Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Life Sci ; 331: 122056, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37652156

RESUMO

Malaria is a deadly parasitic disease caused a by protozoan parasite of the genus plasmodium. The challenges facing by chemotherapy and vector control couple with the lack of vaccine against malaria necessitate an urgent need for the development of alternative treatment regimens to combat this disease. One possible antimalarial treatment regimen is the use of probiotic bacteria as dietary supplements. Traditionally fermented milk is a rich source of probiotic bacteria that up to date, very few studies have been carried out on their immunoprotective effects against early malaria infection in mice. This study sought to assess the prophylactic activities of a probiotic bacterium Latilactobacillus sakei on malaria and inflammation in Plasmodium berghei infected mice. The probiotic bacterium was isolated from the Fulani's traditionally fermented milk and identified using the sequencing of the 16S r RNA gene. The repository activity of L. sakei on malaria was assessed using the method described by Peters with slight modification. Eighty-four BALB/c mice were randomly divided into two sets of seven groups of six mice each. One set received orally different doses of L. sakei Chloroquine and Sulfadoxine/Pyrimethamine for seven days before infection while the other set received for fourteen days before infection with 0.1 mL of 107Plasmodium berghei. Parasitaemia density, haematological parameters and inflammatory cytokines profile were evaluated. Data were presented as Mean ± SEM and analysed using SPSS version 20.0. The results of this study revealed that L. sakei significantly (p < 0.05) reduced in dose dependent manner parasite load, body weight loss and reduction of body temperature in all the treated mice when compare to untreated mice. Leukocytopenia, thrombocytosis and inflammation were also found to be significantly (p < 0.05) prevented in treated mice as compared to untreated mice. This study suggested that L sakei possesses immunomodulation and protective effects on early malaria infection in Plasmodium berghei mice.


Assuntos
Latilactobacillus sakei , Malária , Probióticos , Animais , Camundongos , Plasmodium berghei , Malária/prevenção & controle , Probióticos/farmacologia , Probióticos/uso terapêutico , Bactérias , Citocinas
2.
J Ethnopharmacol ; 280: 114448, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34303805

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Milk production, processing and consumption are integral part of traditional practices in Fulani tribe of Cameroon. It has been observed that Fulani are resistant to malaria. Dairy products traditionally processed by Fulani are intensively used in the ritual treatment of malarial, inflammations and behavioural disorders. Many studies have demonstrated that fermented milk is a rich source of probiotic bacteria. However, the antimalarial activity of probiotics isolated from this natural source has not been experimentally tested. AIM OF THE STUDY: Hence, this study was therefore aimed at evaluating the antimalarial activity of a probiotic bacterium Lactobacillus sakei isolated from traditionally fermented milk in mice infected with chloroquine sensitive Plasmodium berghei ANKA. MATERIALS AND METHODS: The probiotic bacterium was isolated from the Cameroonian Mborro Fulani's traditionally fermented milk and identified using the 16S r RNA gene sequencing. The schizontocidal activity of Lactobacillus sakei on established malaria infection was evaluated. Eighty-four healthy young adult Balb/c mice infected with Plasmodium berghei parasite were randomly divided into two sets of seven group of six mice each, and were given three different doses of Lactobacillus sakei, chloroquine and sulfadoxine/pyrimethamine for seven and fourteen days respectively. The level of parasitaemia, body temperature, survival time and haematological parameters were evaluated. RESULTS: The parasite growth inhibition was observed to increase with increasing dose of probiotic bacterium with maximum suppression being 100 % at dose 3 on day 20. Also, the probiotic bacterium significantly prevented body weight loss and was associated with body temperature reduction and prevented (p<0.05) a decrease in haematological parameters compared to that untreated malaria infected mice. CONCLUSION: The results obtained suggest that Lactobacillus sakei is a probiotic bacterium with antimalarial activity in mice infected with chloroquine sensitive Plasmodium berghei.


Assuntos
Antimaláricos/farmacologia , Latilactobacillus sakei , Malária/terapia , Plasmodium berghei/efeitos dos fármacos , Probióticos/farmacologia , Animais , Antimaláricos/administração & dosagem , Camarões , Cloroquina/farmacologia , Modelos Animais de Doenças , Combinação de Medicamentos , Alimentos Fermentados , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Leite/microbiologia , Parasitemia/parasitologia , Parasitemia/terapia , Probióticos/administração & dosagem , Pirimetamina/farmacologia , Sulfadoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA