Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Health Perspect ; 131(3): 37015, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976258

RESUMO

BACKGROUND: Chronic arsenic (As) exposure is a global environmental health issue. Inorganic As (InAs) undergoes methylation to monomethyl (MMAs) and dimethyl-arsenical species (DMAs); full methylation to DMAs facilitates urinary excretion and is associated with reduced risk for As-related health outcomes. Nutritional factors, including folate and creatine, influence one-carbon metabolism, the biochemical pathway that provides methyl groups for As methylation. OBJECTIVE: Our aim was to investigate the effects of supplementation with folic acid (FA), creatine, or the two combined on the concentrations of As metabolites and the primary methylation index (PMI: MMAs/InAs) and secondary methylation index (SMI: DMAs/MMAs) in blood in Bangladeshi adults having a wide range of folate status. METHODS: In a randomized, double-blinded, placebo (PBO)-controlled trial, 622 participants were recruited independent of folate status and assigned to one of five treatment arms: a) PBO (n=102), b) 400µg FA/d (400FA; n=153), c) 800µg FA/d (800FA; n=151), d) 3g creatine/d (creatine; n=101), or e) 3g creatine+400µg of FA/d (creatine+400FA; n=103) for 12 wk. For the following 12 wk, half of the FA participants were randomly switched to the PBO while the other half continued FA supplementation. All participants received As-removal water filters at baseline. Blood As (bAs) metabolites were measured at weeks 0, 1, 12, and 24. RESULTS: At baseline, 80.3% (n=489) of participants were folate sufficient (≥9 nmol/L in plasma). In all groups, bAs metabolite concentrations decreased, likely due to filter use; for example, in the PBO group, blood concentrations of MMAs (bMMAs) (geometric mean±geometric standard deviation) decreased from 3.55±1.89µg/L at baseline to 2.73±1.74 at week 1. After 1 wk, the mean within-person increase in SMI for the creatine+400FA group was greater than that of the PBO group (p=0.05). The mean percentage decrease in bMMAs between baseline and week 12 was greater for all treatment groups compared with the PBO group [400FA: -10.4 (95% CI: -11.9, -8.75), 800FA: -9.54 (95% CI: -11.1, -7.97), creatine: -5.85 (95% CI: -8.59, -3.03), creatine+400FA: -8.44 (95% CI: -9.95, -6.90), PBO: -2.02 (95% CI: -4.03, 0.04)], and the percentage increase in blood DMAs (bDMAs) concentrations for the FA-treated groups significantly exceeded that of PBO [400FA: 12.8 (95% CI: 10.5, 15.2), 800FA: 11.3 (95% CI: 8.95, 13.8), creatine+400FA: 7.45 (95% CI: 5.23, 9.71), PBO: -0.15 (95% CI: -2.85, 2.63)]. The mean decrease in PMI and increase in SMI in all FA groups significantly exceeded PBO (p<0.05). Data from week 24 showed evidence of a reversal of treatment effects on As metabolites from week 12 in those who switched from 800FA to PBO, with significant decreases in SMI [-9.0% (95% CI: -3.5, -14.8)] and bDMAs [-5.9% (95% CI: -1.8, -10.2)], whereas PMI and bMMAs concentrations continued to decline [-7.16% (95% CI: -0.48, -14.3) and -3.1% (95% CI: -0.1, -6.2), respectively] for those who remained on 800FA supplementation. CONCLUSIONS: FA supplementation lowered bMMAs and increased bDMAs in a sample of primarily folate-replete adults, whereas creatine supplementation lowered bMMAs. Evidence of the reversal of treatment effects on As metabolites following FA cessation suggests short-term benefits of supplementation and underscores the importance of long-term interventions, such as FA fortification. https://doi.org/10.1289/EHP11270.


Assuntos
Arsênio , Ácido Fólico , Adulto , Humanos , Arsênio/urina , Creatina/uso terapêutico , Creatina/metabolismo , Metilação , Suplementos Nutricionais
2.
Curr Diab Rep ; 19(12): 147, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758285

RESUMO

PURPOSE OF REVIEW: In utero influences, including nutrition and environmental chemicals, may induce long-term metabolic changes and increase diabetes risk in adulthood. This review evaluates the experimental and epidemiological evidence on the association of early-life arsenic exposure on diabetes and diabetes-related outcomes, as well as the influence of maternal nutritional status on arsenic-related metabolic effects. RECENT FINDINGS: Five studies in rodents have evaluated the role of in utero arsenic exposure with diabetes in the offspring. In four of the studies, elevated post-natal fasting glucose was observed when comparing in utero arsenic exposure with no exposure. Rodent offspring exposed to arsenic in utero also showed elevated insulin resistance in the 4 studies evaluating it as well as microRNA changes related to glycemic control in 2 studies. Birth cohorts of arsenic-exposed pregnant mothers in New Hampshire, Mexico, and Taiwan have shown that increased prenatal arsenic exposure is related to altered cord blood gene expression, microRNA, and DNA methylation profiles in diabetes-related pathways. Thus far, no epidemiologic studies have evaluated early-life arsenic exposure with diabetes risk. Supplementation trials have shown B vitamins can reduce blood arsenic levels in highly exposed, undernourished populations. Animal evidence supports that adequate B vitamin status can rescue early-life arsenic-induced diabetes risk, although human data is lacking. Experimental animal studies and human evidence on the association of in utero arsenic exposure with alterations in gene expression pathways related to diabetes in newborns, support the potential role of early-life arsenic exposure in diabetes development, possibly through increased insulin resistance. Given pervasive arsenic exposure and the challenges to eliminate arsenic from the environment, research is needed to evaluate prevention interventions, including the possibility of low-cost, low-risk nutritional interventions that can modify arsenic-related disease risk.


Assuntos
Arsênio/efeitos adversos , Diabetes Mellitus/etiologia , Estado Nutricional , Efeitos Tardios da Exposição Pré-Natal/genética , Complexo Vitamínico B/uso terapêutico , Adulto , Animais , Glicemia/análise , Diabetes Mellitus/sangue , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Feminino , Sangue Fetal , Expressão Gênica , Humanos , Recém-Nascido , Resistência à Insulina/genética , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Ratos , Fatores de Risco
3.
Int J Mol Sci ; 17(4): 474, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27043539

RESUMO

Thymoquinone (THQ) is a major component of black seeds. Given that both THQ and black seeds exhibit anti-cancer and anti-inflammatory activities, we hypothesized that THQ will affect cancer-associated thrombosis (CAT), which is primarily triggered by tissue factor (TF) and inflammation. The effect of both black seed-extracted and purchased ("pure") THQ on normal blood coagulation was tested with in vitro thromboelastography (TEG) and activated partial thromboplastin time (aPTT) coagulation assays. The effect of pure THQ on CAT was tested with aPTT assay using pancreatic cancer cell lines that are either positive or negative for TF, and with TEG assay using lipopolysaccharide as an inflammatory trigger. Additionally, the direct effect of THQ on the inactivation of factors IIa and Xa was assessed. Since TNF-α facilitates crosstalk between inflammation and thrombosis by triggering the NF-κB pathway, we tested THQ's ability to interfere with this communication with a luciferase assay. Both extracted and pure THQ had minimal effects on normal blood coagulation. Pure THQ reversed CAT initiated by both TF and inflammation to basal levels (p < 0.001). Mechanistically, while THQ had minimal to no effect on factor IIa and Xa inactivation, it strongly reduced the effects of TNF-α on NF-κB elements (p < 0.001). THQ has a minimal effect on basal coagulation and can reverse CAT in vitro, possibly by interfering with the crosstalk between inflammation and coagulation. This study suggests the utility of THQ as a preventative anticoagulant and/or as a supplement to existing chemotherapies and anticoagulant therapies.


Assuntos
Anticoagulantes/farmacologia , Benzoquinonas/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Linhagem Celular Tumoral , Fator Xa/química , Fator Xa/metabolismo , Humanos , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Óleos Voláteis/química , Tempo de Tromboplastina Parcial , Sementes/química , Sementes/metabolismo , Tromboelastografia , Tromboplastina/metabolismo , Trombose/etiologia , Trombose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA