Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 234(4): 1394-1410, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35238413

RESUMO

Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.


Assuntos
Alcaloides , Dioxigenases , Solanum lycopersicum , Solanum tuberosum , Solanum , Alcaloides/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Solanum lycopersicum/genética , Solanum/genética , Solanum/metabolismo , Solanum tuberosum/genética
2.
Front Plant Sci ; 11: 825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670317

RESUMO

The use of auxins to improve the vase life of cut flowers is very limited. Previous studies demonstrated that a pulse treatment of Red Cestrum (Cestrum elegans Schlecht.) cut flowers with 2,4-dichlorophenoxyacetic acid (2,4-D) significantly reduced floret bud abscission, whereas 1-naphthaleneacetic acid (NAA) was ineffective. This difference resulted, at least in part, from the higher acropetal transport capability of 2,4-D compared to that of NAA. The present research focused on examining the factors affecting the acropetal transport, and hence the efficacy of the two auxins in reducing floret bud abscission of Red Cestrum cut flowers. We assumed that the differential acropetal transport capability of the two auxins results from the difference in their dissociation constants (pKa), with values of 2.75 and 4.23 for 2,4-D and NAA, respectively, which affects their pH-dependent physicochemical properties. Thus, increasing the pH of the pulsing solution above the pKa of both auxins might improve their acropetal movement. Indeed, the results of the present research show that raising the pH of the pulsing solution to pH 7.0 and above improved the efficacy of the two auxins in reducing floret bud abscission, with a higher effect on 2,4-D than that on NAA. Raising the pH of the pulsing solution decreased the adsorption and/or uptake of the two auxins by the cells adjacent to the xylem vessels, leading to an increase in their acropetal transport. The high pH of the pulsing solution increased the dissociation and hence decreased the lipophilicity of the auxin molecules, leading to improved acropetal movement. This effect was corroborated by the significant reduction in their 1-octanol/water partition coefficient (K OW ) values with the increase in the pH. A significant increase in the CeIAA1 transcript level was obtained in response to 2,4-D pulsing at pH 7.0 and 8.25 and to NAA pulsing at pH 8.25, indicating that the acropetally transported auxins were taken up by the cells under these conditions. Our data suggest that raising the pH of the pulsing solution would significantly contribute to the increased efficacy of auxins in improving the vase life of cut flowers.

3.
Nat Chem Biol ; 16(7): 740-748, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424305

RESUMO

Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by 'hijacking' an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.


Assuntos
Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glicosiltransferases/genética , Proteínas de Plantas/genética , Saponinas/biossíntese , Spinacia oleracea/metabolismo , Terpenos/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Retículo Endoplasmático/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucosiltransferases/metabolismo , Ácido Glucurônico/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Spinacia oleracea/genética
4.
Nat Commun ; 10(1): 5169, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727889

RESUMO

The genus Solanum comprises three food crops (potato, tomato, and eggplant), which are consumed on daily basis worldwide and also producers of notorious anti-nutritional steroidal glycoalkaloids (SGAs). Hydroxylated SGAs (i.e. leptinines) serve as precursors for leptines that act as defenses against Colorado Potato Beetle (Leptinotarsa decemlineata Say), an important pest of potato worldwide. However, SGA hydroxylating enzymes remain unknown. Here, we discover that 2-OXOGLUTARATE-DEPENDENT-DIOXYGENASE (2-ODD) enzymes catalyze SGA-hydroxylation across various Solanum species. In contrast to cultivated potato, Solanum chacoense, a widespread wild potato species, has evolved a 2-ODD enzyme leading to the formation of leptinines. Furthermore, we find a related 2-ODD in tomato that catalyzes the hydroxylation of the bitter α-tomatine to hydroxytomatine, the first committed step in the chemical shift towards downstream ripening-associated non-bitter SGAs (e.g. esculeoside A). This 2-ODD enzyme prevents bitterness in ripe tomato fruit consumed today which otherwise would remain unpleasant in taste and more toxic.


Assuntos
Dioxigenases/metabolismo , Frutas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metaboloma , Solanum/metabolismo , Paladar , Alcaloides/química , Alcaloides/metabolismo , Biocatálise , Genes de Plantas , Hidroxilação , Ácidos Cetoglutáricos/química , Locos de Características Quantitativas/genética , Solanum/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Esteroides/química , Esteroides/metabolismo
5.
Ann Bot ; 101(2): 249-59, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17591611

RESUMO

BACKGROUND AND AIMS: A previous study showed that the relative effectiveness of 2,4-dichlorophenoxyacetic acid (2,4-D) compared with that of 1-naphthaleneacetic acid (NAA) in reducing floret bud abscission in cestrum (Cestrum elegans) cut flowers was due to its acropetal transport. The aim of the present study was to examine if the differential effect of these auxins on floret abscission is reflected in the expression of Aux/IAA genes in the floret abscission zone (AZ). METHODS: cDNAs were isolated by PCR-based cloning from the floret AZ of auxin-treated cut flowers. The expression patterns of the cDNAs in various tissues and the effect of indole-3-acetic acid (IAA), applied with or without cycloheximide, on their expression in the floret AZ were examined by northern blot analysis. The regulation of transcript accumulation in the floret AZ in response to NAA or 2,4-D was measured by real-time PCR during auxin pulsing of cut flowers and vase life, concomitantly with floret abscission. KEY RESULTS: Six isolated cDNAs were identified to represent Aux/IAA homologous genes, designated as Cestrum elegans (Ce)-IAA1 to Ce-IAA6. Four Ce-IAA genes were characterized as early auxin-responsive genes (ARGs), and two (Ce-IAA1 and Ce-IAA5) as late ARGs. Only Ce-IAA5 was AZ-specific in floret buds. A temporal regulation of Ce-IAA transcript levels in the floret AZ was found, with 2,4-D inducing higher expression levels than NAA in floret buds. These Ce-IAA expression levels were negatively correlated with floret abscission. CONCLUSIONS: The differential transport characteristics of NAA and 2,4-D in cestrum cut flowers were reflected in differential activation of the Ce-IAA genes identified in the floret AZ. Therefore, Aux/IAA genes can be used as molecular markers to measure auxin activity, which reflects free auxin level in the AZ. Two of the identified genes, Ce-IAA1 and Ce-IAA5, may also have a regulatory role in abscission.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Cestrum/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Naftalenoacéticos/farmacologia , Sequência de Aminoácidos , Cestrum/efeitos dos fármacos , Clonagem Molecular , Cicloeximida/farmacologia , DNA Complementar/genética , Flores/efeitos dos fármacos , Flores/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Especificidade de Órgãos/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA