Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Rep ; 14(1): 8651, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622233

RESUMO

In this study, the multifaceted toxicity induced by high doses of the essential trace element molybdenum in Allium cepa L. was investigated. Germination, root elongation, weight gain, mitotic index (MI), micronucleus (MN), chromosomal abnormalities (CAs), Comet assay, malondialdehyde (MDA), proline, superoxide dismutase (SOD), catalase (CAT) and anatomical parameters were used as biomarkers of toxicity. In addition, detailed correlation and PCA analyzes were performed for all parameters discussed. On the other hand, this study focused on the development of a two hidden layer deep neural network (DNN) using Matlab. Four experimental groups were designed: control group bulbs were germinated in tap water and application group bulbs were germinated with 1000, 2000 and 4000 mg/L doses of molybdenum for 72 h. After germination, root tips were collected and prepared for analysis. As a result, molybdenum exposure caused a dose-dependent decrease (p < 0.05) in the investigated physiological parameter values, and an increase (p < 0.05) in the cytogenetic (except MI) and biochemical parameter values. Molybdenum exposure induced different types of CAs and various anatomical damages in root meristem cells. Comet assay results showed that the severity of DNA damage increased depending on the increasing molybdenum dose. Detailed correlation and PCA analysis results determined significant positive and negative interactions between the investigated parameters and confirmed the relationships of these parameters with molybdenum doses. It has been found that the DNN model is in close agreement with the actual data showing the accuracy of the predictions. MAE, MAPE, RMSE and R2 were used to evaluate the effectiveness of the DNN model. Collective analysis of these metrics showed that the DNN model performed well. As a result, it has been determined once again that high doses of molybdenum cause multiple toxicity in A. cepa and the Allium test is a reliable universal test for determining this toxicity. Therefore, periodic measurement of molybdenum levels in agricultural soils should be the first priority in preventing molybdenum toxicity.


Assuntos
Allium , Molibdênio/toxicidade , Raízes de Plantas , Meristema , Cebolas/fisiologia , Aberrações Cromossômicas
2.
Environ Sci Pollut Res Int ; 31(6): 9272-9287, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191734

RESUMO

In this study, the toxic effects of permethrin on Allium cepa L. and the protective role of Zingiber officinale rhizome extract (Zoex) were investigated. In this context, 6 different groups were formed. While the control group was treated with tap water, the groups II and III were treated with 10 µg/mL and 20 µg/mL Zoex, respectively, and the group IV was treated with 100 µg/L permethrin. The protective effect of Zoex against permethrin toxicity was studied as a function of dose, and groups V and VI formed for this purpose were treated with 10 µg/mL Zoex + 100 µg/L permethrin and 20 µg/mL Zoex + 100 µg/L permethrin, respectively. After 72 h of germination, cytogenetic, biochemical, physiological, and anatomical changes in meristematic cells of A. cepa were studied. As a result, permethrin application decreased the mitotic index (MI) and increased the frequency of micronuclei (MN), and chromosomal abnormalities. The increase in malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) and the decrease in glutathione (GSH) indicate that permethrin causes oxidative damage. Compared to the control group, a 68.5% decrease in root elongation (p < 0.05) and an 81.8% decrease (p < 0.05) in weight gain were observed in the permethrin-treated group. It was found that the application of Zoex together with permethrin resulted in regression of all detected abnormalities, reduction in the incidence of anatomical damage, MN and chromosomal aberrations, and improvement in MI rates. The most significant improvement was observed in group VI treated with 20 µg/mL Zoex, and Zoex was also found to provide dose-dependent protection. The toxicity mechanism of permethrin was also elucidated by molecular docking and spectral studies. From the data obtained during the study, it was found that permethrin has toxic effects on A. cepa, a non-target organism, while Zoex plays a protective role by reducing these effects.


Assuntos
Permetrina , Zingiber officinale , Permetrina/toxicidade , Raízes de Plantas , Simulação de Acoplamento Molecular , Meristema , Cebolas , Aberrações Cromossômicas , Glutationa/farmacologia , Malondialdeído/farmacologia
3.
Environ Sci Pollut Res Int ; 30(55): 117952-117969, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37874518

RESUMO

In this study, the toxicity induced by the alkylating agent methyl methanesulfonate (MMS) in Allium cepa L. was investigated. For this aim, bulbs were divided into 4 groups as control and application (100, 500 and 4000 µM MMS) and germinated for 72 h at 22-24 °C. At the end of the germination period root tips were collected and made ready for analysis by applying traditional preparation methods. Germination, root elongation, weight, mitotic index (MI) values, micronucleus (MN) and chromosomal abnormality (CAs) numbers, malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities and anatomical structures of bulbs were used as indicators to determine toxicity. Moreover the extent of DNA fragmentation induced by MMS was determined by comet assay. To confirm the DNA fragmentation induced by MMS, the DNA-MMS interaction was examined with molecular docking. Correlation and principal component analyses (PCA) were performed to examine the relationship between all parameters and understand the underlying structure and relationships among these parameters. In the present study, a deep neural network (DNN) with two hidden layers implemented in Matlab has been developed for the comparison of the estimated data with the real data. The effect of MDA levels, SOD and CAT activities at 4 different endpoints resulting from administration of various concentrations of MMS, including MN, MI, CAs and DNA damage, was attempted to be estimated by DNN model. It is assumed that the predicted results are in close agreement with the actual data. The effectiveness of the model was evaluated using 4 different metrics, MAE, MAPE, RMSE and R2, which together show that the model performs commendably. As a result, the highest germination, root elongation, weight gain and MI were measured in the control group. MMS application caused a decrease in all physiological parameters and an increase in cytogenetic (except MI) and biochemical parameters. MMS application caused an increase in antioxidant enzyme levels (SOD and CAT) up to a concentration of 500 µM and a decrease at 4000 µM. MMS application induced different types of CAs and anatomical damages in root meristem cells. The results of the comet assay showed that the severity of DNA fragmentation increased with increasing MMS concentration. Molecular docking analysis showed a strong DNA-MMS interaction. The results of correlation and PCA revealed significant positive and negative interactions between the studied parameters and confirmed the interactions of these parameters with MMS. It has been shown that the DNN model developed in this study is a valuable resource for predicting genotoxicity due to oxidative stress and lipid peroxidation. In addition, this model has the potential to help evaluate the genotoxicity status of various chemical compounds. At the end of the study, it was concluded that MMS strongly supports a versatile toxicity in plant cells and the selected parameters are suitable indicators for determining this toxicity.


Assuntos
Antioxidantes , Raízes de Plantas , Metanossulfonato de Metila/toxicidade , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Meristema , Superóxido Dismutase , Aberrações Cromossômicas , Cebolas , DNA , Dano ao DNA
4.
Sci Rep ; 13(1): 8493, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231203

RESUMO

In this study, the toxicity of vanadium (VCI3) in Allium cepa L. was studied. Germination-related parameters, mitotic index (MI), catalase (CAT) activity, chromosomal abnormalities (CAs), malondialdehyde (MDA) level, micronucleus (MN) frequency and superoxide dismutase (SOD) activity were investigated. The effects of VCI3 exposure on the DNA of meristem cells were investigated with the help of comet assay, and the relationships between physiological, cytogenetic and biochemical parameters were revealed by correlation and PCA analyses. A. cepa bulbs were germinated with different concentrations of VCI3 for 72 h. As a result, the maximum germination (100%), root elongation (10.4 cm) and weight gain (6.85 g) were determined in the control. VCI3 treatment caused significant decreases in all tested germination-related parameters compared to the control. The highest percentage of MI (8.62%) was also observed in the control. No CAs were found in the control, except for a few sticky chromosomes and unequal distribution of chromatin (p > 0.05). VCI3 treatment caused significant decreases in MI and increases in the frequencies of CAs and MN, depending on the dose. Similarly, the comet assay showed that DNA damage scores increased with increasing VCI3 doses. The lowest root MDA (6.50 µM/g) level and SOD (36.7 U/mg) and CAT (0.82 OD240nmmin/g) activities were also measured in the control. VCI3 treatment caused significant increases in root MDA levels and antioxidant enzyme activities. Besides, VCI3 treatment induced anatomical damages such as flattened cell nucleus, epidermis cell damage, binuclear cell, thickening in the cortex cell wall, giant cell nucleus, damages in cortex cell and unclear vascular tissue. All examined parameters showed significant negative or positive correlations with each other. PCA analysis confirmed the relations of investigated parameters and VCI3 exposure.


Assuntos
Allium , Biomarcadores Ambientais , Vanádio/toxicidade , Fragmentação do DNA , Antioxidantes/farmacologia , Raízes de Plantas , Meristema , Cebolas , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA , Superóxido Dismutase/farmacologia
5.
Sci Rep ; 13(1): 6787, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101000

RESUMO

The present study aimed at exploring to explore the penoxsulam toxicity and protective effects of blueberry extract in roots of Allium cepa L. The effective concentration (EC50) of penoxsulam was determined at 20 µg/L by the root growth inhibition test as the concentration reducing the root length by 50%. The bulbs of A. cepa L. were treated with tap water, blueberry extracts (25 and 50 mg/L), penoxsulam (20 µg/L) and combination of blueberry extracts (25 and 50 mg/L) with penoxsulam (20 µg/L) for 96 h. The results revealed that penoxsulam exposure inhibited cell division, rooting percentage, growth rate, root length and weight gain in the roots of A. cepa L. In addition, it induced chromosomal anomalies such as sticky chromosome, fragment, unequal distribution of chromatin, bridge, vagrant chromosome and c-mitosis and DNA strand breaks. Further, penoxsulam treatment enhanced malondialdehyde content and SOD, CAT and GR antioxidant enzyme activities. Molecular docking results supported the up-regulation of antioxidant enzyme SOD, CAT and GR. Against all these toxicity, blueberry extracts reduced penoxsulam toxicity in a concentration-dependent manner. The highest amount of recovery for cytological, morphological and oxidative stress parameters was observed when using blueberry extract at a concentration of 50 mg/L. In addition, blueberry extracts application showed a positive correlation with weight gain, root length, mitotic index and rooting percentage whereas a negative correlation with micronucleus formation, DNA damage, chromosomal aberrations, antioxidant enzymes activities and lipid peroxidation indicating its protecting effects. As a result, it has been seen that the blueberry extract can tolerate all these toxic effects of penoxsulam depending on the concentration, and it has been understood that it is a good protective natural product against such chemical exposures.


Assuntos
Mirtilos Azuis (Planta) , Vaccinium myrtillus , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Raízes de Plantas , Cebolas , Aberrações Cromossômicas/induzido quimicamente , Extratos Vegetais/farmacologia , Superóxido Dismutase/genética , Dano ao DNA
6.
Sci Rep ; 13(1): 4888, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966255

RESUMO

The excessive use of metaldehyde in agriculture to combat mollusks endangers both the environment and non-target organisms. The aim of this study is to investigate the toxicity caused by metaldehyde in Allium cepa with the help of physiological, cytogenetic, biochemical and anatomical parameters. Also, DNA fragmentation caused by metaldehyde in root tip cells was measured by the "Comet Assay" method. The control group was germinated with tap water and the application groups were germinated with 20 mg/L metaldehyde, 40 mg/L metaldehyde, 100 mg/L metaldehyde and 200 mg/L metaldehyde for 72 h. The results of the physiological parameters showed that metaldehyde had a growth-limiting effect in A. cepa, depending on the application dose. According to root elongation levels, the EC50 (effective concentration) value for metaldehyde was 60.6 mg/L in A. cepa. As the treatment dose increased, the incidence of micronucleus and chromosomal aberrations gradually increased while mitotic index decreased. Metaldehyde exposure induced damages such as sticky chromosome, fragment, unequal distribution of chromatin, reverse polarization, bridge, and multipolar anaphase. In addition, metaldehyde caused cell damage in epidermis and cortex, thickening of the cortex cell wall and flattened cell nucleus in root meristem. Increasing doses of metaldehyde application also increased malondialdehyde levels, superoxide dismutase and catalase activities. As a result, it has been determined that the toxicity of metaldehyde in plants is versatile and the A. cepa test material is a suitable biological indicator to determine this toxicity.


Assuntos
Meristema , Raízes de Plantas , Meristema/genética , Antioxidantes/farmacologia , Cebolas , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA
7.
Int J Low Extrem Wounds ; 22(2): 283-290, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33856261

RESUMO

We aimed to determine pathogen microorganisms, their antimicrobial resistance patterns, and the effect of initial treatment on clinical outcomes in patients with diabetic foot infection (DFI). Patients with DFI from 5 centers were included in this multicenter observational prospective study between June 2018 and June 2019. Multivariate analysis was performed for the predictors of reinfection/death and major amputation. A total of 284 patients were recorded. Of whom, 193 (68%) were male and the median age was 59.9 ± 11.3 years. One hundred nineteen (41.9%) patients had amputations, as the minor (n = 83, 29.2%) or major (n = 36, 12.7%). The mortality rate was 1.7% with 4 deaths. A total of 247 microorganisms were isolated from 200 patients. The most common microorganisms were Staphylococcus aureus (n = 36, 14.6%) and Escherichia coli (n = 32, 13.0%). Methicillin resistance rates were 19.4% and 69.6% in S aureus and coagulase-negative Staphylococcus spp., respectively. Multidrug-resistant Pseudomonas aeruginosa was detected in 4 of 22 (18.2%) isolates. Extended-spectrum beta-lactamase-producing Gram-negative bacteria were detected in 20 (38.5%) isolates of E coli (14 of 32) and Klebsiella spp. (6 of 20). When the initial treatment was inappropriate, Klebsiella spp. related reinfection within 1 to 3 months was observed more frequently. Polymicrobial infection (p = .043) and vancomycin treatment (p = .007) were independent predictors of reinfection/death. Multivariate analysis revealed vascular insufficiency (p = .004), hospital readmission (p = .009), C-reactive protein > 130 mg/dL (p = .007), and receiving carbapenems (p = .005) as independent predictors of major amputation. Our results justify the importance of using appropriate narrow-spectrum empirical antimicrobials because higher rates of reinfection and major amputation were found even in the use of broad-spectrum antimicrobials.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Escherichia coli , Pé Diabético/diagnóstico , Pé Diabético/tratamento farmacológico , Pé Diabético/microbiologia , Reinfecção/tratamento farmacológico , Farmacorresistência Bacteriana , Bactérias , Staphylococcus aureus , Testes de Sensibilidade Microbiana
8.
Sci Rep ; 12(1): 16615, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198753

RESUMO

In this study, heavy metal pollution in the Pazarsuyu stream of Giresun province and the protective role of lycopene against the toxicity caused by this pollution were investigated using the Allium test. Germination percentage, root length and weight gain as physiological markers of toxicity; mitotic index (MI), micronucleus (MN) and chromosomal aberrations (CAs) as genetic markers of toxicity; malondialdehyde (MDA) level, superoxide dismutase (SOD) and catalase (CAT) activities as biochemical markers of toxicity, and meristematic cell damages were used as anatomical markers. For this aim Allium cepa L. bulbs were divided into six groups and germinated for 72 h with 215 mg/L and 430 mg/L doses of lycopene, tap water and stream water. Heavy metals pollution was analyzed with ICP-MS and Fe > Sr > Ba > Be > Mo > Li were determined according to the rate of presence in the water samples of Pazarsuyu. As a result, germination-related parameters and meristematic cell proliferation of bulbs germinated with Pazarsuyu water samples decreased significantly. Germination percentage, root length and weight gain of the group treated with Pazarsuyu water samples were decreased 50%, 73% and 68%, respectively compared to control. In addition, MN and CAs frequencies, indicating the genotoxic effects, were increased and significant abnormalities were detected in MDA, SOD and CAT levels, which indicate the deterioration of antioxidant/oxidant balance. CA observed with high frequency was also confirmed by DNA fragmentation determined by the Comet test. Stream water application promoted anatomical damages such as epidermis and cortex cell damage, accumulation of some substances in cortex cells, flattened cell nucleus and non-apparent appearance of conduction tissue in root tip meristem cells. All these abnormalities observed in A. cepa root tip cells were associated with the presence of heavy metals in the water samples. Simultaneous application of lycopene with stream water reduced the effects of heavy metals and resulted in a dose-dependent improvement in all parameters studied. Lycopene application showed a protective role by providing an increase in germination parameters and MI, decrease in MN and CAs frequencies, and improvements in MDA, SOD and CAT activities. As a result, heavy metals detected in the water samples of Pazarsuyu stream caused multiple toxicities in the bio-indicator plant, and lycopene reduced this toxicity and recorded a protective role.


Assuntos
Antioxidantes , Metais Pesados , Antioxidantes/farmacologia , Catalase/farmacologia , Marcadores Genéticos , Licopeno/farmacologia , Malondialdeído , Metais Pesados/toxicidade , Cebolas , Oxidantes/farmacologia , Raízes de Plantas , Superóxido Dismutase/farmacologia , Água/farmacologia , Aumento de Peso
9.
Pestic Biochem Physiol ; 187: 105201, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127072

RESUMO

Excessive use of metaldehyde to combat mollusks directly or indirectly endangers non-targeted organisms. The present study aimed to reveal the antitoxic potential of bitter melon (Momordica charantia L.) extract (BME) against metaldehyde-related toxicity in Allium cepa L. The experimental groups formed using A. cepa bulbs were exposed to aqueous solutions containing 350 mg/L BME, 700 mg/L BME, 200 mg/L metaldehyde, 200 mg/L metaldehyde +350 mg/L BME and 200 mg/L metaldehyde +700 mg/L BME, respectively. The bulbs in the control group dipped in tap water. Metaldehyde suppressed growth with respect to germination ratio, root elongation and weight gain parameters. In metaldehyde-administered group, mitotic index (MI) was reduced, while the frequencies of micronucleus (MN) and chromosomal aberrations (CAs) increased. Metaldehyde promoted CAs such as sticky chromosomes, vagrant chromosome, fragment, unequal distribution of chromatin, reverse polarization, bridge and multipolar anaphase in root tip meristem cells. Spectral shift and molecular docking confirmed the genotoxic effect of metaldehyde resulting from DNA-metaldehyde interaction. The DNA damage in root meristems was revealed using the Comet Assay. Metaldehyde stress provoked oxidative stress. Activities superoxide dismutase (SOD) and catalase (CAT) enzymes along with level of malondialdehyde (MDA) accumulation accelerated. In roots treated with metaldehyde, epidermis cell damage, flattened cell nucleus, cortex cell damage and cortex cell wall thickening were observed as meristematic cell damage. BME attenuated metaldehyde-induced toxicity in a dose-dependent manner. This study demonstrated the mitigative potential of plant derived BME with no-to-low side effects against hazardous chemicals including metaldehyde. Nature is the most valuable weapon against toxicity from pollutants. Therefore, the protective potential of BME against other harmful agents should be screened.


Assuntos
Poluentes Ambientais , Momordica charantia , Acetaldeído/análogos & derivados , Catalase , Cromatina , Substâncias Perigosas , Malondialdeído , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Superóxido Dismutase , Água
10.
Sci Rep ; 12(1): 13504, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931740

RESUMO

The increasing widespread use of lithium, which is preferred as an energy source in batteries produced for electric vehicles and in many electronic vehicles such as computers and mobile phones, has made it an important environmental pollutant. In this study, the toxicity profile of lithium carbonate (Li2CO3) was investigated with the Allium test, which is a bio-indicator test. Dose-related toxic effects were investigated using Li2CO3 at doses of 25 mg/L, 50 mg/L, and 100 mg/L. The toxicity profile was determined by examining physiological, cytotoxic, genotoxic, biochemical and anatomical effects. Physiological effects of Li2CO3 were determined by root length, injury rate, germination percentage and weight gain while cytotoxic effects were determined by mitotic index (MI) ratio and genotoxic effects were determined by micronucleus (MN) and chromosomal aberrations (CAs). The effect of Li2CO3 on antioxidant and oxidant dynamics was determined by examining glutathione (GSH), malondialdehyde (MDA), catalase (CAT) and superoxide dismutase (SOD) levels, and anatomical changes were investigated in the sections of root meristematic tissues. As a result, Li2CO3 exhibited a dose-dependent regression in germination-related parameters. This regression is directly related to the MI and 100 mg/L Li2CO3 reduced MI by 38% compared to the control group. MN and CAs were observed at high rates in the groups treated with Li2CO3. Fragments were found with the highest rate among CAs. Other damages were bridge, unequal distribution of chromatin, sticky chromosome, vagrant chromosome, irregular mitosis, reverse polarization and multipolar anaphase. The genotoxic effects were associated with Li2CO3-DNA interactions determined by molecular docking. The toxic effects of Li2CO3 are directly related to the deterioration of the antioxidant/oxidant balance in the cells. While MDA, an indicator of lipid peroxidation, increased by 59.1% in the group administered 100 mg/L Li2CO3, GSH, which has an important role in cell defense, decreased by 60.8%. Significant changes were also detected in the activities of SOD and CAT, two important enzymes in antioxidant defense, compared to the control. These toxic effects, which developed in the cells belonging to the lithium-treated groups, were also reflected in the tissue anatomy, and anatomical changes such as epidermis cell damage, cortex cell damage, flattened cell nucleus, thickening of the cortex cell wall and unclear vascular tissue were observed in the anatomical sections. The frequency of these changes also increased depending on the Li2CO3 dose. As a result, Li2CO3, which is one of the lithium compounds, and has become an important contaminant in the environment with increasing technological developments, caused a combined and versatile toxicity in Allium cepa L. meristematic cells, especially by causing deterioration in antioxidant/oxidant dynamics.


Assuntos
Antioxidantes , Carbonato de Lítio , Antioxidantes/farmacologia , Dano ao DNA , Glutationa/farmacologia , Carbonato de Lítio/toxicidade , Simulação de Acoplamento Molecular , Cebolas , Oxidantes/farmacologia , Raízes de Plantas , Superóxido Dismutase/farmacologia
11.
Sci Rep ; 12(1): 4308, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279686

RESUMO

In this study, the phytochemical content of Amaranthus lividus extract and its multi-biological activities were investigated. Total protein, phenol, flavonoid, saponin and condensed tannin contents were determined for phytochemical analysis. In addition, GC-MS and HPLC analyzes were carried out for the determination of the active components of the extract. In determining the multi-biological activities, radical scavenging, anti-mutagenic, anti-proliferative and anti-microbial activities of the extract were investigated. GC-MS analysis revealed that the leaf extract of A. lividus contains phytol and ß-sitosterol as major compounds and the presence of gallic acid, caffeic acid, quercetin, vanillin and kaemferol compounds were determined with HPLC analysis. The radical scavenging effect of A. lividus extract was determined as 75.6% against 2,2-diphenyl-1-picrylhydrazyl and 85.2% against superoxide. In anti-bacterial studies, it was determined that A.lividus extract formed different inhibition zones against all tested bacteria. The highest inhibition zone was 14.3 ± 0.7 mm against Bacillus subtilis. In addition, the anti-microbial activity of the extract was demonstrated by molecular docking studies of the binding of gallic acid and phytol to aquaporin and arginase enzyme of bacteria, and the mechanism of anti-microbial activity was explained. A. lividus extract, which provided a 68.59-33.13% reduction in the formation of chromosomal aberrations such as unequal distribution of chromatin, micronucleus formation, fragment, sticky chromosome, bridge and vagrant chromosome, exhibited a strong anti-mutagenic effect. A. lividus extract has a reducing effect on the number of dividing cells and exhibits an anti-proliferative effect of 25.7% compared to the control group. The antiproliferative mechanism of action was investigated by molecular docking and it was determined that the gallic acid and phytol in the extract decreased proliferation by interacting with telomerase. As a result, A.lividus extract consumed as food is a potential natural anti-microbial, anti-oxidant, anti-mutagenic and anti-proliferative source with its rich phytochemical content.


Assuntos
Amaranthus , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias , Ácido Gálico/farmacologia , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/química , Fitol , Extratos Vegetais/química
12.
Sci Rep ; 12(1): 2195, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140281

RESUMO

The present study aimed to assess the toxic effects of pendimethalin herbicide and protective role of curcumin using the Allium test on cytological, biochemical and physiological parameters. The effective concentration (EC50) of pendimethalin was determined at 12 mg/L by the root growth inhibition test as the concentration reducing the root length by 50%. The roots of Allium cepa L. was treated with tap water (group I), 5 mg/L curcumin (group II), 10 mg/L curcumin (group III), 12 mg/L pendimethalin (group IV), 12 mg/L pendimethalin + 5 mg/L curcumin (group V) and 12 mg/L pendimethalin + 10 mg/L curcumin (group VI). The cytological (mitotic index, chromosomal abnormalities and DNA damage), physiological (rooting percentage, root length, growth rate and weight gain) and oxidative stress (malondialdehyde level, superoxide dismutase level, catalase level and glutathione reductase level) indicators were determined after 96 h of treatment. The results revealed that pendimethalin treatment reduced rooting percentage, root length, growth rate and weight gain whereas induced chromosomal abnormalities and DNA damage in roots of A. cepa L. Further, pendimethalin exposure elevated malondialdehyde level followed by antioxidant enzymes. The activities of superoxide dismutase and catalase were up-regulated and glutathione reductase was down-regulated. The molecular docking supported the antioxidant enzymes activities result. However, a dose-dependent reduction of pendimethalin toxicity was observed when curcumin was supplied with pendimethalin. The maximum recovery of cytological, physiological and oxidative stress parameters was recorded at 10 mg/L concentration of curcumin. The correlation studies also revealed positive relation of curcumin with rooting percentage, root length, weight gain, mitotic activity and glutathione reductase enzyme level while an inverse correlation was observed with chromosomal abnormalities, DNA damage, superoxide dismutase and catalase enzyme activities, and lipid peroxidation indicating its protective effect.


Assuntos
Compostos de Anilina/toxicidade , Curcumina/farmacologia , Herbicidas/toxicidade , Cebolas/genética , Raízes de Plantas/genética , Substâncias Protetoras/farmacologia , Aberrações Cromossômicas/efeitos dos fármacos , Correlação de Dados , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Cebolas/efeitos dos fármacos , Cebolas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/efeitos dos fármacos , Oxirredutases/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
13.
Environ Sci Pollut Res Int ; 28(40): 57372-57385, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34091852

RESUMO

In this study, toxic effects of spirodiclofen and protective role of lycopene against toxic effects were investigated by using physiological, cytogenetic, anatomical, and biochemical parameters. Allium cepa L. bulbs were used as test material. The bulbs were divided into six groups as one control and five application groups. Bulb in the control group was germinated with tap water, and in treatment groups, 20-mg L-1 dose of spirodiclofen 215- and 430-mg L-1 doses of lycopene were applied. Spirodiclofen application caused a decrease in physiological parameters such as germination percentage, root length, and weight increase. Spirodiclofen administration caused a decrease in the percentage of mitotic index (MI) and an increase in DNA fragmentation, micronucleus (MN), and chromosomal aberration (CA) frequency. Spirodiclofen application caused an increase in the level of the oxidant compound malondialdehyde (MDA), changes in the level of antioxidant enzymes, and disruption of the oxidant/antioxidant balance in the cell. Molecular interactions between spirodiclofen and antioxidant enzymes were determined by molecular docking analysis. In addition to physiological, biochemical, and genetic abnormalities, spirodiclofen also caused deformations in the anatomy of the A. cepa root tip meristematic cells. Lycopene treatment showed a protective effect by suppressing the toxic effects of spirodiclofen, causing a significant improvement in the values of selected physiological, cytogenetic, anatomical, and biochemical parameters. As a result, spirodiclofen insecticide caused toxic effects on various parameters in A. cepa, which is a eukaryotic model organism. In order to elucidate the toxicity mechanism, each parameter is associated with each other. Molecular docking method has revealed the effects of spirodiclofen on antioxidant enzymes. Lycopene application together with spirodiclofen resulted in the regression of all toxic effects and improvement in the root tissue. This result shows that lycopene has a strong protective property against spirodiclofen toxicity.


Assuntos
Cebolas , Raízes de Plantas , 4-Butirolactona/análogos & derivados , Licopeno , Malondialdeído , Simulação de Acoplamento Molecular , Compostos de Espiro
15.
Environ Sci Pollut Res Int ; 28(34): 47550-47561, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33893917

RESUMO

Diquat dibromide is a comprehensive herbicide commonly used in the cultivation of cotton, soybeans, and other crops to combat unwanted weeds. In this study, the half-maximal effective concentration (EC50) value of diquat dibromide was determined 60 mg/L in the Allium root growth inhibition test. ½ × EC50 (30 mg/L), EC50 (60 mg/L), and 2 × EC50 (120 mg/L) concentrations of diquat dibromide were applied to Allium cepa L. bulbs for 72 h to investigate the dose-dependent toxic effects. To determine the toxic effects cytogenetic, biochemical and physiological parameters were used. Physiological effects were investigated by determination of the percentage of rooting, relative injury rate, root length, and weight gain. Genetic effects were evaluated by the frequency of chromosomal abnormalities (CAs), micronucleus (MN) formation, mitotic index (MI) rate, and comet assay. Biochemical parameters were evaluated with antioxidant enzyme activities and lipid peroxidation by determining malondialdehyde (MDA) level, superoxide dismutase (SOD) activity, catalase (CAT) activity, and glutathione (GSH) level. Also, chlorophyll pigment contents (a, b, and total) in green leaves were calculated to elucidate the effect of diquat dibromide on plants and the biosphere. The findings show that increasing doses of diquat dibromide caused a decrease in all physiological parameters and MI ratio, promoting MN and CAs and tail DNA formation in genetic parameters. It was determined by the increases in MDA level, SOD, and CAT activities and decreases in GSH levels that diquat dibromide administration caused oxidative stress depending on the dose. Also, chlorophyll pigment levels (a, b, and total) measured in leaf tissues decreased with the application dose. Considering that the toxic effects caused by diquat dibromide and that organisms other than unwanted plants will be exposed during the application, its use should be abandoned and biocontrol methods should be used instead. In cases where use is compulsory, doses that will not harm the environment and organisms should be determined and used.


Assuntos
Diquat , Cebolas , Antioxidantes , Dano ao DNA , Diquat/toxicidade , Malondialdeído
16.
Environ Sci Pollut Res Int ; 28(26): 34410-34425, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33646542

RESUMO

In this study, the protective role of royal jelly (RJ) against the potential toxic effects of sodium benzoate was investigated in Allium cepa L. test material with physiological, genetic, and biochemical parameters. Physiological changes were evaluated by determining weight gain, rooting percentage, root length, and relative injury rate. The genetic evaluations were carried out with chromosomal abnormalities (CAs), micronucleus (MN), tail DNA formation, and mitotic index (MI) ratio parameters. The biochemical evaluations were carried out by determining lipid peroxidation and antioxidant enzyme activities by determining levels of malondialdehyde (MDA), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT). Further, the interaction of sodium benzoate with antioxidant enzymes was evaluated with molecular docking analysis. The antimutagenic effect of RJ was evaluated as the inhibition of chromosomal abnormalities (CAs) and tail DNA formations. A total of six groups were formed in the study. A. cepa L. bulbs in the control group were treated with tap water; the bulbs in the administration groups were treated with sodium benzoate (100 mg/L), RJ (25 mg/L and 50 mg/L doses), and sodium benzoate-RJ combinations with these doses for 72 h. As a result, it was determined that sodium benzoate application caused inhibition of physiological parameters and MI; induced MN, CAs, and DNA damage; and also caused oxidative stress. Depending on the concentration of RJ application, it reduced sodium benzoate toxicity by showing therapeutic effects in all these parameters. Also, the interaction of sodium benzoate with antioxidant enzyme residues was determined by molecular docking analysis. As a result, it has been understood that abandoning the use of sodium benzoate will be beneficial for the environment and human health and concluded that the use of RJ in the daily diet will be effective in reducing the impact of exposed toxic ingredients.


Assuntos
Dano ao DNA , Benzoato de Sódio , Antioxidantes , Ácidos Graxos , Malondialdeído , Simulação de Acoplamento Molecular , Estresse Oxidativo
17.
Environ Sci Pollut Res Int ; 28(14): 18035-18049, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33405109

RESUMO

In this study, the toxic effects of monosodium glutamate (MSG), which is the sodium salt of glutamic acid and used as a flavor-enhancing additive in foods, and the protective role of cape gooseberry (Physalis peruviana L.) extract against these effects were investigated using Allium cepa L. test material with physiological, cytogenetic, and biochemical parameters. In the study, physiological changes were evaluated by determining root length, weight gain, and rooting percentage; genetic changes were evaluated by chromosomal abnormalities, micronucleus (MN) formation, mitotic index ratio (MI), and DNA damage. Oxidative stress was evaluated by determining the levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Further, the relationships between oxidative stress and other parameters in the study were investigated. The antimutagenic effect of P. peruviana L. extract was evaluated as inhibition caused by MSG-induced chromosomal abnormalities (CAs) and DNA damage. In the study, six groups, including one control and five applications, were formed. The bulbs of Allium cepa L. in the control group were treated with tap water; the bulbs in the administration groups treated with 1000 mg/L MSG, 125 mg/L, and 250 mg/L concentrations of P. peruviana L. extract and MSG (1000 mg/L) in combination with P. peruviana L. extracts (125 mg/L and 250 mg/L) for 72 h. At the end of the application, compared to the control group, MSG application caused decreases in rooting percentage, weight gain, root length and MI, increases in frequencies of MN formation, chromosomal abnormalities, and DNA damage. In the biochemical analysis, it was determined that there were increases in MDA, SOD, and CAT levels and a decrease in GSH level. P. peruviana L. extract ameliorated MSG toxicity by showing improvement in all these parameters depending on the application concentration. As a result, considering the toxic effects of MSG, it has been understood that the use as a food additive should be abandoned and the use of P. peruviana L. in addition to daily nutrition has been found to be a good antioxidant nutrient in reducing the effects of exposed toxic substances.


Assuntos
Physalis , Ribes , Malondialdeído , Cebolas/genética , Extratos Vegetais/farmacologia , Glutamato de Sódio
18.
Environ Sci Pollut Res Int ; 27(3): 3156-3164, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31838678

RESUMO

In this study, the protective effects of Ginkgo biloba leaf extract (GbE) against toxicity induced by hydrogen peroxide (H2O2) in Swiss albino mice were investigated. Abnormal metaphase number (AMn), mitotic index (MI), micronucleus (MN), and chromosomal abnormalities (CAs) were analyzed for cytogenetic effects. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), blood urea nitrogen (BUN), creatinine, glutathione (GSH), and malondialdehyde (MDA) levels in liver and kidney organs were investigated as indicators of biochemical toxicity. Six experimental groups were formed as a control and treatment group, each containing six animals. The mice in the control group were given tap water, while the mice in the administration group received two different doses of GbE and H2O2 for 45 consecutive days. It was observed that H2O2 administration caused a significant decrease in MI compared to the control group and caused a significant decrease in the frequency of AMn, MN, and CAs. Chromatid break was the most common type of CAs induced by H2O2, and the other CAs types observed in this study were chromosome break, fragment, dicentric, gap, and ring. It has been determined that GbE treatment decreases the clastogenic effects of H2O2 and reduces the MN and CAs frequency and causes a re-increase in mitotic cell numbers. It was determined that H2O2 administration caused changes in biochemical parameters and resulted in significant increases in serum AST, ALP, ALT, BUN, and creatinine levels. However, the level of MDA, which is an indicator of oxidative damage, increased, and GSH level decreased in liver and kidney tissues. Oxidative damage caused by H2O2 in liver and kidney tissues was improved, and all biochemical parameters tested were found to be ameliorated after GbE treatment. This improvement was dependent on the dose of GbE, and improvement in 150 mg/kg bw GbE was found to be more prominent. As a result, the GbE can be used as an antioxidant nutritional supplement to protect against the toxic effects of environmental agents such as H2O2.


Assuntos
Antioxidantes/farmacologia , Ginkgo biloba , Peróxido de Hidrogênio/toxicidade , Oxidantes/toxicidade , Extratos Vegetais/farmacologia , Animais , Aspartato Aminotransferases , Análise Citogenética , Fígado , Malondialdeído , Camundongos , Estresse Oxidativo/efeitos dos fármacos
19.
J Med Food ; 21(11): 1145-1149, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30300052

RESUMO

In this study, the protective role of ß-carotene against ammonium sulfate-induced toxicity has been evaluated in Mus musculus var. albino mice, along with biochemical and histopathological parameters. Some biochemical parameters such as aspartate transaminase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine and oxidative stress parameters, malondialdehyde (MDA), and glutathione (GSH) levels in kidney and liver tissues were investigated. The mice were randomly divided into six groups. Group I received intraperitoneal injections of 0.9% NaCl; group II received orally administered 250 mg kg-1 bw ß-carotene, group III received orally administered 500 mg kg-1 bw ß-carotene; group IV received 320 mg kg-1 bw ammonium sulfate; group V was given 250 mg kg-1 bw ß-carotene +320 mg kg-1 of bw ammonium sulfate; and group VI received orally administered 500 mg kg-1 of bw ß-carotene +320 mg kg-1 of bw ammonium sulfate. As a result, it was determined that the ammonium sulfate treatment causes significant changes in the biochemical and oxidative stress parameters and also in histological examinations. In group IV, significant increases in ALT, AST, BUN, MDA, and creatinine levels, and a significant decrease in GSH levels were observed compared with control group. In histopathological examinations, different pathological findings such as proteinaceous deposits, thickening of basement membrane, hyaline cast in kidney tissue and stellate cell, karyomegaly, and binucleated cells in liver tissue were observed. ß-carotene treatment in group V and VI ameliorated the elevated levels of liver enzymes and improved oxidative stress and histopathological findings, and so, it could be concluded that ß-carotene offered remarkable protection against ammonium sulfate-induced toxicity.


Assuntos
Sulfato de Amônio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , beta Caroteno/administração & dosagem , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Glutationa/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA