Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566151

RESUMO

Diabetes mellitus (DM) is a complicated condition that is accompanied by a plethora of metabolic symptoms, including disturbed serum glucose and lipid profiles. Several herbs are reputed as traditional medicine to improve DM. The current study was designed to explore the chemical composition and possible ameliorative effects of Ocimum forskolei on blood glucose and lipid profile in high-fat diet/streptozotocin-induced diabetic rats and in 3T3-L1 cell lines as a first report of its bioactivity. Histopathological study of pancreatic and adipose tissues was performed in control and treatment groups, along with quantification of glucose and lipid profiles and the assessment of NF-κB, cleaved caspase-3, BAX, and BCL2 markers in rat pancreatic tissue. Glucose uptake, adipogenic markers, DGAT1, CEBP/α, and PPARγ levels were evaluated in the 3T3-L1 cell line. Hesperidin was isolated from total methanol extract (TME). TME and hesperidin significantly controlled the glucose and lipid profile in DM rats. Glibenclamide was used as a positive control. Histopathological assessment showed that TME and hesperidin averted necrosis and infiltration in pancreatic tissues, and led to a substantial improvement in the cellular structure of adipose tissue. TME and hesperidin distinctly diminished the mRNA and protein expression of NF-κB, cleaved caspase-3, and BAX, and increased BCL2 expression (reflecting its protective and antiapoptotic actions). Interestingly, TME and hesperidin reduced glucose uptake and oxidative lipid accumulation in the 3T3-L1 cell line. TME and hesperidin reduced DGAT1, CEBP/α, and PPARγ mRNA and protein expression in 3T3-L1 cells. Moreover, docking studies supported the results via deep interaction of hesperidin with the tested biomarkers. Taken together, the current study demonstrates Ocimum forskolei and hesperidin as possible candidates for treating diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Hesperidina , Ocimum basilicum , Ocimum , Células 3T3-L1 , Animais , Biomarcadores/metabolismo , Caspase 3 , Diabetes Mellitus Experimental/metabolismo , Glucose/efeitos adversos , Hesperidina/farmacologia , Lipídeos , Camundongos , NF-kappa B/metabolismo , Ocimum basilicum/metabolismo , PPAR gama/metabolismo , RNA Mensageiro , Ratos , Proteína X Associada a bcl-2
2.
Planta Med ; 85(6): 503-512, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30699456

RESUMO

A new cyclic pentapeptide, cotteslosin C (1: ), a new aflaquinolone, 22-epi-aflaquinolone B (3: ), and two new anthraquinones (9: and 10: ), along with thirty known compounds (2, 4:  - 8, 11:  - 34: ) were isolated from a co-culture of the sponge-associated fungus Aspergillus versicolor with Bacillus subtilis. The new metabolites were only detected in the co-culture extract, but not when the fungus was grown under axenic conditions. Furthermore, the co-culture extract exhibited an enhanced accumulation of the known constituents versicolorin B (14: ), averufin (16: ), and sterigmatocyctin (19: ) by factors of 1.5, 2.0, and 4.7, respectively, compared to the axenic fungal culture. The structures of the isolated compounds were elucidated on the basis of 1D and 2D NMR spectra and mass spectrometry as well as by comparison with literature data. The absolute configuration of compounds 3, 9: , and 10: was determined by ECD (electronic circular dichroism) analysis aided by TDDFT-ECD (time-dependent density functional theory electronic circular dichroism) calculations. Compounds 15, 18:  - 21: , and 26: exhibited strong to moderate cytotoxic activity against the mouse lymphoma cell line L5178Y, with IC50 values ranging from 2.0 to 21.2 µM, while compounds 14, 16, 31, 32: , and 33: displayed moderate inhibitory activities against several gram-positive bacteria, with MIC values ranging from 12.5 to 50 µM.


Assuntos
Aspergillus/metabolismo , Bacillus subtilis/metabolismo , Animais , Antraquinonas/isolamento & purificação , Antraquinonas/metabolismo , Antraquinonas/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Dicroísmo Circular , Técnicas de Cocultura , Citotoxinas/isolamento & purificação , Citotoxinas/metabolismo , Citotoxinas/farmacologia , Relação Dose-Resposta a Droga , Bactérias Gram-Positivas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Quinolonas/isolamento & purificação , Quinolonas/metabolismo , Quinolonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA