Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 677: 57-67, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31051383

RESUMO

Sustainable agriculture encourages practices that present low risks to the environment and human health. To this end, zein (corn protein) can be used to develop nanocarrier systems capable of improving the physicochemical properties of biopesticides, reducing their possible toxicity. Neem oil extracted from the Azadirachta indica tree contains many active ingredients including azadirachtin, which is the active ingredient in multiple commercially available biopesticides. In this study, we describe the preparation and characterization of neem oil-loaded zein nanoparticles, together with evaluation of their toxicity towards nontarget organisms, using Allium cepa, soil nitrogen cycle microbiota, and Caenorhabditis elegans aiming to achieve the safer by design strategy. The spherical nanoparticles showed an average diameter of 278 ±â€¯61.5 nm and a good stability during the experiments. In the toxicity assays with A. cepa, the neem oil-loaded zein nanoparticles mitigated the increase in the DNA relative damage index caused by the neem oil. Molecular genetic analysis of the soil nitrogen cycle microbiota revealed that neem oil-loaded zein nanoparticles did not change the number of genes which encode nitrogen-fixing enzymes and denitrifying enzymes. In C. elegans, the neem oil-loaded zein nanoparticles had no toxic effect, while neem oil interfered with pharyngeal pumping and GST-4 protein expression. These neem oil-loaded zein nanoparticles showed promising results in the toxicity studies, opening perspectives for its use in crop protection in organic agriculture.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Glicerídeos/toxicidade , Microbiota/efeitos dos fármacos , Cebolas/efeitos dos fármacos , Praguicidas/toxicidade , Terpenos/toxicidade , Animais , Ecotoxicologia , Nanopartículas/toxicidade , Ciclo do Nitrogênio , Microbiologia do Solo , Testes de Toxicidade
2.
Metallomics ; 11(2): 362-374, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30516209

RESUMO

Thimerosal (THIM) is a well-established antifungal and antiseptic agent widely used as a preservative in vaccines. Recent studies identified the neurotoxic effects of THIM, including malfunction of the monoaminergic system. However, the underlying cytotoxic mechanisms are not well understood. Here we used the fruit fly Drosophila melanogaster to investigate the mechanisms of THIM-induced neurotoxicity. We focused on the dopaminergic system, and the rate-limiting enzyme tyrosine hydroxylase (DmTyrH), to test the hypothesis that THIM can impair dopamine (DA) homeostasis and subsequently cause dysfunction. We studied the effect of THIM by feeding 1-2 day old flies (both sexes) food supplemented with 25 µM THIM for 4 days and determined THIM-induced effects on survival, oxidative stress, and metabolic activity based on MTT assay and acetylcholinesterase (AChE) activity. Our results demonstrate that D. melanogaster exposed to THIM present changes in DmTyrH expression and activity, together with altered DA levels that led to impaired motor behavior. These phenotypes were accompanied by an increase in oxidative stress, with a decrease in MTT reduction, in AChE activity, and also in survival rate. These findings suggest an initiating and primary role for THIM-mediated DmTyrH dysfunction that leads to impaired DA function and behavioral abnormalities, ultimately causing oxidative stress-related neurotoxicity.


Assuntos
Dopamina/metabolismo , Timerosal/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Drosophila melanogaster , Feminino , Glutationa Transferase/metabolismo , Masculino , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
3.
BMC Pharmacol Toxicol ; 17(1): 57, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27814772

RESUMO

Manganese (Mn) is an essential heavy metal. However, Mn's nutritional aspects are paralleled by its role as a neurotoxicant upon excessive exposure. In this review, we covered recent advances in identifying mechanisms of Mn uptake and its molecular actions in the brain as well as promising neuroprotective strategies. The authors focused on reporting findings regarding Mn transport mechanisms, Mn effects on cholinergic system, behavioral alterations induced by Mn exposure and studies of neuroprotective strategies against Mn intoxication. We report that exposure to Mn may arise from environmental sources, occupational settings, food, total parenteral nutrition (TPN), methcathinone drug abuse or even genetic factors, such as mutation in the transporter SLC30A10. Accumulation of Mn occurs mainly in the basal ganglia and leads to a syndrome called manganism, whose symptoms of cognitive dysfunction and motor impairment resemble Parkinson's disease (PD). Various neurotransmitter systems may be impaired due to Mn, especially dopaminergic, but also cholinergic and GABAergic. Several proteins have been identified to transport Mn, including divalent metal tranporter-1 (DMT-1), SLC30A10, transferrin and ferroportin and allow its accumulation in the central nervous system. Parallel to identification of Mn neurotoxic properties, neuroprotective strategies have been reported, and these include endogenous antioxidants (for instance, vitamin E), plant extracts (complex mixtures containing polyphenols and non-characterized components), iron chelating agents, precursors of glutathione (GSH), and synthetic compounds that can experimentally afford protection against Mn-induced neurotoxicity.


Assuntos
Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/prevenção & controle , Manganês/toxicidade , Transtornos das Habilidades Motoras/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Animais , Encéfalo/metabolismo , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/metabolismo , Alimentos/efeitos adversos , Humanos , Manganês/metabolismo , Intoxicação por Manganês/metabolismo , Intoxicação por Manganês/prevenção & controle , Transtornos das Habilidades Motoras/induzido quimicamente , Transtornos das Habilidades Motoras/metabolismo , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/prevenção & controle
4.
Int J Environ Res Public Health ; 11(10): 10851-67, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25329536

RESUMO

Aging is often accompanied by cognitive impairments and influenced by oxidative status and chemical imbalances. Thus, this study was conducted to examine whether age-related cognitive deficit is associated with oxidative damage, especially with inhibition of the enzyme delta-aminolevulinate dehydratase (ALA-D), as well as to verify the influence of some metals in the enzyme activity and cognitive performance. Blood ALA-D activity, essential (Fe, Zn, Cu, Se) and non-essential metals (Pb, Cd, Hg, As, Cr, Ni, V) were measured in 50 elderly and 20 healthy young subjects. Cognitive function was assessed by tests from Consortium to Establish a Registry for Alzheimer's Disease (CERAD) battery and other. The elderly group presented decreased ALA-D activity compared to the young group. The index of ALA-D reactivation was similar to both study groups, but negatively associated with metals. The mean levels of essential metals were within the reference values, while the most toxic metals were above them in both groups. Cognitive function impairments were observed in elderly group and were associated with decreased ALA-D activity, with lower levels of Se and higher levels of toxic metals (Hg and V). Results suggest that the reduced ALA-D activity in elderly can be an additional factor involved in cognitive decline, since its inhibition throughout life could lead to accumulation of the neurotoxic compound ALA. Toxic metals were found to contribute to cognitive decline and also to influence ALA-D reactivation.


Assuntos
Transtornos Cognitivos/epidemiologia , Cognição , Inibidores Enzimáticos/toxicidade , Metais Pesados/sangue , Estresse Oxidativo , Sintase do Porfobilinogênio/sangue , Adulto , Idoso , Brasil/epidemiologia , Transtornos Cognitivos/sangue , Transtornos Cognitivos/enzimologia , Inibidores Enzimáticos/sangue , Feminino , Humanos , Masculino , Metais Pesados/toxicidade , Pessoa de Meia-Idade , Sintase do Porfobilinogênio/antagonistas & inibidores , Selênio/deficiência
5.
Int J Environ Res Public Health ; 11(10): 10091-104, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25264684

RESUMO

Recent studies have shown that phenolic compounds present in yerba mate have antioxidant defense properties. To verify whether Ilex paraguariensis extracts are capable of increasing the lifespan of an organism, we have used the free-living nematode Caenorhabditis elegans. Notably, this is the first study that analyzes the effects of the extracts of yerba mate obtained from an extraction method that mimics the manner that the plant is consumed by the population by using a live organism. Yerba mate was purchased from commercial markets from Argentina, Brazil, and Uruguay. Ilex paraguariensis extracts significantly increased the life span of C. elegans. Moreover, the extracts reduced the ROS levels per se, and protected from the reduced survival and reproduction rate induced by paraquat exposure. Considering molecular aspects, we observed that the worms pretreated with the extracts depicted higher translocation of the transcription factor DAF-16::GFP to the nucleus. However, there was no increase in the levels of the DAF-16 target genes, SOD-3 and catalase. Our results suggest that the increase of lifespan caused by the different extracts is associated to the antioxidant potential of yerba mate, however this effect is not completely mediated by daf-16.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Herbicidas/toxicidade , Ilex paraguariensis/química , Paraquat/toxicidade , Extratos Vegetais/farmacologia , Fatores de Transcrição/fisiologia , Animais , Antioxidantes/farmacologia , Caenorhabditis elegans/enzimologia , Catalase/metabolismo , Longevidade , Fenóis , Folhas de Planta/química , Substâncias Protetoras/farmacologia , Superóxido Dismutase/metabolismo
6.
J Ethnopharmacol ; 148(1): 81-7, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23567030

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bauhinia forficata (BF) has been traditionally used as tea in folk medicine of Brazil for treatment of Diabetes mellitus (DM). AIM OF THE STUDY: To evaluate the effects of BF leaf tea on markers of oxidative damage and antioxidant levels in an experimental model of hyperglycemia in human erythrocytes in vitro. MATERIALS AND METHODS: Human erythrocytes were incubated with high glucose concentrations or glucose and BF tea for 24h and 48h. After incubation lipid peroxidation and non-protein SH levels were analyzed. Moreover, quantification of polyphenols and flavonoids, iron chelating property, scavenging of DPPH, and prevention of lipid peroxidation in isolated lipids were also assessed. RESULTS: A significant amount of polyphenols and flavonoids was observed. The main components found by LC-MS analysis were quercetin-3-O-(2-rhamnosyl) rutinoside, kaempferol-3-O-(2-rhamnosyl) rutinoside, quercetin-3-O-rutinoside and kaempferol-3-O-rutinoside. BF tea presents important antioxidant and chelating properties. Moreover, BF tea was effective to increase non-protein SH levels and reduce lipid peroxidation induced by high glucose concentrations in human erythrocytes. CONCLUSION: The antioxidant effects of BF tea could be related to the presence of different phenolic and flavonoids components. We believe that these components can be responsible to protect human erythrocytes exposed to high glucose concentrations against oxidative damage.


Assuntos
Antioxidantes/farmacologia , Bauhinia , Bebidas , Eritrócitos/efeitos dos fármacos , Glucose/farmacologia , Bebidas/análise , Células Cultivadas , Eritrócitos/metabolismo , Flavonoides/análise , Flavonoides/farmacologia , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Fenóis/análise , Fenóis/farmacologia , Folhas de Planta , Compostos de Sulfidrila/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA