Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1188659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795018

RESUMO

Soybean lecithin is extensively used as the dietary supplementation of phospholipids in animal production. Soybean lecithin plays significant roles in aquafeed as growth promoter, feed enhancer, immunity modulator and antioxidant activity stimulator for aquaculture species. Besides, soybean lecithin is also reported to help aquaculture species being resilient to physical and chemical stressors. In this review, common sources, chemical structure and mode of action of lecithin, with highlight on soybean lecithin application in aquaculture over four-decadal studies published between 1983 and 2023, were evaluated and summarized. By far, soybean lecithin is best-known for its beneficial effects, availability yet cost-effective for aquafeed formulation. Findings from this review also demonstrate that although nutritional profile of long-chain polyunsaturated fatty acids and phosphatidylcholine from egg yolk and marine sources are superior to those from plant sources such as soybean, it is rather costly for sustainable application in aquafeed formulation. Moreover, commercially available products that incorporate soybean lecithin with other feed additives are promising to boost aquaculture production. Overall, effects of soybean lecithin supplementation are well-recognized on larval and juvenile of aquaculture species which having limited ability to biosynthesis phospholipids de novo, and correspondingly attribute to phospholipid, a primary component of soybean lecithin, that is essential for rapid growth during early stages development. In addition, soybean lecithin supplementation plays a distinguish role in stimulating maturation of gonadal development in the adults, especially for crustaceans.

2.
Front Vet Sci ; 10: 1149514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476823

RESUMO

Edwardsiellosis caused by Edwardsiella tarda resulted in significant economic losses in aquaculture operations worldwide. This disease could infect a wide range of hosts, including freshwater, brackish water, and marine aquatic animals. Currently, antibiotics and vaccines are being used as prophylactic agents to overcome Edwardsiellosis in aquaculture. However, application of antibiotics has led to antibiotic resistance among pathogenic bacteria, and the antibiotic residues pose a threat to public health. Meanwhile, the use of vaccines to combat Edwardsiellosis requires intensive labor work and high costs. Thus, phytobiotics were attempted to be used as antimicrobial agents to minimize the impact of Edwardsiellosis in aquaculture. These phytobiotics may also provide farmers with new options to manage aquaculture species' health. The impact of Edwardsiellosis in aquaculture worldwide was elaborated on and highlighted in this review study, as well as the recent application of phytobiotics in aquaculture and the status of vaccines to combat Edwardsiellosis. This review also focuses on the potential of phytobiotics in improving aquatic animal growth performance, enhancing immune system function, and stimulating disease resistance.

3.
Front Vet Sci ; 9: 869564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406063

RESUMO

The aquaculture industry is geared toward intensification and successfully meets half of the world's demand for fish protein. The intensive farming system exposes the animal to the risk of disease outbreaks, which has economic consequences. Antibiotics are commonly used for the health management of aquaculture species. However, this has several drawbacks, including the increase in antibiotic resistance in pathogenic bacteria and the entry of antibiotic residues into the human food chain, which is a public health and environmental concern. The potential of probiotics, prebiotics, synbiotics, and medicinal herbs as alternatives to antibiotics for the health management of aquaculture species has been investigated in numerous studies. This review discusses the potential use of combinations of probiotics and medicinal herbs as prophylactic agents in aquaculture, along with the definitions, sources, and modes of action. The positive aspects of combining probiotics and medicinal herbs on growth performance, the immune system, and disease resistance of aquaculture species are also highlighted. Overall, this review addresses the potential of combinations of probiotics and medicinal herbs as feed additives for aquaculture species and the key role of these feed additives in improving the welfare of aquaculture species.

4.
Front Microbiol ; 13: 939390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262331

RESUMO

The development of biofilm on the biotic and abiotic surfaces is the greatest challenge for health care sectors. At present times, oral infection is a common concern among people with an unhealthy lifestyle and most of these biofilms-associated infections are resistant to antibiotics. This has increased a search for the development of alternate therapeutics for eradicating biofilm-associated infection. Nanobiotechnology being an effective way to combat such oral infections may encourage the use of herbal compounds, such as bio-reducing and capping agents. Green-synthesis of ZnO nanoparticles (ZnO NP) by the use of the floral extract of Clitoria ternatea, a traditionally used medicinal plant, showed stability for a longer period of time. The NPs as depicted by the TEM image with a size of 10 nm showed excitation spectra at 360 nm and were found to remain stable for a considerable period of time. It was observed that the NPs were effective in the eradication of the oral biofilm formed by the major tooth attacking bacterial strains namely Porphyromonsas gingivalis and Alcaligenes faecalis, by bringing a considerable reduction in the extracellular polymeric substances (EPS). It was observed that the viability of the Porphyromonsas gingivalis and Alcaligenes faecalis was reduced by NP treatment to 87.89 ± 0.25% in comparison to that of amoxicillin. The results went in agreement with the findings of modeling performed by the use of response surface methodology (RSM) and artificial neural network (ANN). The microscopic studies and FT-IR analysis revealed that there was a considerable reduction in the biofilm after NP treatment. The in silico studies further confirmed that the ZnO NPs showed considerable interactions with the biofilm-forming proteins. Hence, this study showed that ZnO NPs derived from Clitoria ternatea can be used as an effective alternative therapeutic for the treatment of biofilm associated oral infection.

5.
Front Vet Sci ; 9: 1023784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277060

RESUMO

Aeromonas hydrophila is a ubiquitous bacterium with various hosts that causes mass mortality in farm-raised fish species and significant economic losses. The current antibiotic treatment is ineffective in controlling this bacterium infection in aquaculture species. Therefore, an evaluation of potential phytobiotics is needed to find an alternative antimicrobial agent to reduce the over-reliance on antibiotics in aquaculture and safeguard public and environmental health. Furthermore, the rise in antibiotic resistance cases among pathogenic bacteria indicates an urgent need for new fish and shellfish health management solutions. In this context, phytobiotics applications in aquaculture can be defined as any medicinal plant-based antimicrobial agent used in fish and shellfish health management. This review will focus on the impacts of Motile Aeromonas Septicemia (MAS) due to A. hydrophila in aquaculture, the potential of phytobiotics in enhancing the tolerance of aquaculture species against MAS and the combination of phytobiotics with other antimicrobial and therapeutic agents against MAS.

6.
Animals (Basel) ; 12(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009697

RESUMO

The price of traditional sources of nutrients used in animal feed rations is increasing steeply in developed countries due to their scarcity, high demand from humans for the same food items, and expensive costs of raw materials. Thus, one of the alternative sources is coconut parts or coconut as a whole fruit. Coconut is known as the 'tree of abundance', 'tree of heaven', and 'tree of life' owing to its numerous uses, becoming a very important tree in tropical areas for its provision of food, employment, and business opportunities to millions of people. Coconut contains a rich profile of macro and micronutrients that vary depending on the parts and how they are used. It is frequently chosen as an alternative source of protein and fiber. Its uses as an antibacterial agent, immunomodulant, and antioxidant further increase its importance. Using coconut oil in ruminant feed helps to minimize methane gas emissions by 18-30%, and to reduce dry matter intake up to 4.2 kg/d. The aquaculture sectors also use coconut palm as an alternative source because it significantly improves the digestion, growth, lipid metabolism, health, and antioxidative responses. However, coconut is not widely used in poultry diets although it has adequate amount of protein and carbohydrate due to anti-nutritional factors such cellulose (13%), galactomannan (61%), and mannan (26%). This review considered the importance and potential of coconut usage as an alternative ingredient in feed and supplements in various livestock sectors as it has plentiful nutrients and functional qualities, simultaneously leading to reduced feed cost and enhanced production.

7.
Saudi J Biol Sci ; 29(5): 3184-3193, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844413

RESUMO

Hyperuricemia is defined as a metabolic abnormality that occurs when serum uric acid (UA) level is abnormally high in the body. We previously reported that A. longiloba possesses various important phytochemicals and in vitro xanthine oxidase activity. Despite A. longiloba ethnomedicinal benefits, its toxicity and anti-hyperuricemic effects have not been reported. The present study was carried out to ensure the safety and investigate the anti-hyperuricemic effects of A. longiloba fruit and petiole ethanolic extracts on rats. In the acute toxicity study, extracts were orally administered at a dose of 2000 mg/kg bodyweight and closely monitored for 2-week for any toxicity effects. The rats were then sacrificed and samples were collected and analyzed for hematological, biochemical, and histopathological parameters. The anti-hyperuricemic effect of A. longiloba fruit or petiole extract was investigated through determination of UA levels on potassium oxonate (PO)-induced hyperuricemic rats. Extracts or standard drug treatments were orally administrated 1-h after PO administration for 14-day. Animals were euthanized and samples were collected for further experiments. The toxicity results show, no significant changes were observed in behavioral, bodyweight changes in experimental groups compared to the control. Moreover, there were no significant changes in hematological, biochemical, and histological parameters between extracts treated and control group. In the anti-hyperuricemia study, the fruit and petiole extracts treatments significantly reduced the level of UA in serum compared to the hyperuricemic model group. This study demonstrated that the extracts of A. longiloba have anti-hyperuricemic activity and was found to be non-toxic to rats in acute toxicity test.

8.
Saudi J Biol Sci ; 29(4): 2514-2519, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531242

RESUMO

The study aims to evaluate the effects of pineapples waste on the growth, texture quality and flesh colour of Nile tilapia (Oreochromis niloticus) fingerlings. Fingerlings were fed with four different levels of pineapple waste diets throughout 56 days, which contain a control group (Diet 1) and experimental diets that formulated with 10% (Diet 2), 20% (Diet 3) and 30% (Diet 4) of pineapple waste. The experimental diet was formulated with rice bran, fish meal, soybean meal, vitamin and mineral premix, vegetable oil and binder to attain 32% dietary protein. The results revealed that the formulated fish diet with pineapple waste given the optimum weight gain, weight gain percentage, specific growth rate than the control group, where Diet 4 has shown the highest value (p < 0.05). There were no effects of the pineapple waste diet on the texture quality of the fillet, while only red chromaticity (a*) showed a significant difference (p < 0.05). In conclusion, the addition of pineapple waste can improve the growth rate of Nile tilapia, and the supplementation level of the pineapple waste in the diet was 30% of the total feed formulation.

9.
Appl Biochem Biotechnol ; 194(10): 4587-4624, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35579740

RESUMO

A novel coronavirus disease (COVID-19) or severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), transmitted from person to person, has quickly emerged as the pandemic responsible for the current global health crisis. This infection has been declared a global pandemic, resulting in a concerning number of deaths as well as complications post-infection, primarily among vulnerable groups particularly older people and those with multiple comorbidities. In this article, we review the most recent research on the role of date palm (Phoenix dactylifera L.) fruits (DPFs) to prevent or treat COVID-19 infection. The mechanisms underlying this preventive or therapeutic effect are also discussed in terms of bioactivity potentials in date palm, e.g., antimicrobial, antioxidant, anticancer, anti-diabetic, anti-inflammatory, neuroprotective, and hemolytic potential, as well as prospect against COVID-19 disease and the potential product development. Therefore, it can be concluded that regular consumption of DPFs may be associated with a lower risk of some chronic diseases. Indeed, DPFs have been widely used in folk medicine since ancient times to treat a variety of health conditions, demonstrating the importance of DPFs as a nutraceutical and source of functional nourishment. This comprehensive review aims to summarize the majority of the research on DPFs in terms of nutrient content and biologically active components such as phenolic compounds, with an emphasis on their roles in improving overall health as well as the potential product development to ensure consumers' satisfaction in a current pandemic situation. In conclusion, DPFs can be given to COVID-19 patients as a safe and effective add-on medication or supplement in addition to routine treatments.


Assuntos
Anti-Infecciosos , Tratamento Farmacológico da COVID-19 , Phoeniceae , Idoso , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Pandemias , SARS-CoV-2
10.
Antibiotics (Basel) ; 11(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35052938

RESUMO

Increased resistance of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp. (ESKAPE) pathogens against various drugs has enhanced the urge for the development of alternate therapeutics. Quorum sensing (QS) is a density dependent cell-to-cell communication mechanism responsible for controlling pathogenicity with the regulation of gene expression. Thus, QS is considered a potential target for the development of newer anti-biofilm agents that do not depend on the utilization of antibiotics. Compounds with anti-QS effects are known as QS inhibitors (QSIs), and they can inhibit the QS mechanism that forms the major form in the development of bacterial pathogenesis. A diverse array of natural compounds provides a plethora of anti-QS effects. Over recent years, these natural compounds have gained importance as new strategies for combating the ESKAPE pathogens and inhibiting the genes involved in QS. Different pharmacognostical and pharmacological studies have been carried out so far for identification of novel drugs or for the discovery of their unique structures that may help in developing more effective anti-biofilm therapies. The main objective of this review is to discuss the various natural compounds, so far identified and their employed mechanisms in hindering the genes responsible for QS leading to bacterial pathogenesis.

11.
Molecules ; 26(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770796

RESUMO

Gold nanoparticles (AuNPs) have been widely explored and are well-known for their medical applications. Chemical and physical synthesis methods are a way to make AuNPs. In any case, the hunt for other more ecologically friendly and cost-effective large-scale technologies, such as environmentally friendly biological processes known as green synthesis, has been gaining interest by worldwide researchers. The international focus on green nanotechnology research has resulted in various nanomaterials being used in environmentally and physiologically acceptable applications. Several advantages over conventional physical and chemical synthesis (simple, one-step approach to synthesize, cost-effectiveness, energy efficiency, and biocompatibility) have drawn scientists' attention to exploring the green synthesis of AuNPs by exploiting plants' secondary metabolites. Biogenic approaches, mainly the plant-based synthesis of metal nanoparticles, have been chosen as the ideal strategy due to their environmental and in vivo safety, as well as their ease of synthesis. In this review, we reviewed the use of green synthesized AuNPs in the treatment of cancer by utilizing phytochemicals found in plant extracts. This article reviews plant-based methods for producing AuNPs, characterization methods of synthesized AuNPs, and discusses their physiochemical properties. This study also discusses recent breakthroughs and achievements in using green synthesized AuNPs in cancer treatment and different mechanisms of action, such as reactive oxygen species (ROS), mediated mitochondrial dysfunction and caspase activation, leading to apoptosis, etc., for their anticancer and cytotoxic effects. Understanding the mechanisms underlying AuNPs therapeutic efficacy will aid in developing personalized medicines and treatments for cancer as a potential cancer therapeutic strategy.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ouro , Química Verde , Nanopartículas Metálicas , Extratos Vegetais/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Diagnóstico por Imagem/métodos , Ouro/química , Humanos , Nanopartículas Metálicas/química , Sistemas de Liberação de Fármacos por Nanopartículas , Compostos Fitoquímicos/química , Extratos Vegetais/química , Nanomedicina Teranóstica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA