Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 21(13): 1697-1707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33231161

RESUMO

BACKGROUND: Chlorophytum comosum, popularly known as Spider Ivy, is used as a medicinal plant in traditional Chinese medicine, however, its detailed chemical composition and biological activity are yet unexplored. OBJECTIVE: To carry out the phytochemical investigation on different parts of Chlorophytum comosum using GCMS/ LC-ESI-MS and evaluation of its antioxidant, hemolytic and antiproliferative potential on breast cancer (MCF-7), lung cancer (A549, H1299) and normal lung (L-132) cell lines. METHODS: Chemical constituents from aqueous roots and leaves extracts were identified using LC-ESI-MS/GCMS. The identified compounds were annotated based on the match of mass spectra with the literature using NIST 14 and METLIN databases. Antioxidant activity was studied using DPPH, FRAP and TPC assays. The antiproliferative effects of ethanolic roots and leaves extracts of Chlorophytum comosum were measured by MTT assay on breast cancer (MCF-7), lung cancer (A549 & H1299) and normal lung (L-132) cell lines. The toxicity studies of the extracts were carried out using Hemolysis assay. RESULTS: GC-MS analysis identified 34 metabolites in roots and 17 from leaves, while 17 compounds from roots and 7 from leaves were detected by LC-ESI-MS. Significant antiproliferative effects were observed on the A549 and MCF-7 cancer cell lines with IC50 values ranging from 56.86 µg/ml to 68.68 µg/ml while no marked response was observed against normal cell line L-132. CONCLUSION: Our study represents the first report on the detailed chemical composition and antiproliferative potential of Chlorophytum comosum against lung and breast cancer cell lines.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Asparagaceae/química , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Ensaios de Seleção de Medicamentos Antitumorais , Radicais Livres/antagonistas & inibidores , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray
2.
Plant Physiol Biochem ; 114: 19-28, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28249222

RESUMO

Ashwagandha (Withania somnifera) is one of the most reputed medicinal plants in the traditional medicinal system. In this study, cell suspension culture of W. somnifera was elicited with cell homogenates of fungi (A. alternata, F. solani, V. dahliae and P. indica) in shake flask and the major withanolides like withanolide A, withaferin A and withanone were analysed. Simultaneously expression levels of key pathway genes from withanolides biosynthetic pathways were also checked via quantitative PCR in shake flask as well as in bioreactor. The results show that highest gene expression of 10.8, 5.8, 4.9, and 3.3 folds were observed with HMGR among all the expressed genes in cell suspension cultures with cell homogenates of 3% P. indica, 5% V. dahliae, 3% A. alternata and 3% F. solani, respectively, in comparison to the control in shake flask. Optimized concentration of cell homogenate of P. indica (3% v/v) was added to the growing culture in 5.0-l bioreactor under optimized up-scaling conditions and harvested after 22 days. The genes of MVA, MEP and withanolides biosynthetic pathways like HMGR, SS, SE, CAS, FPPS, DXR and DXS were up-regulated by 12.5, 4.9, 2.18, 4.65, 2.34, 1.89 and 1.4 folds, respectively in bioreactor. The enhancement of biomass (1.13 fold) and withanolides [withanolide A (1.7), withaferin A (1.5), and withanone (1.5) folds] in bioreactor in comparison to shake flask was also found to be in line with the up-regulation of genes of withanolide biosynthetic pathways.


Assuntos
Técnicas de Cultura de Células/métodos , Withania/metabolismo , Withania/microbiologia , Vitanolídeos/metabolismo , Biomassa , Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Fungos/fisiologia , Regulação da Expressão Gênica de Plantas , Triterpenos/análise , Triterpenos/metabolismo , Withania/citologia , Withania/genética , Vitanolídeos/análise
3.
Parasit Vectors ; 8: 183, 2015 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-25884649

RESUMO

BACKGROUND: Exploration of immunomodulatory antileishmanials of plant origin is now being strongly recommended to overcome the immune suppression evident during visceral leishmaniasis (VL) and high cost and toxicity associated with conventional chemotherapeutics. In accordance, we assessed the in vitro and in vivo antileishmanial and immunomodulatory potential of ethanolic fractions of Azadirachta indica leaves (ALE) and seeds (ASE). METHODS: A. indica fractions were prepared by sequential extraction of the powdered plant parts in hexane, ethanol and water. Erythrosin B staining was employed to appraise the anti-promastigote potential of ALE and ASE. Cytostatic or cytocidal mode of action was ascertained and alterations in parasite morphology were depicted under oil immersion light microscopy. Study of apoptotic correlates was performed to deduce the mechanism of induced cell death and anti-amastigote potential was assessed in Leishmania parasitized RAW 264.7 macrophages. In vivo antileishmanial effectiveness was evaluated in L. donovani infected BALB/c mice, accompanied by investigation of immunomodulatory potential of ALE and ASE. Adverse toxicity of the bioactive fractions against RAW macrophages was studied by MTT assay. In vivo side effects on the liver and kidney functions were also determined. Plant secondary metabolites present in ALE and ASE were analysed by Gas chromatography-mass spectrometry (GC-MS). RESULTS: ALE and ASE (500 µg ml(-1)) exhibited leishmanicidal activity in a time- and dose-dependent manner (IC50 34 and 77.66 µg ml(-1), respectively) with alterations in promastigote morphology and induction of apoptosis. ALE and ASE exerted appreciable anti-amastigote potency (IC50 17.66 and 24.66 µg ml(-1), respectively) that was coupled with profound in vivo therapeutic efficacy (87.76% and 85.54% protection in liver and 85.55% and 83.62% in spleen, respectively). ALE exhibited minimal toxicity with selectivity index of 26.10 whereas ASE was observed to be non-toxic. The bioactive fractions revealed no hepato- and nephro-toxicity. ALE and ASE potentiated Th1-biased cell-mediated immunity along with upregulation of INF-γ, TNF-α and IL-2 and decline in IL-4 and IL-10 levels. GC-MS analysis revealed several compounds that may have contributed to the observed antileishmanial effect. CONCLUSION: Dual antileishmanial and immunostimulatory efficacy exhibited by the bioactive fractions merits their use alone or as adjunct therapy for VL.


Assuntos
Anti-Helmínticos/uso terapêutico , Apoptose , Azadirachta/química , Fatores Imunológicos/uso terapêutico , Leishmaniose/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Células Th1/imunologia , Animais , Anti-Helmínticos/efeitos adversos , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Leishmania/citologia , Leishmania/efeitos dos fármacos , Leishmania/fisiologia , Leishmaniose/parasitologia , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C , Microscopia , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Sementes/química , Resultado do Tratamento
4.
Curr Drug Discov Technol ; 10(1): 25-34, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22564167

RESUMO

Encapsulation of plasmid DNA in nanoparticle is expected to enhance the stability of DNA, reproducibility and frequency of the genetic transformation in plants. Here we report the formulation of HMG Co-A reductase gene loaded calcium phosphate nanoparticles (Cap nanoparticles) and their in-vitro, in-vivo characterization. The developed Cap nanoparticles were characterized by DSC, FT-IR, and XRD. Developed Cap nanoparticles were spherical in shape having the particle size and zeta potential in the range of 10.86±0.09nm to 33.42±0.18nm and -25.5±0.07mV to -31.7±0.07mV (for Cap-I to Cap-IV). DNA releasing in acidic media showed, initially slow release followed by fast release with a maximum release of Cap-I (95.77±1.39%) > Cap-II (87.32±2.07%) > Cap-III (76.54±2.01%) > Cap-IV (72.93±1.75%) over 60min. Cap nanoparticles were quite stable at storage condition of 40±0.5°C/75±5%RH, 25±0.5°C/60±RH, 4±0.5°C/ambient humidity and the integrity of pDNA encapsulated was confirmed by gel electrophoresis. Compared to wild type C. intybus, transformation efficiency and enhanced biosynthesis of esculin with the DNA nanoparticles in C. intybus were about 10% and 71%, respectively. Antioxidant activity capacity of the biotransformed plants was significantly higher than the normal plant due to high accumulation of esculin.


Assuntos
Fosfatos de Cálcio/química , Cichorium intybus/genética , Portadores de Fármacos/química , Técnicas de Transferência de Genes , Hidroximetilglutaril-CoA Redutases/genética , Nanopartículas/química , Antioxidantes/farmacologia , Cichorium intybus/metabolismo , Estabilidade de Medicamentos , Esculina/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA