Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 631: 122539, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36572266

RESUMO

Increasing interest in developing antifibrotic therapies became a paramount priority due to the globally raised incidence of deaths secondary to hepatic cirrhosis. This work deals with the development of innovative antifibrotic pirfenidone -loaded lecithin core nanocapsules. This with the intention to target the liver and to increase the drug bioavailability, reducing drug liver toxicity, and studying the associated hepatic microenvironment changes. PFD-loaded lecithin nanocapsules (PFD-LENCs) were prepared using the natural lipoid S45 for its dual benefits of being both a lipid and an amphiphilic surfactant. The selected formulation exhibited in vitro sustained drug release up to 24 h compared to free PFD, which is consistent with the studied pharmacokinetic profile. The studied cytotoxicity of PFD as well as PFD-LENCs exhibited negligible cytotoxicity in normal oral epithelial cells. For exploring the capability of the PFD-LENCs in reaching the liver; in vivo tracing using CLSM, in vivo biodistribution to the vital organs were conducted and electron microscopic examination for depicting nanoparticles in liver tissue was performed. Results revealed the capability of the prepared fluorescent LENC2 in reaching the liver, PFD-LENCs detection in the Disse space of the liver and the significant accumulation of PFD-LENCs in liver tissue compared to the other tested organs. The assessment of the necro-inflammatory, antioxidant and the anti-fibrotic effect of PFD-LENCs (50 & 100 mg/kg) exhibited a significant decrease of liver enzymes, TNF-α, TGF-ß, Col-1, α-SMA, and TIMP-1, and a significant increase of catalase enzyme and MMP2 compared to free PFD. EM studies, revealed often detection of dendritic cells in PFD-LENCs (100 mg/kg) treated mice and abnormal collagen structure which can represent an adjunct contribution to the antifibrotic mechanism of PFD-LENCs. In conclusion, the development of this innovative PFD loaded lecithin nanocapsules achieved a targeting ability to the liver, controlled drug release, thereby increase the PFD therapeutic value in downregulating hepatic fibrosis in adjunct with the reduction of liver toxicity.


Assuntos
Lecitinas , Nanocápsulas , Camundongos , Animais , Distribuição Tecidual , Cirrose Hepática/tratamento farmacológico , Piridonas/farmacocinética
2.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234697

RESUMO

The GC-MS analysis of tea tree oil (TTO) revealed 38 volatile components with sesquiterpene hydrocarbons (43.56%) and alcohols (41.03%) as major detected classes. TTO efficacy is masked by its hydrophobicity; nanoencapsulation can address this drawback. The results showed that TTO-loaded solid lipid nanoparticles (SLN1), composed of glyceryl monostearate (2% w/w) and Poloxamer188 (5% w/w), was spherical in shape with a core-shell microstructure. TTO-SLN1 showed a high entrapment efficiency (96.26 ± 2.3%), small particle size (235.0 ± 20.4 nm), low polydispersity index (0.31 ± 0.01), and high negative Zeta potential (-32 mV). Moreover, it exhibited a faster active agent release (almost complete within 4 h) compared to other formulated TTO-SLNs as well as the plain oil. TTO-SLN1 was then incorporated into cellulose nanofibers gel, isolated from sugarcane bagasse, to form the 'TTO-loaded nanolipogel' which had a shear-thinning behavior. Second-degree thermal injuries were induced in Wistar rats, then the burned skin areas were treated daily for 7 days with the TTO-loaded nanolipogel compared to the unmedicated nanolipogel, the TTO-loaded conventional gel, and the normal saline (control). The measurement of burn contraction proved that TTO-loaded nanolipogel exhibited a significantly accelerated skin healing, this was confirmed by histopathological examination as well as quantitative assessment of inflammatory infiltrate. This study highlighted the success of the proposed nanotechnology approach in improving the efficacy of TTO used for the repair of skin damage induced by burns.


Assuntos
Queimaduras , Saccharum , Óleo de Melaleuca , Álcoois , Animais , Queimaduras/tratamento farmacológico , Celulose , Cromatografia Gasosa-Espectrometria de Massas , Lipossomos , Nanopartículas , Ratos , Ratos Wistar , Solução Salina , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia
3.
J Pharm Sci ; 110(3): 1337-1348, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33271137

RESUMO

Propranolol (PPL) administered orally is considered as the first line drug for the treatment of infantile hemangioma, however several systemic adverse effects limit its use. For this reason, our work tackles the development and evaluation of PPL loaded chitosan nanoparticles (NPs), as an effective alternative for the treatment of infantile hemangioma. PPL -NPs were prepared using the double emulsion technique and the influence of the formulation variables on drug entrapment efficiency (EE), particle size (PS), percent released after 24 h (%R24h) and zeta potential (ZP) were optimized using full factorial design. Two systems, namely F3 and F28 showing highest E.E., ZP and %R24h with lowest PS, were fully characterized for DSC and TEM and incorporated into hydrogel with adequate viscosity. After ensuring safety for the selected nanoparticle, the hydrogel containing the optimized system was applied topically to rats. The in-vivo skin deposition in rats showed an accumulation of propranolol from the lecithin/chitosan nanocarrier by 1.56-1.91-fold when compared to the drug solution. The obtained result was further supported by the confocal laser scanning microscopy which showed fluorescence across the skin. PPL-HCL-loaded lecithin/chitosan nanoparticles could be considered as a potential candidate for treating infantile hemangiomas (IH) by maintaining therapeutic concentration topically while minimizing systemic side effects.


Assuntos
Quitosana , Nanopartículas , Animais , Portadores de Fármacos , Lecitinas , Tamanho da Partícula , Propranolol , Ratos , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA