Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 142(7): e39, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31145451

RESUMO

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Assuntos
Acetilcisteína/farmacologia , Epilepsia/prevenção & controle , Glutationa/metabolismo , Isotiocianatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Contagem de Células , Disfunção Cognitiva/complicações , Disfunção Cognitiva/prevenção & controle , Modelos Animais de Doenças , Estimulação Elétrica , Epilepsia/complicações , Proteína HMGB1/sangue , Hipocampo/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Estado Epiléptico/complicações , Estado Epiléptico/metabolismo , Estado Epiléptico/prevenção & controle , Sulfóxidos
2.
PLoS One ; 12(9): e0184104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863176

RESUMO

Mutations in PANK2 lead to neurodegeneration with brain iron accumulation. PANK2 has a role in the biosynthesis of coenzyme A (CoA) from dietary vitamin B5, but the neuropathological mechanism and reasons for iron accumulation remain unknown. In this study, atypical patient-derived fibroblasts were reprogrammed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into cortical neuronal cells for studying disease mechanisms in human neurons. We observed no changes in PANK2 expression between control and patient cells, but a reduction in protein levels was apparent in patient cells. CoA homeostasis and cellular iron handling were normal, mitochondrial function was affected; displaying activated NADH-related and inhibited FADH-related respiration, resulting in increased mitochondrial membrane potential. This led to increased reactive oxygen species generation and lipid peroxidation in patient-derived neurons. These data suggest that mitochondrial deficiency is an early feature of the disease process and can be explained by altered NADH/FADH substrate supply to oxidative phosphorylation. Intriguingly, iron chelation appeared to exacerbate the mitochondrial phenotype in both control and patient neuronal cells. This raises caution for the use iron chelation therapy in general when iron accumulation is absent.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Doenças Mitocondriais/fisiopatologia , Neurodegeneração Associada a Pantotenato-Quinase/fisiopatologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Acetilcoenzima A/química , Adolescente , Biópsia , Encéfalo/metabolismo , Diferenciação Celular , Criança , Coenzima A/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ferro/química , Cariotipagem , Peroxidação de Lipídeos , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/patologia , Mutação , NAD/química , Neurônios/metabolismo , Ácido Pantotênico/química , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plasmídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Brain ; 140(7): 1885-1899, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575153

RESUMO

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Assuntos
Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Epilepsia/tratamento farmacológico , Domínios HMG-Box/efeitos dos fármacos , Proteína HMGB1/sangue , Proteína HMGB1/metabolismo , Isotiocianatos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Quimioterapia Combinada , Epilepsia/metabolismo , Proteína HMGB1/biossíntese , Hipocampo/metabolismo , Isotiocianatos/farmacologia , Masculino , Degeneração Neural/dietoterapia , Neurônios/metabolismo , Ratos , Sulfóxidos
4.
Biol Chem ; 397(5): 383-400, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26812787

RESUMO

The nuclear factor erythroid-derived 2 (NF-E2)-related factor 2 (Nrf2) is a transcription factor well-known for its function in controlling the basal and inducible expression of a variety of antioxidant and detoxifying enzymes. As part of its cytoprotective activity, increasing evidence supports its role in metabolism and mitochondrial bioenergetics and function. Neurodegenerative diseases are excellent candidates for Nrf2-targeted treatments. Most neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia and Friedreich's ataxia are characterized by oxidative stress, misfolded protein aggregates, and chronic inflammation, the common targets of Nrf2 therapeutic strategies. Together with them, mitochondrial dysfunction is implicated in the pathogenesis of most neurodegenerative disorders. The recently recognized ability of Nrf2 to regulate intermediary metabolism and mitochondrial function makes Nrf2 activation an attractive and comprehensive strategy for the treatment of neurodegenerative disorders. This review aims to focus on the potential therapeutic role of Nrf2 activation in neurodegeneration, with special emphasis on mitochondrial bioenergetics and function, metabolism and the role of transporters, all of which collectively contribute to the cytoprotective activity of this transcription factor.


Assuntos
Metabolismo Energético , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Encéfalo/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Metabolismo dos Lipídeos , Proteínas de Membrana Transportadoras/metabolismo
5.
Neuropharmacology ; 69: 96-104, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22659085

RESUMO

Seizure activity can lead to energy failure and neuronal injury, resulting in neurological and cognitive sequelae. Moreover, mutations affecting genes encoding for proteins that maintain energy homeostasis within the cell often result in an epileptic phenotype, implying that energy failure can contribute to epileptogenesis. Indeed, there is evidence to indicate that the efficacy of the ketogenic diet, a treatment for refractory epilepsy, can be partly explained by its effect on increasing energetic substrates. The ATP level, reflecting the energy level of a cell, is maintained by the potential gradient across the mitochondrial membrane. This potential gradient is maintained by NADH/H(+) equivalents, produced by reactions within the tricarboxylic acid cycle (TCA-cycle). Anaplerosis, the replenishment of TCA-cycle substrates, therefore represents an appealing strategy to address energy failure such as occurs in seizures. There is accumulating evidence that pyruvate, a classical anaplerotic substrate, has seizure suppressive effects and protects against seizure induced cell death. This review summarizes the evidence for the contribution of TCA cycle deficits in generating seizures. We highlight the role for TCA substrate supplementation in protecting against seizures and seizure induced cell death, and propose that these are important targets for future translational research addressing energy depletion in seizures. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.


Assuntos
Metabolismo Energético/fisiologia , Convulsões/fisiopatologia , Convulsões/terapia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Animais , Ciclo do Ácido Cítrico/fisiologia , Dieta Cetogênica , Humanos , Neurônios/patologia , Neurônios/fisiologia , Ácido Pirúvico/metabolismo , Convulsões/patologia
6.
J Cell Sci ; 125(Pt 7): 1796-806, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22328526

RESUMO

The mechanisms underlying neuronal death following excessive activity such as occurs during prolonged seizures are unclear, but mitochondrial dysfunction has been hypothesised to play a role. Here, we tested this with fluorescence imaging techniques in rat glio-neuronal neocortical co-cultures using low Mg(2+) levels to induce seizure-like activity. Glutamate activation of NMDA receptors resulted in Ca(2+) oscillations in neurons and a sustained depolarisation of the mitochondrial membrane potential, which was cyclosporine A sensitive, indicating mitochondrial permeability and transition pore opening. It was also dependent on glutamate release and NMDA receptor activation, because depolarisation was not observed after depleting vesicular glutamate with vacuolar-type H(+)-ATPase concanamycin A or blocking NMDA receptors with APV. Neuronal ATP levels in soma and dendrites decreased significantly during prolonged seizures and correlated with the frequency of the oscillatory Ca(2+) signal, indicative of activity-dependent ATP consumption. Blocking mitochondrial complex I, complex V or uncoupling mitochondrial oxidative phosphorylation under low-Mg(2+) conditions accelerated activity-dependent neuronal ATP consumption. Neuronal death increased after two and 24 hours of low Mg(2+) levels compared with control treatment, and was reduced by supplementation with the mitochondrial complex I substrate pyruvate. These findings demonstrate a crucial role for mitochondrial dysfunction in seizure-activity-induced neuronal death, and that strategies aimed at redressing this are neuroprotective.


Assuntos
Metabolismo Energético , Mitocôndrias/metabolismo , Neocórtex/citologia , Neuroglia/citologia , Convulsões/metabolismo , Animais , Morte Celular , Células Cultivadas , Neocórtex/metabolismo , Neuroglia/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Biochim Biophys Acta ; 1800(3): 297-304, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19695307

RESUMO

BACKGROUND: Accumulation of glutamate in ischaemic CNS is thought to amplify neuronal death during a stroke. Exposure of neurons to toxic glutamate concentrations causes an initial transient increase in [Ca(2+)](c) followed by a delayed increase commonly termed delayed [Ca(2+)](c) deregulation (DCD). METHODS: We have used fluorescence imaging techniques to explore differences in glutamate-induced DCD in rat hippocampal neurons after different periods of time in culture (days in vitro; DIV). RESULTS: The amplitude of both the initial [Ca(2+)](c) signal and the number of cells showing DCD in response to glutamate increased with the duration of culture. The capacity of mitochondria to accumulate calcium in permeabilised neurons decreased with time in culture, although mitochondrial membrane potential at rest did not change. The rate of ATP consumption, measured as an increase in [Mg(2+)](c) following inhibition of ATP synthesis, was lower in 'young' neurons. The sensitivity of 'young' neurons to glutamate-induced DCD approximated to that of 'old' neurons when mitochondrial function was impaired using either FCCP or oligomycin. Further, following such treatment, cells showed a DCD-like response to increased [Ca(2+)](c) induced by KCl induced depolarisation which was never otherwise seen. GENERAL SIGNIFICANCE: Thus, changes in cellular bioenergetics dictate the onset of DCD in response to glutamate.


Assuntos
Cálcio/metabolismo , Ácido Glutâmico/farmacologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Animais , Técnicas de Cultura de Células , Metabolismo Energético , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Homeostase , Cinética , Magnésio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Propídio/toxicidade , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA