Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 317-328, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436496

RESUMO

Acetaminophen (APAP), a widely used medication known for its pain-relieving and fever-reducing effects, can cause kidney failure if taken in excess. To investigate the potential protective effects of allicin (ALC) and/or omega-3 fatty acids (O3FA) against acetaminophen-induced kidney damage, a study was conducted using 49 rats divided into seven groups. The control group was given saline, while the other groups received ALC, O3FA, APAP, ALC + APAP, O3FA + APAP, or ALC + O3FA + APAP. After administering APAP, the rats showed decreased levels of total protein and albumin in their blood, along with increased levels of creatinine and urea. The concentration of reduced glutathione (GSH), as well as the activity of superoxide dismutase (SOD) and catalase (CAT), decreased, while the level of malondialdehyde (MDA) in the renal tissues increased. The activation of caspase-3 and HSP70 also suggested an impact on kidney histopathology. Overall, the study found that ALC and/or O3FA may have a protective impact against acetaminophen-induced kidney damage through their anti-inflammatory, anti-apoptotic, and antioxidant defense systems.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ácidos Graxos Ômega-3 , Nefropatias , Insuficiência Renal , Ratos , Animais , Acetaminofen/toxicidade , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Rim , Nefropatias/induzido quimicamente , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose , Fígado , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
2.
Ecotoxicol Environ Saf ; 242: 113899, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870348

RESUMO

The ameliorative effects of Spirulina and Saccharomyces cerevisiae (S. cerevisiae) against fipronil toxicity in Nile tilapia fish were investigated. Fipronil is a kind of pesticide that is widely used in agriculture, thus this trial was conducted to evaluate the effect of fipronil on growth related parameters (final body weight, feed intake, weight gain, feed conversion ratio, specific growth rate, and protein efficiency ratio), hematology related parameters (RBCs, WBCs, hemoglobin, packed cell volume, and deferential leukocytic count), biochemistry related parameters (alanine aminotransferase, aspartate aminotransferase, total protein, albumin, urea, and creatinine), histopathology of liver, intestine, gills, and spleen, and gene expression of antioxidants, stress, inflammatory, apoptotic, and related to junction proteins genes as SOD and GPx, COX II, TNF-α, Casp-3, and Claudin-3, respectively, in Nile tilapia (Oreochromis niloticus). Four hundred and five Nile tilapia fish were distributed in a glass aquarium into nine groups according to the Spirulina and S. cerevisiae supplemented diets, with or without fipronil contaminated water. The classified groups are control, Sc: S. cerevisiae (4 g/Kg diet), Sp: Spirulina (1 g/100 g diet), Fb1: 0.0021 mg fipronil/L, ScFb1: S. cerevisiae (4 g/Kg diet) with 0.0021 mg fipronil/L, SpFb1: Spirulina (1 g/100 g diet) with 0.0021 mg fipronil/L, Fb2: 0.0042 mg fipronil/L, ScFb2: S. cerevisiae (4 g/Kg diet) with 0.0042 mg fipronil/L, and SpFb2: Spirulina (1 g/100 g diet) with 0.0042 mg fipronil/L. The results of the present investigation indicated the negative effect of fipronil on the growth performance parameters of Nile tilapia, which was confirmed by the results of hematology, biochemistry, and histopathology. In addition, the results of gene expression of antioxidants, stress, inflammatory, and apoptotic genes indicate the genotoxicity of fipronil. However, these negative effects were ameliorated by Spirulina and Saccharomyces dietary supplementation.


Assuntos
Ciclídeos , Spirulina , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Ciclídeos/metabolismo , Dieta , Suplementos Nutricionais , Pirazóis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Mar Drugs ; 18(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271842

RESUMO

Marine-derived substances are known for their beneficial influences on aquatic animals' performances and are recommended to improve intestinal health, immunity, and anti-oxidative status. The present study investigates the role of chitosan nanoparticles on the intestinal histo-morphometrical features in association with the health and immune response of Grey Mullet (Liza ramada). Chitosan nanoparticles are included in the diets at 0, 0.5, 1, and 2 g/kg and introduced to fish in a successive feeding trial for eight weeks. The final body weight (FBW), weight gain (WG), and specific growth rate (SGR) parameters are significantly increased while feed conversion ratio (FCR) decreases by chitosan nanoparticles compared to the control (p < 0.05). The morphometric analysis of the intestines reveals a significant improvement in villus height, villus width, and the number of goblet cells in chitosan-treated groups in a dose-dependent manner. Additionally, there is a positive correlation between the thickness of the enterocyte brush border and the chitosan dose, referring to an increasing absorptive activity. Histologically, the intestinal wall of Grey Mullet consists of four layers; mucosa, sub-mucosa, tunica muscularis (muscular layers), and serosa. The histological examination of the L. ramada intestine shows a normal histo-morphology. The epithelial layer of intestinal mucosa is thrown into elongated finger-like projections, the intestinal villi. The values of hemoglobin, hematocrit, red blood cells (RBCs), total protein (TP), albumin, and globulin are significantly increased in fish fed 1, and 2 g/kg of chitosan nanoparticles compared to fish fed 0 and 0.5 g/kg (p < 0.05). The highest levels of TP and albumin are observed in fish fed 1 g/kg diet (p < 0.05). The lysozyme activity and phagocytic index are significantly enhanced by feeding chitosan nanoparticles at 0.5, 1, and 2 g/kg, whereas the phagocytic activity is improved in fish fed 1 and 2 g/kg (p < 0.05). The highest lysozyme activity and phagocytic index are observed in fish fed 1 g/kg. SOD is significantly activated by feeding chitosan nanoparticles at 1 g/kg. Simultaneously, glutathione peroxidase (GPx) and catalase (CAT) activities also are enhanced by feeding chitosan at 1 and 2 g/kg, compared to fish fed 0 and 0.5 g/kg (p < 0.05). The highest GPx and CAT activities are observed in fish fed 1 g/kg (p < 0.05). Conversely, the malondialdehyde (MDA) levels are decreased by feeding chitosan at 1 and 2 g/kg, with the lowest being in fish fed 1 g/kg (p < 0.05). To summarize, the results elucidate that L. ramada fed dietary chitosan nanoparticles have a marked growth rate, immune response, and anti-oxidative response. These improvements are attributed to the potential role of chitosan nanoparticles in enhancing intestinal histo-morphometry and intestinal health. These results soundly support the possibility of using chitosan nanoparticles at 1-2 g/kg as a feasible functional supplement for aquatic animals.


Assuntos
Quitosana/farmacologia , Suplementos Nutricionais , Imunidade/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Nanopartículas , Smegmamorpha , Ração Animal , Animais , Aquicultura , Biomarcadores/sangue , Intestinos/crescimento & desenvolvimento , Intestinos/imunologia , Estresse Oxidativo/efeitos dos fármacos , Smegmamorpha/sangue , Smegmamorpha/crescimento & desenvolvimento , Smegmamorpha/imunologia , Aumento de Peso/efeitos dos fármacos
4.
Front Pharmacol ; 11: 574441, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117167

RESUMO

Cisplatin (CP) is one of the most active medications in cancer treatment and has some adverse effects such as hepatotoxicity and nephrotoxicity. The present research was planned to determine the protective effects of L-carnitine (LC) against CP-induced hepato-renal oxidative stress in rats, via investigating of some serum biochemical and tissue oxidative/antioxidant parameters, histological alterations, and immunohistochemical expressions of two different intermediate filaments (IFs) proteins; vimentin (VIM) and cytokeratin 18 (CK18). Twenty-eight rats were divided into four groups (7 rats each). Groups I and II were orally administered saline and LC (100 mg/kg body weight), respectively, once daily for 30 consecutive days. Group III received saline orally once daily and a single dose of CP on the 27th day of the experiment [7.5 mg/kg, intraperitoneal (IP)]. Group IV received both LC and CP. Injection of CP significantly (P ≤ 0.05) increased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activities and creatinine and urea levels, while serum total protein, albumin, and globulin concentrations significantly (P ≤ 0.05) decreased. In addition, CP induced a dramatic increase in the Malondialdehyde (MDA) level along with a substantial decrease in reduced glutathione (GSH) and catalase (CAT) in the hepato-renal tissues. Histologically, both liver and kidney of the CP treated group revealed marked degenerative changes. Moreover, overexpression of both VIM and CK18 in hepato-renal tissues were noted after CP injection. On the other hand, the administration of LC in the CP injected group (Group IV) restored the biochemical parameters, histological, and immunohistochemical pictures toward the normalcy. In conclusion, LC may be supplemented for chemotherapy with CP to ameliorate its oxidative stress and restore the normal organization of IFs, especially VIM and CK18 within the CP intoxicated hepato-renal cells.

5.
Environ Sci Pollut Res Int ; 27(18): 23026-23034, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32329006

RESUMO

The present study aimed to investigate the possible mitigating effect of L-carnitine (LC) and/or α-tocopherol (Vit. E) administration against tilmicosin (TIL)-induced cardiotoxicity in rats. Fifty-six male albino rats were divided into seven groups according to LC, Vit. E, and/or TIL administration. Control, LC, and Vit. E groups were given saline, 150 mg LC/kg body weight (BW)/day and 100 mg Vit. E/kg BW/day, respectively, orally once daily for 15 days. The TIL group was administered saline orally once daily for 15 days and a single dose of TIL (75 mg/kg BW) subcutaneously (SC) on day 14 from the starting of the experimental period (15 days). The TIL-LC, TIL-Vit. E, and TIL-LC-Vit. E groups received 150 mg LC/kg BW/day, 100 mg Vit. E/kg BW/day, and 150 mg LC/kg BW pulse 100 mg Vit. E/kg BW, respectively, orally once daily for 15 days with TIL as described above. The results revealed that the administration of TIL significantly (P ≤ 0.05) raised serum activities of heart injury indicators, lactate dehydrogenase (LDH), creatine kinase (CK), and CK-MB with substantial increase (P ≤ 0.05) in the cardiac contents of malondialdehyde (MDA) and decreased in antioxidants. The pathological changes appeared in the form of necrotic muscle fibers and massive inflammatory cellular infiltrations in the cardiac muscle and increased the caspase-3 immunohistochemical expression in the heart tissues as well. These changes were ameliorated by LC and/or Vit. E administration. In conclusion, supplementation of LC and/or Vit. E ameliorated the cardiotoxicity of the TIL SC injection in the rat.


Assuntos
Carnitina , Vitamina E , Animais , Antioxidantes , Cardiotoxicidade , Masculino , Estresse Oxidativo , Ratos , Tilosina/análogos & derivados
6.
Biomed Pharmacother ; 130: 110627, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34321156

RESUMO

Piroxicam (PM) is an oxicam-NSAID commonly recommended for various pain and associated inflammatory disorders. However, it is reported to have a gastric and hepato-renal toxic effect. Therefore, the current research was planned to investigate the possible mechanisms behind the mitigating action of the coenzyme (CoQ10), a natural, free radical scavenger, against PM tissue injury. Rats were assigned to five equal groups; Control, CoQ10 (10 mg/kg, orally), PM (7 mg/kg, i.p.), CoQ + PM L, and CoQ + PM H group. After 28 days, PM provoked severe gastric ulceration and marked liver and kidney damage indicated by an elevated gastric ulcer index and considerable alteration in liver and kidney biochemical tests. The toxic effects might be attributed to mitochondrial dysfunction and excess generation of reactive oxygen species (ROS), as indicated by enhanced malondialdehyde (MDA) levels along with decreased reduced-glutathione (GSH) levels and catalase (CAT) activity. Apoptotic cell death also was demonstrated by increased regulation of activated caspase-3 in the stomach, liver, and kidney tissues. Interestingly, external supplementation of CoQ10 attenuated the PM-inflicted deleterious oxidative harm and apoptosis. This ameliorative action was ascribed to the free radical scavenging activity of CoQ10.


Assuntos
Apoptose/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piroxicam/farmacologia , Ubiquinona/análogos & derivados , Animais , Anti-Inflamatórios não Esteroides/farmacologia , COVID-19/metabolismo , COVID-19/patologia , Caspase 3/metabolismo , Suplementos Nutricionais , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Oxirredução , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Estômago/efeitos dos fármacos , Estômago/patologia , Úlcera Gástrica/metabolismo , Ubiquinona/farmacologia
7.
Environ Sci Pollut Res Int ; 26(1): 240-249, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30392171

RESUMO

Acetaminophen, APAP, is a common over-the-counter drug with antipyretic-analgesic action. When APAP is used in large doses, it causes hepatotoxicity and nephrotoxicity but safe at therapeutic doses. Cinnamon (Cinnamomum zeylanicum) is extensively used in folk medicine due to its high content of natural antioxidants. The current investigation was planned to study the possible ameliorative effect of cinnamon toward induced APAP-apoptosis and cellular damage in renal cells. Four groups (nine rats each) were used; negative control group administrated distilled water for 15 days; positive control APAP group administrated a single dose of APAP (1 g/kg) orally on the last day; APAP+Cin L (200 mg/kg) and APAP+Cin H (400 mg/kg) aqueous extract of cinnamon orally once a day for 15 days. An hour after the last dose of cinnamon, all rats in the third and fourth group were administrated a single dose of APAP (1 g/kg) orally. GC/MS analysis was performed to identify the plant used in the study. APAP markedly increased serum levels of creatinine, BUN, and glucose and decreased levels of albumin and total protein. In addition, APAP could also exert severe alteration in the kidney histopathology along with upregulation of caspase-3 and PCNA. However, pre-treatment with cinnamon ameliorated the APAP-induced cellular alterations and apoptosis, possibly through its high content of antioxidants.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Cinnamomum zeylanicum/metabolismo , Acetaminofen/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3 , Doença Hepática Induzida por Substâncias e Drogas/patologia , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Óleos Voláteis/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA