Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486212

RESUMO

Two optimization strategies, codon usage modification and glycine supplementation, were adopted to improve the extracellular production of Bacillus sp. NR5 UPM ß-cyclodextrin glycosyltransferase (CGT-BS) in recombinant Escherichia coli. Several rare codons were eliminated and replaced with the ones favored by E. coli cells, resulting in an increased codon adaptation index (CAI) from 0.67 to 0.78. The cultivation of the codon modified recombinant E. coli following optimization of glycine supplementation enhanced the secretion of ß-CGTase activity up to 2.2-fold at 12 h of cultivation as compared to the control. ß-CGTase secreted into the culture medium by the transformant reached 65.524 U/mL at post-induction temperature of 37 °C with addition of 1.2 mM glycine and induced at 2 h of cultivation. A 20.1-fold purity of the recombinant ß-CGTase was obtained when purified through a combination of diafiltration and nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. This combined strategy doubled the extracellular ß-CGTase production when compared to the single approach, hence offering the potential of enhancing the expression of extracellular enzymes, particularly ß-CGTase by the recombinant E. coli.


Assuntos
Bacillus/enzimologia , Códon/química , Escherichia coli/metabolismo , Glucosiltransferases/biossíntese , Glicina/química , Cromatografia de Afinidade , Uso do Códon , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Hidrólise , Microbiologia Industrial , Cinética , Níquel/química , Proteínas Recombinantes/biossíntese , Temperatura
2.
Sci Rep ; 9(1): 7443, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092836

RESUMO

Simultaneous saccharification and fermentation (SSF) with delayed yeast extract feeding (DYEF) was conducted in a 2-L bioreactor equipped with in-situ recovery using a gas stripping in order to enhance biobutanol production from lignocellulosic biomass of oil palm empty fruit bunch (OPEFB). This study showed that 2.88 g/L of biobutanol has been produced from SSF with a similar yield of 0.23 g/g as compared to separate hydrolysis and fermentation (SHF). An increase of 42% of biobutanol concentration was observed when DYEF was introduced in the SSF at 39 h of fermentation operation. Biobutanol production was further enhanced up to 11% with a total improvement of 72% when in-situ recovery using a gas stripping was implemented to reduce the solvents inhibition in the bioreactor. In overall, DYEF and in-situ recovery were able to enhance biobutanol production in SSF.


Assuntos
Biotecnologia/métodos , Etanol/metabolismo , Óleo de Palmeira/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Fermentação/fisiologia , Hidrólise
3.
Molecules ; 23(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081514

RESUMO

This study was conducted in order to optimise simultaneous saccharification and fermentation (SSF) for biobutanol production from a pretreated oil palm empty fruit bunch (OPEFB) by Clostridium acetobutylicum ATCC 824. Temperature, initial pH, cellulase loading and substrate concentration were screened using one factor at a time (OFAT) and further statistically optimised by central composite design (CCD) using the response surface methodology (RSM) approach. Approximately 2.47 g/L of biobutanol concentration and 0.10 g/g of biobutanol yield were obtained after being screened through OFAT with 29.55% increment (1.42 fold). The optimised conditions for SSF after CCD were: temperature of 35 °C, initial pH of 5.5, cellulase loading of 15 FPU/g-substrate and substrate concentration of 5% (w/v). This optimisation study resulted in 55.95% increment (2.14 fold) of biobutanol concentration equivalent to 3.97 g/L and biobutanol yield of 0.16 g/g. The model and optimisation design obtained from this study are important for further improvement of biobutanol production, especially in consolidated bioprocessing technology.


Assuntos
Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Fermentação , Frutas/metabolismo , Açúcares/metabolismo , Bioengenharia , Celulase/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Óleo de Palmeira
4.
Molecules ; 23(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614823

RESUMO

The combination of superheated steam (SHS) with ligninolytic enzyme laccase pretreatment together with size reduction was conducted in order to enhance the enzymatic hydrolysis of oil palm biomass into glucose. The oil palm empty fruit bunch (OPEFB) and oil palm mesocarp fiber (OPMF) were pretreated with SHS and ground using a hammer mill to sizes of 2, 1, 0.5 and 0.25 mm before pretreatment using laccase to remove lignin. This study showed that reduction of size from raw to 0.25 mm plays important role in lignin degradation by laccase that removed 38.7% and 39.6% of the lignin from OPEFB and OPMF, respectively. The subsequent saccharification process of these pretreated OPEFB and OPMF generates glucose yields of 71.5% and 63.0%, which represent a 4.6 and 4.8-fold increase, respectively, as compared to untreated samples. This study showed that the combination of SHS with laccase pretreatment together with size reduction could enhance the glucose yield.


Assuntos
Arecaceae/metabolismo , Lacase/metabolismo , Lignina/metabolismo , Biomassa , Óleo de Palmeira/metabolismo
5.
J Food Sci Technol ; 51(12): 3658-68, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25477632

RESUMO

Winged bean [Psophocarpus tetragonolobus (L.) DC.] seed is a potential underexploited source of vegetable protein due to its high protein content. In the present work, undefatted and defatted winged bean seed hydrolysates, designated as UWBSH and DWBSH, respectively were produced separately by four proteolytic enzymes namely Flavourzyme, Alcalase, Bromelain, and Papain using pH-stat method in a batch reactor. Enzymatic hydrolysis was carried out over a period of 0.5 to 5 h. UWBSH and DWBSH produced were tested for their ACE inhibitory activity in relation to the hydrolysis time and degree of hydrolysis (DH). Maximum ACE inhibitory activity, both for UWBSH and DWBSH, were observed during 3 to 5 h of hydrolysis. Both, UWBSH (DH 91.84 %), and DWSBH (DH 18.72 %), produced by Papain at 5 h hydrolysis, exhibited exceptionally high ACE inhibitory activity with IC50 value 0.064 and 0.249 mg mL(-1), respectively. Besides, papain-produced UWBSH and DWBSH were further fractionated into three fractions based on molecular weight (UWBSH-I, <10 kDa; UWBSH-II, <5 kDa; UWBSH-III, <2 kDa) and (DWBSH-I, <10 kDa; DWBSH-II, <5 kDa; DWBSH-III, <2 kDa). UWBSH-III revealed the highest ACE inhibitory activity (IC50 0.003 mg mL(-1)) compared with DWBSH-III (IC50 0.130 mg mL(-1)). The results of the present investigation revealed that winged bean seed hydrolysates can be explored as a potential source of ACE inhibitory peptides suggesting their uses for physiological benefits as well as for other functional food applications.

6.
Appl Biochem Biotechnol ; 172(1): 423-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24085387

RESUMO

The effect of cultivation condition of two locally isolated ascomycetes strains namely Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 were compared in submerged and solid state fermentation. Physical evaluation on water absorption index, solubility index and chemical properties of lignin, hemicellulose and cellulose content as well as the cellulose structure on crystallinity and amorphous region of treated oil palm empty fruit bunch (OPEFB) (resulted in partial removal of lignin), sago pith residues (SPR) and oil palm decanter cake towards cellulases production were determined. Submerged fermentation shows significant cellulases production for both strains in all types of substrates. Crystallinity of cellulose and its chemical composition mainly holocellulose components was found to significantly affect the total cellulase synthesis in submerged fermentation as the higher crystallinity index, and holocellulose composition will increase cellulase production. Treated OPEFB apparently induced the total cellulases from T. asperellum UPM1 and A. fumigatus UPM2 with 0.66 U/mg FPase, 53.79 U/mg CMCase, 0.92 U/mg ß-glucosidase and 0.67 U/mg FPase, 47.56 U/mg and 0.14 U/mg ß-glucosidase, respectively. Physical properties of water absorption and solubility for OPEFB and SPR also had shown significant correlation on the cellulases production.


Assuntos
Aspergillus fumigatus/metabolismo , Biomassa , Biotecnologia/métodos , Carbono/química , Celulases/biossíntese , Fenômenos Físicos , Trichoderma/metabolismo , Aspergillus fumigatus/crescimento & desenvolvimento , Carbono/metabolismo , Técnicas de Cultura , Fermentação , Imersão , Resíduos Industriais/análise , Lignina/química , Lignina/metabolismo , Óleo de Palmeira , Óleos de Plantas/química , Trichoderma/crescimento & desenvolvimento
7.
Biomed Res Int ; 2013: 237806, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24106698

RESUMO

This study presents the effect of carbon to nitrogen ratio (C/N) (mol/mol) on the cell growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation by Comamonas sp. EB172 in 2 L fermenters using volatile fatty acids (VFA) as the carbon source. This VFA was supplemented with ammonium sulphate and yeast extract in the feeding solution to achieve C/N (mol/mol) 5, 15, 25, and 34.4, respectively. By extrapolating the C/N and the source of nitrogen, the properties of the polymers can be regulated. The number average molecular weight (M n ) of P(3HB-co-3HV) copolymer reached the highest at 838 × 10(3) Da with polydispersity index (PDI) value of 1.8, when the culture broth was supplemented with yeast extract (C/N 34.4). Tensile strength and Young's modulus of the copolymer containing 6-8 mol% 3HV were in the ranges of 13-14.4 MPa and 0.26-0.34 GPa, respectively, comparable to those of polyethylene (PE). Thus, Comamonas sp. EB172 has shown promising bacterial isolates producing polyhydroxyalkanoates from renewable carbon materials.


Assuntos
Carbono/química , Ácidos Graxos Voláteis/química , Poliésteres/química , Polímeros/química , Comamonas/química , Comamonas/crescimento & desenvolvimento , Comamonas/metabolismo , Fermentação , Peso Molecular , Nitrogênio/química
8.
J Sci Food Agric ; 93(3): 429-38, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208984

RESUMO

This review provides an overview of biovanillin production from agro wastes as an alternative food flavour. Biovanillin is one of the widely used flavour compounds in the foods, beverages and pharmaceutical industries. An alternative production approach for biovanillin as a food flavour is hoped for due to the high and variable cost of natural vanillin as well as the limited availability of vanilla pods in the market. Natural vanillin refers to the main organic compound that is extracted from the vanilla bean, as compared to biovanillin, which is produced biologically by microorganisms from a natural precursor such as ferulic acid. Biovanillin is also reviewed as a potential bioflavour produced by microbial fermentation in an economically feasible way in the near future. In fact, we briefly discuss natural, synthetic and biovanillin and the types of agro wastes that are useful as sources for bioconversion of ferulic acid into biovanillin. The subsequent part of the review emphasizes the current application of vanillin as well as the utilization of biovanillin as an alternative food flavour. The final part summarizes biovanillin production from agro wastes that could be of benefit as a food flavour derived from potential natural precursors.


Assuntos
Agricultura , Benzaldeídos , Aromatizantes , Resíduos Industriais , Benzaldeídos/metabolismo , Beta vulgaris , Ácidos Cumáricos/metabolismo , Grão Comestível , Eugenol/análogos & derivados , Eugenol/metabolismo , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA