Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pathogens ; 12(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375498

RESUMO

Columnaris disease caused by Flavobacterium covae leads to substantial economic losses in commercially important fish species worldwide. The US channel catfish (Ictalurus punctatus) industry is particularly vulnerable to this disease. Therefore, there is an urgent need to develop a vaccine to reduce the economic losses caused by this disease. Secreted extracellular products (SEPs) are considered to be essential bacterial virulence factors that often provide immunogenicity and protection. The current study sought to identify the main SEPs of F. covae and to evaluate their potential to provide protection in channel catfish against columnaris disease. SDS-PAGE analysis of SEPs revealed five protein bands with molecular weights ranging from 13 to 99 kDa. Mass spectrometry analysis showed that these SEPs were hypothetical protein (AWN65_11950), zinc-dependent metalloprotease (AWN65_10205), DNA/RNA endonuclease G (AWN65_02330), outer membrane protein beta-barrel domain (AWN65_12620), and chondroitin-sulfate-ABC endolyase/exolyase (AWN65_08505). Catfish fingerlings were vaccinated with SEPs, SEPs emulsified with mineral oil adjuvant, or heat-inactivated SEPs, or they were sham-immunized through intraperitoneal (IP) injection. After 21 days, an F. covae challenge showed 58.77% and 46.17% survival in the catfish vaccinated with the SEPs and the SEPs emulsified with adjuvant compared to the sham-vaccinated control (100% mortality within 120 h post-infection). However, the heat-inactivated SEPs failed to provide significant protection (23.15% survival). In conclusion, although SEPs contain potentially important immunogenic proteins, further work is needed to optimize their use for long-lasting protection against columnaris disease in fish. These results are significant given the economic impact of columnaris disease on fish farming worldwide.

2.
Fish Shellfish Immunol ; 66: 480-486, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28532667

RESUMO

A virulent clonal population of Aeromonas hydrophila (VAh) is recognized as the etiological agent in outbreaks of motile aeromonas septicemia (MAS) in catfish aquaculture in the southeastern United States since 2009. Genomic subtraction revealed three outer membrane proteins present in VAh strain ML09-119 but not in low virulence reference A. hydrophila strains: major outer membrane protein OmpA1, TonB-dependent receptor (Tdr), and transferrin-binding protein A (TbpA). Here, the genes encoding ompA1, tdr, and tbpA were cloned from A. hydrophila ML09-119 and expressed in Escherichia coli. The purified recombinant OmpA1, Tdr, and TbpA proteins had estimated molecular weights of 37.26, 78.55, and 41.67 kDa, respectively. Catfish fingerlings vaccinated with OmpA1, Tdr, and TbpA emulsified with non-mineral oil adjuvant were protected against subsequent VAh strain ML09-119 infection with 98.59%, 95.59%, and 47.89% relative percent survival (RPS), respectively. Furthermore, the mean liver, spleen, and anterior kidney bacterial concentrations were significantly lower in catfish vaccinated with the OmpA1 and Tdr than the sham-vaccinated control group. ELISA demonstrated that catfish immunized with OmpA1, Tdr, and TbpA produce significant antibody response by 21 days post-immunization. Therefore, OmpA1 and Tdr proteins could be used as potential candidates for vaccine development against virulent A. hydrophila infection. However, TbpA protein failed to provide strong protection.


Assuntos
Aeromonas hydrophila/imunologia , Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Ictaluridae , Animais , Antígenos de Bactérias , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Distribuição Aleatória , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA