Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051001

RESUMO

The aqueous extracts of leaves and shoots of Mentha arvensis were checked for their potential to biodegrade aflatoxin B1 and B2 (AFB1; 100 µg/L and AFB2; 50 µg/L) through in vitro assays. Overall, the results showed that leaf extract degrades aflatoxins more efficiently than the shoot extract. First, the pH, temperature and incubation time were optimized for maximum degradation by observing this activity at different temperatures between 25 and 60 °C, pH between 2 and 10 and incubation time from 3 to 72 h. In general, an increase in all these parameters significantly increased the percentage of biodegradation. In vitro trials on mature maize stock were performed under optimized conditions, i.e., pH 8, temperature 30 °C and an incubation period of 72 h. The leaf extract resulted in 75% and 80% biodegradation of AFB1 and AFB2, respectively. Whereas the shoot extract degraded both toxins up to 40-48%. The structural elucidation of degraded toxin products by LCMS/MS analysis showed seven degraded products of AFB1 and three of AFB2. MS/MS spectra showed that most of the products were formed by the loss of the methoxy group from the side chain of the benzene ring, the removal of the double bond in the terminal furan ring and the modification of the lactone group, indicating less toxicity compared to the parent compounds. The degraded products showed low toxicity against brine shrimps, confirming that M. arvensis leaf extract has significant potential to biodegrade aflatoxins.


Assuntos
Aflatoxina B1/metabolismo , Aflatoxinas/metabolismo , Mentha/química , Mentha/metabolismo , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Brotos de Planta/metabolismo , Aflatoxinas/química , Estrutura Molecular , Paquistão , Extratos Vegetais/química , Folhas de Planta/química , Brotos de Planta/química
2.
Artigo em Chinês | WPRIM | ID: wpr-883373

RESUMO

Objective: To evaluate the antiviral activity and phytochemicals of selected plant extracts and their effect on the mitogen-activated protein kinase (MAPK) signaling pathway modulated by hepatitis C virus (HCV) nonstructural protein 5A (NS5A). Methods: A total of ten plant extracts were initially screened for their toxicities against HepG2 cells. The non-toxic plants were tested for their inhibitory effect on the expression of HCV NS5A at both mRNA and protein levels using real-time PCR and Western blotting assays, respectively. The differential expression of the genes associated with MAPK pathway in the presence of NS5A gene and plant extract was measured through real-time PCR. Subsequently, the identification of secondary metabolites was carried out by phytochemical and HPLC analysis. Results: The phytochemical profiling of Berberis lyceum revealed the presence of alkaloids, phenols, saponins, tannins, flavonoids, carbohydrates, terpenoids, steroids, and glycosides. Similarly, quercetin, myricetin, gallic acid, caffeic acid, and ferulic acid were identified through HPLC analysis. The methanolic extract of Berberis lyceum strongly inhibited HCV RNA replication with an IC50 of 11.44 μg/mL. RT-PCR and Western blotting assays showed that the extract reduced the expression of HCV NS5A in a dose-dependent manner. Berberis lyceum extract also attenuated NS5A-induced dysregulation of the MAPK signaling pathway. Conclusions: Our findings suggest that Berberis lyceum extract strongly inhibits HCV propagation by reducing HCV NS5A-induced perturbation of MAPK signaling.

3.
Sci Rep ; 5: 14672, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26423838

RESUMO

This study explores the detoxification potential of Corymbia citriodora plant extracts against aflatoxin B1 and B2 (AFB1; 100 µg L(-1) and AFB2; 50 µg L(-1)) in In vitro and In vivo assays. Detoxification was qualitatively and quantitatively analyzed by TLC and HPLC, respectively. The study was carried out by using different parameters of optimal temperature, pH and incubation time period. Results indicated that C. citriodora leaf extract(s) more effectively degrade AFB1 and AFB2 i.e. 95.21% and 92.95% respectively than C. citriodora branch extract, under optimized conditions. The structural elucidation of degraded toxin products was done by LCMS/MS analysis. Ten degraded products of AFB1 and AFB2 and their fragmentation pathways were proposed based on molecular formulas and MS/MS spectra. Toxicity of these degraded products was significantly reduced as compared to that of parent compounds because of the removal of double bond in the terminal furan ring. The biological toxicity of degraded toxin was further analyzed by brine shrimps bioassay, which showed that only 17.5% mortality in larvae was recorded as compared to untreated toxin where 92.5% mortality was observed after 96hr of incubation. Therefore, our finding suggests that C. citriodora leaf extract can be used as an effective tool for the detoxification of aflatoxins.


Assuntos
Aflatoxina B1/química , Extratos Vegetais/química , Folhas de Planta/química , Aflatoxina B1/farmacologia , Aflatoxinas/química , Aflatoxinas/farmacologia , Animais , Artemia/efeitos dos fármacos , Cromatografia em Camada Fina , Contaminação de Alimentos , Concentração de Íons de Hidrogênio , Larva/efeitos dos fármacos , Peso Molecular , Espectrometria de Massas em Tandem
4.
Int J Mol Sci ; 13(4): 4591-4607, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22605997

RESUMO

In this study, we investigated how the extent of ripeness affects the yield of extract, total phenolics, total flavonoids, individual flavonols and phenolic acids in strawberry and mulberry cultivars from Pakistan. In strawberry, the yield of extract (%), total phenolics (TPC) and total flavonoids (TFC) ranged from 8.5-53.3%, 491-1884 mg gallic acid equivalents (GAE)/100 g DW and 83-327 mg catechin equivalents (CE)/100 g DW, respectively. For the different species of mulberry the yield of extract (%), total phenolics and total flavonoids of 6.9-54.0%, 201-2287 mg GAE/100 g DW and 110-1021 mg CE/100 g DW, respectively, varied significantly as fruit maturity progressed. The amounts of individual flavonols and phenolic acid in selected berry fruits were analyzed by RP-HPLC. Among the flavonols, the content of myricetin was found to be high in Morus alba (88 mg/100 g DW), the amount of quercetin as high in Morus laevigata (145 mg/100 g DW) while kaempferol was highest in the Korona strawberry (98 mg/100 g DW) at fully ripened stage. Of the six phenolic acids detected, p-hydroxybenzoic and p-coumaric acid were the major compounds in the strawberry. M. laevigata and M. nigra contained p-coumaric acid and vanillic acid while M. macroura and M. alba contained p-hydroxy-benzoic acid and chlorogenic acid as the major phenolic acids. Overall, a trend to an increase in the percentage of extraction yield, TPC, TFC, flavonols and phenolic acids was observed as maturity progressed from un-ripened to fully-ripened stages.


Assuntos
Flavonoides/metabolismo , Fragaria/crescimento & desenvolvimento , Hidroxibenzoatos/metabolismo , Morus/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Ácidos Cumáricos/metabolismo , Quempferóis/metabolismo , Paquistão , Extratos Vegetais , Propionatos , Quercetina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA