism by which QC regulates platelet function were assessed via molecular docking, platelet aggregation tests in vitro and BLI analysis. RESULTS: We found that QC significantly reduced the whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation induced by ADP or AA in rats with MIRI. The inhibition of platelet activation by QC was associated with reduced levels of ß-TG, PF-4, P-selectin and PAF. Mechanistically, QC effectively attenuated the expression of platelet CD36 and thus inhibited the activation of Src, ERK5, and p38. The active components of QC apparently suppressed platelet aggregation in vitro and regulated the CD36 signaling pathway. CONCLUSIONS: QC improves MIRI-induced hemorheological disorders, which might be partly attributed to the inhibition of platelet activation via CD36-mediated platelet signaling pathways.


Asunto(s)
Plaquetas , Antígenos CD36 , Medicamentos Herbarios Chinos , Daño por Reperfusión Miocárdica , Activación Plaquetaria , Agregación Plaquetaria , Ratas Sprague-Dawley , Transducción de Señal , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Transducción de Señal/efectos de los fármacos , Masculino , Activación Plaquetaria/efectos de los fármacos , Antígenos CD36/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Ratas , Simulación del Acoplamiento Molecular
7.
J Ethnopharmacol ; 330: 118208, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636581

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zhilong Huoxue Tongyu Capsule (ZL) is clinically prescribed for acute ischemic stroke (AIS). However, only a few studies have addressed the mechanisms of ZL in treating AIS. AIM OF THE STUDY: To explore the underlying mechanism of macrophage polarization and inflammation mediated by ZL, and to provide a reference for AIS treatment. MATERIALS AND METHODS: Sixteen SD rats were fed with different dose of ZL (0, 0.4, 0.8, and 1.6 g/kg/d) for 4 days to prepare ZL serum. After 500 ng/mL lipopolysaccharide (LPS) stimulation, RAW264.7 cells were administrated with ZL serum. Then, experiments including ELISA, flow cytometry, real-time quantitative PCR and Western blot were performed to verify the effects of ZL on macrophage polarization and inflammation. Next, let-7i inhibitor was transfected in RAW264.7 cells when treated with LPS and ZL serum to verify the regulation of ZL on the let-7i/TLR9/MyD88 signaling pathway. Moreover, the interaction between let-7i and TLR9 was confirmed by the dual-luciferase assay. RESULTS: ZL serum significantly decreased the expression of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and increased the expression of IL-10 and transforming growth factor ß1 (TGF-ß1) of LPS stimulated-macrophages. Furthermore, ZL serum polarized macrophages toward M2, decreased the expressions of TLR9, MyD88, and iNOS, as well as increased the expressions of let-7i, CHIL3, and Arginase-1. It is worth mentioning that the effect of ZL serum is dose-dependent. However, let-7i inhibitor restored all the above effects in LPS stimulated-macrophages. In addition, TLR9 was the target of let-7i. CONCLUSIONS: ZL targeted let-7i to inhibit TLR9 expression, thereby inhibiting the activation of the TLR9/MyD88 pathway, promoting the M2 polarization, and inhibiting the development of inflammation in AIS.


Asunto(s)
Medicamentos Herbarios Chinos , Macrófagos , MicroARNs , Factor 88 de Diferenciación Mieloide , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 9 , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Ratones , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Receptor Toll-Like 9/metabolismo , Medicamentos Herbarios Chinos/farmacología , MicroARNs/metabolismo , Ratas , Masculino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos , Antiinflamatorios/farmacología
8.
J Ethnopharmacol ; 330: 118224, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38642623

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sophorae tonkinensis Radix et Rhizoma (STR) is an extensively applied traditional Chinese medicine (TCM) in southwest China. However, its clinical application is relatively limited due to its hepatotoxicity effects. AIM OF THE STUDY: To understand the material foundation and liver injury mechanism of STR. MATERIALS AND METHODS: Chemical compositions in STR and its prototypes in mice were profiled by ultra-performance liquid chromatography coupled quadrupole-time of flight mass spectrometry (UPLC-Q/TOF MS). STR-induced liver injury (SILI) was comprehensively evaluated by STR-treated mice mode. The histopathologic and biochemical analyses were performed to evaluate liver injury levels. Subsequently, network pharmacology and multi-omics were used to analyze the potential mechanism of SILI in vivo. And the target genes were further verified by Western blot. RESULTS: A total of 152 compounds were identified or tentatively characterized in STR, including 29 alkaloids, 21 organic acids, 75 flavonoids, 1 quinone, and 26 other types. Among them, 19 components were presented in STR-medicated serum. The histopathologic and biochemical analysis revealed that hepatic injury occurred after 4 weeks of intragastric administration of STR. Network pharmacology analysis revealed that IL6, TNF, STAT3, etc. were the main core targets, and the bile secretion might play a key role in SILI. The metabolic pathways such as taurine and hypotaurine metabolism, purine metabolism, and vitamin B6 metabolism were identified in the STR exposed groups. Among them, taurine, hypotaurine, hypoxanthine, pyridoxal, and 4-pyridoxate were selected based on their high impact value and potential biological function in the process of liver injury post STR treatment. CONCLUSIONS: The mechanism and material foundation of SILI were revealed and profiled by a multi-omics strategy combined with network pharmacology and chemical profiling. Meanwhile, new insights were taken into understand the pathological mechanism of SILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Rizoma , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Ratones , Masculino , Medicamentos Herbarios Chinos/farmacología , Sophora/química , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Metabolómica , Cromatografía Líquida de Alta Presión , Farmacología en Red , Multiómica , Animales no Consanguíneos
9.
J Ethnopharmacol ; 330: 118209, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38663779

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dan-shen Yin (DSY), a traditional prescription, has been demonstrated to be effective in decreasing hyperlipidemia and preventing atherosclerosis (AS), but its mechanism remains unknown. We hypothesized that DSY activates farnesoid X receptor (FXR) to promote bile acid metabolism and excretion, thereby alleviating AS. AIM OF THE STUDY: This study was designed to explore whether DSY reduces liver lipid accumulation and prevents AS by activating FXR and increasing cholesterol metabolism and bile acid excretion. MATERIALS AND METHODS: The comprehensive chemical characterization of DSY was analyzed by UHPLC-MS/MS. The AS models of ApoE-/- mice and SD rats was established by high-fat diet and high-fat diet combined with intraperitoneal injection of vitamin D3, respectively. The aortic plaque and pathological changes were used to evaluate AS. Lipid levels, H&E staining and oil red O staining were used to evaluate liver lipid accumulation. The cholesterol metabolism and bile acid excretion were evaluated by enzyme-linked immunosorbent assay, UPLC-QQQ/MS. In vitro, the lipid and FXR/bile salt export pump (BSEP) levels were evaluated by oil red O staining, real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. RESULTS: A total of 36 ingredients in DSY were identified by UPLC-MS/MS analysis. In vivo, high-dose DSY significantly inhibited aortic intimal thickening, improved arrangement disorder, tortuosity, and rupture of elastic fibers, decreased lipid levels, and reduced the number of fat vacuoles and lipid droplets in liver tissue in SD rats and ApoE-/- mice. Further studies found that high-dose DSY significantly reduced liver lipid and total bile acids levels, increased liver ursodeoxycholic acid (UDCA) and other non-conjugated bile acids levels, increased fecal total cholesterol (TC) levels, and augmented FXR, BSEP, cholesterol 7-alpha hydroxylase (CYP7A1), ATP binding cassette subfamily G5/G8 (ABCG5/8) expression levels, while decreasing ASBT expression levels. In vitro studies showed that DSY significantly reduced TC and TG levels, as well as lipid droplets, while also increasing the expression of ABCG5/8, FXR, and BSEP in both HepG2 and Nr1h4 knockdown HepG2 cells. CONCLUSION: This study demonstrated that DSY promotes bile acid metabolism and excretion to prevent AS by activating FXR. For the prevent of AS and drug discovery provided experimental basis.


Asunto(s)
Aterosclerosis , Ácidos y Sales Biliares , Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares , Transducción de Señal , Animales , Ácidos y Sales Biliares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino , Medicamentos Herbarios Chinos/farmacología , Transducción de Señal/efectos de los fármacos , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Noqueados para ApoE , Ratas , Humanos
10.
Artículo en Inglés | MEDLINE | ID: mdl-38642410

RESUMEN

DangGui-KuShen (DK) is a well-known classic traditional Chinese medicine recipe that improves blood circulation, eliminates moisture, and detoxifies, and is frequently used in the treatment of cardiovascular problems. Some protective effects of DK on cardiovascular disease have previously been identified, but its precise mechanism remains unknown. The goal of this study is to combine metabolomics and network pharmacology to investigate DK's protective mechanism in Ischemic Heart Disease(IHD) rat models. A combination of metabolomics and network pharmacology based on UPLC-Q-TOF/MS technology was used in this study to verify the effect of DK on IHD through enzyme-linked immunosorbent assay, HE staining, and electrocardiogram, and it was determined that DK improves the synergistic mechanism of IHD. In total, 22 serum differential metabolites and 26 urine differential metabolites were discovered, with the majority of them involved in phenylalanine, tyrosine, and tryptophan biosynthesis, glycine, serine, and threonine metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, purine metabolism, and other metabolic pathways. Furthermore, using network pharmacology, a composite target pathway network of DangGui and KuShen for treating IHD was created, which is primarily associated to the tumor necrosis factor (TNF) signaling pathway, P53 signaling, and HIF-1 signaling pathways. The combined research indicated that the NF-B signaling pathway and the HIF-1 signaling pathway are critical in DK treatment of IHD. This study clearly confirms and expands on current knowledge of the synergistic effects of DG and KS in IHD.


Asunto(s)
Medicamentos Herbarios Chinos , Metaboloma , Metabolómica , Isquemia Miocárdica , Farmacología en Red , Ratas Sprague-Dawley , Animales , Medicamentos Herbarios Chinos/farmacología , Metabolómica/métodos , Ratas , Masculino , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , Metaboloma/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Redes y Vías Metabólicas/efectos de los fármacos
11.
J Ethnopharmacol ; 330: 118102, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38561057

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY: The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS: First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS: 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION: This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Farmacología en Red , Proteómica , Animales , Asma/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Ratones , Mapas de Interacción de Proteínas , Femenino , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Ratones Endogámicos BALB C , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Antiasmáticos/farmacología , Modelos Animales de Enfermedad , Ovalbúmina , Masculino
12.
Mikrochim Acta ; 191(5): 231, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38565795

RESUMEN

Blood stasis syndrome (BSS) has persistent health risks; however, its pathogenesis remains elusive. This obscurity may result in missed opportunities for early intervention, increased susceptibility to chronic diseases, and reduced accuracy and efficacy of treatments. Metabolomics, employing the matrix-assisted laser desorption/ionization (MALDI) strategy, presents distinct advantages in biomarker discovery and unraveling molecular mechanisms. Nonetheless, the challenge is to develop efficient matrices for high-sensitivity and high-throughput analysis of diverse potential biomarkers in complex biosamples. This work utilized nitrogen-doped porous transition metal carbides and nitrides (NP-MXene) as a MALDI matrix to delve into the molecular mechanisms underlying BSS pathogenesis. Structural optimization yielded heightened peak sensitivity (by 1.49-fold) and increased peak numbers (by 1.16-fold) in clinical biosamples. Validation with animal models and clinical serum biosamples revealed significant differences in metabolic fingerprints between BSS and control groups, achieving an overall diagnostic efficacy of 0.905 (95% CI, 0.76-0.979). Prostaglandin F2α was identified as a potential biomarker (diagnostics efficiency of 0.711, specificity = 0.7, sensitivity = 0.6), and pathway enrichment analysis disclosed disruptions in arachidonic acid metabolism in BSS. This innovative approach not only advances comprehension of BSS pathogenesis, but also provides valuable insights for personalized treatment and diagnostic precision.


Asunto(s)
Medicamentos Herbarios Chinos , Animales , Dinoprost , Retroalimentación , Nitrógeno , Porosidad , Compuestos Orgánicos , Biomarcadores
13.
Gene ; 916: 148438, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38579905

RESUMEN

AIM: of the study: This study used network pharmacology and the Gene Expression Omnibus (GEO) database to investigate the therapeutic effects of Corbrin capsules on acute kidney injury (AKI)-COVID-19 (coronavirus disease 2019). MATERIALS AND METHODS: The active constituents and specific molecular targets of Corbrin capsules were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Swiss Target Prediction databases. The targets related to AKI and COVID-19 disease were obtained from the Online Mendelian Inheritance in Man (OMIM), GeneCards, and GEO databases. A protein-protein interaction (PPI) network was constructed by utilizing Cytoscape. To enhance the analysis of pathways associated with the pathogenesis of AKI-COVID-19, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Furthermore, immune infiltration analysis was performed by using single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. Molecular docking was used to assess interactions between differentially expressed genes and active ingredients. Verification was performed by utilizing GEO databases and in vivo assays. RESULTS: This study revealed an overlap of 18 significantly differentially expressed genes between the Corbrin capsules group and the AKI-COVID-19 target group. Analysis of the PPI network identified TP53, JAK2, PIK3CA, PTGS2, KEAP1, and MCL1 as the top six core protein targets with the highest degrees. The results obtained from GO and KEGG analyses demonstrated that the target genes were primarily enriched in the apoptosis and JAK-STAT signaling pathways. Moreover, the analysis of immune infiltration revealed a notable disparity in the percentage of quiescent memory CD4 + T cells. Western blot analyses provided compelling evidence suggesting that the dysregulation of 6 core protein targets could be effectively reversed by Corbrin capsules. CONCLUSION: This study revealed the key components, targets, and pathways involved in treating AKI-related COVID-19 using Corbrin capsules. This study also provided a new understanding of the molecular mechanisms underlying this treatment.


Asunto(s)
Lesión Renal Aguda , Tratamiento Farmacológico de COVID-19 , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/genética , Mapas de Interacción de Proteínas/efectos de los fármacos , Humanos , COVID-19/genética , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Bases de Datos Genéticas , Cápsulas , SARS-CoV-2 , Transducción de Señal/efectos de los fármacos , Ratas , Masculino , Ontología de Genes , Medicina Tradicional China/métodos
14.
J Ethnopharmacol ; 330: 118110, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38580189

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Myocardial infarction has likely contributed to the increased prevalence of heart failure(HF).As a result of ventricular remodeling and reduced cardiac function, colonic blood flow decreases, causing mucosal ischemia and hypoxia of the villous structure of the intestinal wall.This damage in gut barrier function increases bowel wall permeability, leading to fluid metabolism disorder,gut microbial dysbiosis, increased gut bacteria translocation into the circulatory system and increased circulating endotoxins, thus promoting a typical inflammatory state.Traditional Chinese Medicine plays a key role in the prevention and treatment of HF.Kidney-tonifying Blood-activating(KTBA) decoction has been proved for clinical treatment of chronic HF.However,the mechanism of KTBA decoction on chronic HF is still unclear. AIMS OF THE STUDY: The effect of KTBA decoction on gut microbiota and metabolites and p38MAPK/p65NF-κB/AQP4 signaling in rat colon was studied to investigate the mechanism that KTBA decoction delays ventricular remodeling and regulates water metabolism disorder in rats with HF after myocardial infarction based on the theory of "Kidney Storing Essence and Conducting Water". MATERIAL AND METHODS: In vivo,a rat model of HF after myocardial infarction was prepared by ligating the left anterior descending coronary artery combined with exhaustive swimming and starvation.The successful modeling rats were randomly divided into five groups:model group, tolvaptan group(gavaged 1.35mg/(kg•D) tolvaptan),KTBA decoction group(gavaged 15.75g/(kg•D) of KTBA decoction),KTBA decoction combined with SB203580(p38MAPK inhibitor) group(gavaged 15.75g/(kg•D) of KTBA decoction and intraperitoneally injected 1.5mg/(kg•D) of SB203580),and KTBA decoction combined with PDTC(p65NF-kB inhibitor) group(gavaged 15.75g/(kg•D) of KTBA decoction and intraperitoneally injected 120mg/(kg•D) of PDTC).The sham-operation group and model group were gavaged equal volume of normal saline.After 4 weeks of intervention with KTBA decoction,the effect of KTBA decoction on the cardiac structure and function of chronic HF model rats was observed by ultrasonic cardiogram.General state and cardiac index in rats were evaluated.Enzyme linked immunosorbent assay(ELISA) was used to measure N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration in rat serum.Hematoxylin and eosin(H&E) staining,and transmission electron microscope(TEM) were used to observe the morphology and ultrastructure of myocardial and colonic tissue,and myocardial fibrosis was measured by Masson's staining.Cardiac E-cadherin level was detected by Western blot.The mRNA expression and protein expression levels of p38MAPK,I-κBα, p65NF-κB,AQP4,Occludin and ZO-1 in colonic tissue were detected by reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR) and immunohistochemistry. Protein expression of p38MAPK, p-p38MAPK,I-κBα,p-I-κBα,p65NF-κB, p-p65NF-κB,AQP4,Occludin and ZO-1 in rat colon was detected using Western blot.Colonic microbiota and serum metabolites were respectively analyzed by amplicon sequencing and liquid chromatography-mass spectrometry.In vitro, CCD-841CoN cell was placed in the ischemic solution under hypoxic conditions (94%N2,5%CO2,and 1%O2) in a 37 °C incubator to establish an ischemia and hypoxia model.The CCD-841CoN cells were divided into 7 groups, namely blank group and model group with normal rat serum plus control siRNA, tolvaptan group with rat serum containing tolvaptan plus control siRNA, KTBA group with rat serum containing KTBA plus control siRNA, KTBA plus p38MAPK siRNA group, KTBA plus p65NF-κB siRNA group,and KTBA plus AQP4siRNA group.After 24h and 48h of intervention with KTBA decoction,RT-qPCR,immunofluorescence and Western blot was used to detect the mRNA expression and protein expression levels of p38MAPK,I-κBα,p65NF-κB,AQP4, Occludin and ZO-1 in CCD-841CoN cells. RESULTS: Compared with the model, KTBA decoction improved the general state, decraesed the serum NT-proBNP level,HW/BW ratio, LVIDd and LVIDs, increased E-cadherin level,EF and FS,reduced number of collagen fibers deposited in the myocardial interstitium,and recovered irregular arrangement of myofibril and swollen or vacuolated mitochondria with broken crista in myocardium.Moreover, KTBA decoction inhibited the expression of p38MAPK,I-κBα,and p65NF-κB and upregulated AQP4, Occludin and ZO-1 in colon tissues and CCD-841CoN cells.Additionally,p38siRNA or SB203580, p65siRNA or PDTC, and AQP4siRNA partially weakened the protective effects of KTBA in vitro and vivo.Notably,The LEfSe analysis results showed that there were six gut biomaker bacteria in model group, including Allobaculum, Bacillales,Turicibacter, Turicibacterales,Turicibacteraceae,and Bacilli. Besides, three gut biomaker bacteria containing Deltaproteobacteria, Desulfovibrionaceae,and Desulfovibrionales were enriched by KTBA treatment in chronic HF model.There were five differential metabolites, including L-Leucine,Pelargonic acid, Capsidiol,beta-Carotene,and L- Erythrulose, which can be regulated back in the same changed metabolic routes by the intervention of KTBA.L-Leucine had the positive correlation with Bacillales, Turicibacterales,Turicibacteraceae,and Turicibacter.L-Leucine significantly impacts Protein digestion and absorption, Mineral absorption,and Central carbon metabolism in cancer regulated by KTBA, which is involved in the expression of MAPK and tight junction in intestinal epithelial cells. CONCLUSIONS: KTBA decoction manipulates the expression of several key proteins in the p38MAPK/p65NF-κB/AQP4 signaling pathway, modulates gut microbiota and metabolites toward a more favorable profile, improves gut barrier function, delays cardiomyocyte hypertrophy and fibrosis,and improves cardiac function.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Insuficiencia Cardíaca , Ratas Sprague-Dawley , Transducción de Señal , Remodelación Ventricular , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Remodelación Ventricular/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Masculino , Insuficiencia Cardíaca/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Ratas , Factor de Transcripción ReIA/metabolismo , Enfermedad Crónica , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Modelos Animales de Enfermedad , Riñón/efectos de los fármacos , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Acuaporina 4
15.
J Ethnopharmacol ; 330: 118148, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583734

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herb Panax notoginseng (PN) tonifies blood, and its main active ingredient is saponin. PN is processed by different methods, resulting in different compositions and effects. AIM OF THE STUDY: To investigate changes in the microstructure and composition of fresh PN processed by different techniques and the anti-anemia effects on tumor-bearing BALB/c mice after chemotherapy with cyclophosphamide (CTX). MATERIALS AND METHODS: Fresh PN was processed by hot-air drying (raw PN, RPN), steamed at 120 °C for 5 h (steamed PN, SPN), or fried at 130 °C, 160 °C, or 200 °C for 8 min (fried PN, FPN1, FPN2, or FPN3, respectively); then, the microstructures were compared with 3D optical microscopy, quasi-targeted metabolites were detected by liquid chromatography tandem mass spectrometry (LC‒MS/MS), and saponins were detected by high-performance liquid chromatography (HPLC). An anemic mouse model was established by subcutaneous H22 cell injection and treatment with CTX. The antianemia effects of PN after processing via three methods were investigated by measuring peripheral blood parameters, performing HE staining and measuring cell proliferation via immunofluorescence. RESULTS: 3D optical profiling revealed that the surface roughness of the SPN and FPN was greater than that of the other materials. Quasi-targeted metabolomics revealed that SPN and FPN had more differentially abundant metabolites whose abundance increased, while SPN had greater amounts of terpenoids and flavones. Analysis of the composition and content of the targeted saponins revealed that the contents of rare saponins (ginsenoside Rh1, 20(S)-Rg3, 20(R)-Rg3, Rh4, Rk3, Rg5) were greater in the SPN. In animal experiments, the RBC, WBC, HGB and HCT levels in peripheral blood were increased by SPN and FPN. HE staining and immunofluorescence showed that H-SPN and M-FPN promoted bone marrow and spleen cell proliferation. CONCLUSION: The microstructure and components of fresh PN differed after processing via different methods. SPN and FPN ameliorated CTX-induced anemia in mice, but the effects of PN processed by these two methods did not differ.


Asunto(s)
Anemia , Ciclofosfamida , Ratones Endogámicos BALB C , Panax notoginseng , Saponinas , Animales , Ciclofosfamida/toxicidad , Panax notoginseng/química , Ratones , Saponinas/farmacología , Anemia/inducido químicamente , Anemia/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Masculino , Línea Celular Tumoral , Femenino
16.
J Ethnopharmacol ; 330: 118166, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621466

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Psoriasis is a chronic inflammatory skin disease. Vitamin D analogues are the first-line topical agents for the long-term management of psoriasis. Chinese herbal medicine (CHM) bath therapy is commonly employed for psoriasis. However, the effects and safety of CHM bath therapy for psoriasis vulgaris, using topical calcipotriol as the comparator, remain inconclusive. Furthermore, the combination of herbs, a distinctive feature of CHM, is essential for its therapeutic effects due to the individual and synergistic properties of the herbs involved. AIM OF THE STUDY: The review was conducted to evaluate the effectiveness and safety of CHM bath therapy for psoriasis vulgaris, using calcipotriol as the comparator. Potential herbs and herb combinations of CHM bath therapy were also explored for further drug discovery. MATERIALS AND METHODS: Nine databases were searched from inception until March 05, 2024. Randomised controlled trials (RCTs) investigating CHM bath therapy, using calcipotriol as the comparator, were included. Statistical analyses were performed using RevMan 5.4, Stata 12.0 and SPSS Clementine 12.0 software. The evidence certainty for outcomes was assessed using the approach proposed by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group. Moreover, association rule analysis on herbs identified in the systematic review was conducted to explore the potential herbs and herb combinations. RESULTS: A total of 17 RCTs involving 1,379 participants were included in this systematic review. The findings of this review revealed that: 1) CHM bath therapy produced comparable effects to calcipotriol in reducing Psoriasis Area and Severity Index (PASI), Psoriasis Scalp Severity Index (PSSI), and itch visual analogue scale (VAS) at the end of the treatment phase; as well as exhibited a superior long-term effect than calcipotriol through decreasing relapse rates at the end of the follow-up phase; 2) CHM bath therapy showed an additional benefit when combined with calcipotriol in managing psoriasis vulgaris at the end of the treatment phase, in terms of PASI, PSSI, itch VAS, IL-17, IL-23, CD3+ and CD4+ T cells. The certainty of the evidence was rated as 'very low', 'low' or 'moderate' based on the GRADE assessment, considering some concerns or high risk of bias of included studies, substantial heterogeneity, and existing publication bias of some outcomes. Additionally, the proportions of participants reporting adverse events were similar in both groups. Association rule analysis of all included herbs identified 23 herb combinations including Prunus persica (L.) Batsch and Carthamus tinctorius L., as well as 11 frequently used herbs, such as Kochia scoparia (L.) Schrad., Dictamnus dasycarpus Turcz. And Sophora flavescens Ait. CONCLUSIONS: The effects of CHM bath therapy were comparable with those of topical calcipotriol but demonstrated a longer-lasting effect. Combining CHM bath therapy with calcipotriol also provided an additional benefit for adult psoriasis vulgaris. However, the certainty of the evidence was downgraded due to the methodological limitations of included studies. To confirm the findings of this review, future investigations should involve double-blinded, placebo-controlled RCTs. Importantly, it appears worthwhile to consider further research for drug development utilising the identified herbs or herb combinations.


Asunto(s)
Calcitriol , Fármacos Dermatológicos , Medicamentos Herbarios Chinos , Psoriasis , Humanos , Baños , Calcitriol/análogos & derivados , Calcitriol/administración & dosificación , Calcitriol/uso terapéutico , Fármacos Dermatológicos/administración & dosificación , Fármacos Dermatológicos/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/administración & dosificación , Medicina Tradicional China/métodos , Psoriasis/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
17.
J Ethnopharmacol ; 330: 118179, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636575

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is a typical chronic microvascular complication of diabetes, characterized by proteinuria and a gradual decline in renal function. At present, there are limited clinical interventions aimed at preventing the progression of DN to end-stage renal disease (ESRD). However, Chinese herbal medicine presents a distinct therapeutic approach that can be effectively combined with conventional Western medicine treatments to safeguard renal function. This combination holds considerable practical implications for the treatment of DN. AIM OF THE STUDY: This review covers commonly used Chinese herbal remedies and decoctions applicable to various types of DN, and we summarize the role played by their active ingredients in the treatment of DN and their mechanisms, which includes how they might improve inflammation and metabolic abnormalities to provide new ideas to cope with the development of DN. MATERIALS AND METHODS: With the keywords "diabetic nephropathy," "Chinese herbal medicine," "clinical effectiveness," and "bioactive components," we conducted an extensive literature search of several databases, including PubMed, Web of Science, CNKI, and Wanfang database, to discover studies on herbal formulas that were effective in slowing the progression of DN. The names of the plants covered in the review have been checked at MPNS (http://mpns.kew.org). RESULTS: This review demonstrates the superior total clinical effective rate of combining Chinese herbal medicines with Western medicines over the use of Western medicines alone, as evidenced by summarizing the results of several clinical trials. Furthermore, the review highlights the nephroprotective effects of seven frequently used herbs exerting beneficial effects such as podocyte repair, anti-fibrosis of renal tissues, and regulation of glucose and lipid metabolism through multiple signaling pathways in the treatment of DN. CONCLUSIONS: The potential of herbs in treating DN is evident from their excellent effectiveness and the ability of different herbs to target various symptoms of the condition. However, limitations arise from the deficiencies in interfacing with objective bioindicators, which hinder the integration of herbal therapies into modern medical practice. Further research is warranted to address these limitations and enhance the compatibility of herbal therapies with contemporary medical standards.


Asunto(s)
Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Nefropatías Diabéticas/tratamiento farmacológico , Humanos , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Animales , Medicina Tradicional China/métodos , Fitoterapia
18.
Sci Total Environ ; 930: 172515, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642759

RESUMEN

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.


Asunto(s)
Carbón Orgánico , Compostaje , Sustancias Húmicas , Nitrógeno , Fósforo , Fósforo/análisis , Carbón Orgánico/química , Nitrógeno/análisis , Compostaje/métodos , Microbiología del Suelo , Medicamentos Herbarios Chinos/química , Suelo/química
19.
Phytomedicine ; 128: 155390, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569296

RESUMEN

BACKGROUND: Well-defined and effective pharmacological interventions for clinical management of myocardial ischemia/reperfusion (MI/R) injury are currently unavailable. Shexiang Baoxin Pill (SBP), a traditional Chinese medicine Previous research on SBP has been confined to single-target treatments for MI/R injury, lacking a comprehensive examination of various aspects of MI/R injury and a thorough exploration of its underlying mechanisms. PURPOSE: This study aimed to investigate the therapeutic potential of SBP for MI/R injury and its preventive effects on consequent chronic heart failure (CHF). Furthermore, we elucidated the specific mechanisms involved, contributing valuable insights into the potential pharmacological interventions for the clinical treatment of MI/R injury. METHODS: We conducted a comprehensive identification of SBP components using high-performance liquid chromatography. Subsequently, we performed a network pharmacology analysis based on the identification results, elucidating the key genes influenced by SBP. Thereafter, through bioinformatics analysis of the key genes and validation through mRNA and protein assays, we ultimately determined the centralized upstream targets. Lastly, we conducted in vitro experiments using myocardial and endothelial cells to elucidate and validate potential underlying mechanisms. RESULTS: SBP can effectively mitigate cell apoptosis, oxidative stress, and inflammation, as well as promote vascular regeneration following MI/R, resulting in improved cardiac function and reduced CHF risk. Mechanistically, SBP treatment upregulates sphingosine-1-phosphate receptor 1 (S1PR1) expression and activates the S1PR1 signaling pathway, thereby regulating the expression of key molecules, including phosphorylated Protein Kinase B (AKT), phosphorylated signal transducer and activator of transcription 3, epidermal growth factor receptor, vascular endothelial growth factor A, tumor necrosis factor-α, and p53. CONCLUSION: This study elucidated the protective role of SBP in MI/R injury and its potential to reduce the risk of CHF. Furthermore, by integrating downstream effector proteins affected by SBP, this research identified the upstream effector protein S1PR1, enhancing our understanding of the pharmacological characteristics and mechanisms of action of SBP. The significance of this study lies in providing compelling evidence for the use of SBP as a traditional Chinese medicine for MI/R injury and consequent CHF prevention.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Daño por Reperfusión Miocárdica , Receptores de Esfingosina-1-Fosfato , Animales , Humanos , Masculino , Ratones , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Farmacología en Red , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/metabolismo
20.
Int Immunopharmacol ; 133: 112044, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648716

RESUMEN

BACKGROUND: The prevalence of type 2 diabetic nephropathy (T2DN) ranges from 20 % to 40 % among individuals with type 2 diabetes. Multiple immune pathways play a pivotal role in the pathogenesis of T2DN. This study aimed to investigate the immunomodulatory effects of active ingredients derived from 14 traditional Chinese medicines (TCMs) on T2DN. METHODS: By removing batch effect on the GSE30528 and GSE96804 datasets, we employed a combination of weighted gene co-expression network analysis, least absolute shrinkage and selection operator analysis, protein-protein interaction network analysis, and the CIBERSORT algorithm to identify the active ingredients of TCMs as well as potential hub biomarkers associated with immune cells. Functional analysis was conducted using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and gene set variation analysis (GSVA). Additionally, molecular docking was employed to evaluate interactions between active ingredients and potential immunotherapy targets. RESULTS: A total of 638 differentially expressed genes (DEGs) were identified in this study, comprising 5 hub genes along with 4 potential biomarkers. Notably, CXCR1, CXCR2, and FOS exhibit significant associations with immune cells while displaying robust or favorable affinities towards the active ingredients kaempferol, quercetin, and luteolin. Furthermore, functional analysis unveiled intricate involvement of DEGs, hub genes and potential biomarkers in pathways closely linked to immunity and diabetes. CONCLUSION: The potential hub biomarkers and immunotherapy targets associated with immune cells of T2DN comprise CXCR1, CXCR2, and FOS. Furthermore, kaempferol, quercetin, and luteolin demonstrate potential immunomodulatory effects in modulating T2DN through the regulation of CXCR1, CXCR2, and FOS expression.


Asunto(s)
Biología Computacional , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Receptores de Interleucina-8B , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/inmunología , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/genética , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA