Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Arthritis Res Ther ; 23(1): 265, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696809

RESUMO

BACKGROUND: The development and optimization of therapies for rheumatoid arthritis (RA) is currently hindered by a lack of methods for early non-invasive monitoring of treatment response. Annexin A2, an inflammation-associated protein whose presence and phosphorylation levels are upregulated in RA, represents a potential molecular target for tracking RA treatment response. METHODS: LS301, a near-infrared dye-peptide conjugate that selectively targets tyrosine 23-phosphorylated annexin A2 (pANXA2), was evaluated for its utility in monitoring disease progression, remission, and early response to drug treatment in mouse models of RA by fluorescence imaging. The intraarticular distribution and localization of LS301 relative to pANXA2 was determined by histological and immunohistochemical methods. RESULTS: In mouse models of spontaneous and serum transfer-induced inflammatory arthritis, intravenously administered LS301 showed selective accumulation in regions of joint pathology including paws, ankles, and knees with positive correlation between fluorescent signal and disease severity by clinical scoring. Whole-body near-infrared imaging with LS301 allowed tracking of spontaneous disease remission and the therapeutic response after dexamethasone treatment. Histological analysis showed preferential accumulation of LS301 within the chondrocytes and articular cartilage in arthritic mice, and colocalization was observed between LS301 and pANXA2 in the joint tissue. CONCLUSIONS: We demonstrate that fluorescence imaging with LS301 can be used to monitor the progression, remission, and early response to drug treatment in mouse models of RA. Given the ease of detecting LS301 with portable optical imaging devices, the agent may become a useful early treatment response reporter for arthritis diagnosis and drug evaluation.


Assuntos
Anexina A2 , Artrite Experimental , Artrite Reumatoide , Animais , Artrite Experimental/diagnóstico por imagem , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Condrócitos , Camundongos , Imagem Óptica , Tirosina
2.
Theranostics ; 10(17): 7510-7526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685002

RESUMO

Tumor-associated macrophages (TAMs) enhance tumor growth in mice and are correlated with a worse prognosis for breast cancer patients. While early therapies sought to deplete all macrophages, current therapeutics aim to reprogram pro-tumor macrophages (M2) and preserve those necessary for anti-tumor immune responses (M1). Recent studies have shown that c-MYC (MYC) is induced in M2 macrophages in vitro and in vivo where it regulates the expression of tumor-promoting genes. In a myeloid lineage MYC KO mouse model, MYC had important roles in macrophage maturation and function leading to reduced tumor growth. We therefore hypothesized that targeted delivery of a MYC inhibitor to established M2 TAMs could reduce polarization toward an M2 phenotype in breast cancer models. Methods: In this study, we developed a MYC inhibitor prodrug (MI3-PD) for encapsulation within perfluorocarbon nanoparticles, which can deliver drugs directly to the cytosol of the target cell through a phagocytosis independent mechanism. We have previously shown that M2-like TAMs express significant levels of the vitronectin receptor, integrin ß3, and in vivo targeting and therapeutic potential was evaluated using αvß3 integrin targeted rhodamine-labeled nanoparticles (NP) or integrin αvß3-MI3-PD nanoparticles. Results: We observed that rhodamine, delivered by αvß3-rhodamine NP, was incorporated into M2 tumor promoting macrophages through both phagocytosis-independent and dependent mechanisms, while NP uptake in tumor suppressing M1 macrophages was almost exclusively through phagocytosis. In a mouse model of breast cancer (4T1-GFP-FL), M2-like TAMs were significantly reduced with αvß3-MI3-PD NP treatment. To validate this effect was independent of drug delivery to tumor cells and was specific to the MYC inhibitor, mice with integrin ß3 knock out tumors (PyMT-Bo1 ß3KO) were treated with αvß3-NP or αvß3-MI3-PD NP. M2 macrophages were significantly reduced with αvß3-MI3-PD nanoparticle therapy but not αvß3-NP treatment. Conclusion: These data suggest αvß3-NP-mediated drug delivery of a c-MYC inhibitor can reduce protumor M2-like macrophages while preserving antitumor M1-like macrophages in breast cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Linhagem Celular Tumoral/transplante , Avaliação Pré-Clínica de Medicamentos , Feminino , Fluorocarbonos/administração & dosagem , Fluorocarbonos/química , Técnicas de Inativação de Genes , Humanos , Integrina alfaVbeta3 , Integrina beta3 , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Nanopartículas/química , Fagocitose , Cultura Primária de Células , Pró-Fármacos/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
3.
Nat Commun ; 9(1): 275, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348537

RESUMO

Most cancer patients succumb to disseminated disease because conventional systemic therapies lack spatiotemporal control of their toxic effects in vivo, particularly in a complicated milieu such as bone marrow where progenitor stem cells reside. Here, we demonstrate the treatment of disseminated cancer by photoactivatable drugs using radiopharmaceuticals. An orthogonal-targeting strategy and a contact-facilitated nanomicelle technology enabled highly selective delivery and co-localization of titanocene and radiolabelled fluorodeoxyglucose in disseminated multiple myeloma cells. Selective ablation of the cancer cells was achieved without significant off-target toxicity to the resident stem cells. Genomic, proteomic and multimodal imaging analyses revealed that the downregulation of CD49d, one of the dimeric protein targets of the nanomicelles, caused therapy resistance in small clusters of cancer cells. Similar treatment of a highly metastatic breast cancer model using human serum albumin-titanocene formulation significantly inhibited cancer growth. This strategy expands the use of phototherapy for treating previously inaccessible metastatic disease.


Assuntos
Neoplasias Mamárias Experimentais/terapia , Mieloma Múltiplo/terapia , Compostos Organometálicos/administração & dosagem , Fotoquimioterapia , Compostos Radiofarmacêuticos/administração & dosagem , Animais , Linhagem Celular , Resistencia a Medicamentos Antineoplásicos , Feminino , Integrina alfa4beta1 , Camundongos Endogâmicos C57BL , Camundongos SCID , Micelas , Terapia de Alvo Molecular , Nanopartículas , Ratos , Albumina Sérica Humana , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Biomed Opt ; 22(6): 66007, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28613348

RESUMO

Similarity of skin cancer with many benign skin pathologies requires reliable methods to detect and differentiate the different types of these lesions. Previous studies have explored the use of disparate optical techniques to identify and estimate the invasive nature of melanoma and basal cell carcinoma with varying outcomes. Here, we used a concerted approach that provides complementary information for rapid screening and characterization of tumors, focusing on squamous cell carcinoma (SCC) of the skin. Assessment of in vivo autofluorescence lifetime (FLT) imaging of endogenous fluorophores that are excitable at longer wavelengths (480 nm) than conventional NADH and FAD revealed a decrease in the short FLT component for SCC compared to normal skin, with mean values of 0.57 ± 0.026 ?? ns and 0.61 ± 0.021 ?? ns , respectively ( p = 0.004 ). Subsequent systemic administration of a near-infrared fluorescent molecular probe in SCC bearing mice, followed by the implementation of image processing methods on data acquired from two-dimensional and three-dimensional fluorescence molecular imaging, allowed us to estimate the tumor volume and depth, as well as quantify the fluorescent probe in the tumor. The result suggests the involvement of lipofuscin-like lipopigments and riboflavin in SCC metabolism and serves as a model for staging SCC.


Assuntos
Corantes Fluorescentes , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Animais , Camundongos
5.
Nat Nanotechnol ; 10(4): 370-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751304

RESUMO

The combination of light and photosensitizers for phototherapeutic interventions, such as photodynamic therapy, has transformed medicine and biology. However, the shallow penetration of light into tissues and the reliance on tissue oxygenation to generate cytotoxic radicals have limited the method to superficial or endoscope-accessible lesions. Here we report a way to overcome these limitations by using Cerenkov radiation from radionuclides to activate an oxygen-independent nanophotosensitizer, titanium dioxide (TiO2). We show that the administration of transferrin-coated TiO2 nanoparticles and clinically used radionuclides in mice and colocalization in tumours results in either complete tumour remission or an increase in their median survival. Histological analysis of tumour sections showed the selective destruction of cancerous cells and high numbers of tumour-infiltrating lymphocytes, which suggests that both free radicals and the activation of the immune system mediated the destruction. Our results offer a way to harness low-radiance-sensitive nanophotosensitizers to achieve depth-independent Cerenkov-radiation-mediated therapy.


Assuntos
Nanopartículas Metálicas/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Titânio/uso terapêutico , Absorção de Radiação , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Campos Eletromagnéticos , Feminino , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Nus , Neoplasias Experimentais/patologia , Tamanho da Partícula , Fármacos Fotossensibilizantes/química , Doses de Radiação , Espalhamento de Radiação , Titânio/química
6.
Antiviral Res ; 110: 70-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25086212

RESUMO

Ultrashort pulsed laser irradiation is a new method for virus reduction in pharmaceuticals and blood products. Current evidence suggests that ultrashort pulsed laser irradiation inactivates viruses through an impulsive stimulated Raman scattering process, resulting in aggregation of viral capsid proteins. However, the specific functional defect(s) in viruses inactivated in this manner have not been demonstrated. This information is critical for the optimization and the extension of this treatment platform to other applications. Toward this goal, we investigated whether viral internalization, replication, or gene expression in cells were altered by ultrashort pulsed laser irradiation. Murine Cytomegalovirus (MCMV), an enveloped DNA virus, was used as a model virus. Using electron and fluorescence microscopy, we found that laser-treated MCMV virions successfully internalized in cells, as evidenced by the detection of intracellular virions, which was confirmed by the detection of intracellular viral DNA via PCR. Although the viral DNA itself remained polymerase-amplifiable after laser treatment, no viral replication or gene expression was observed in cells infected with laser-treated virus. These results, along with evidence from previous studies, support a model whereby the laser treatment stabilizes the capsid, which inhibits capsid uncoating within cells. By targeting the mechanical properties of viral capsids, ultrashort pulsed laser treatment represents a unique potential strategy to overcome viral mutational escape, with implications for combatting emerging or drug-resistant pathogens.


Assuntos
Terapia com Luz de Baixa Intensidade , Muromegalovirus/efeitos da radiação , Agregados Proteicos/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Replicação Viral/efeitos da radiação , Células 3T3 , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/efeitos da radiação , Linhagem Celular , DNA Viral/genética , Expressão Gênica/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Transcrição Gênica/efeitos da radiação , Internalização do Vírus/efeitos da radiação
7.
J Cancer Res Clin Oncol ; 140(4): 623-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24531912

RESUMO

INTRODUCTION: Our preliminary study on repressing colorectal tumors by recombinant adenoviruses (Ads) delivering the human ERß gene (Ad-ERß) has achieved positive result. METHODS: In this study, hydrophobic fluorescent dyes ICG-Der-01 was entrapped into the N-succinyl-N'-octyl chitosan (SOC) micelles to form the near infrared absorbing dyes SOC-ICG-Der-01 and SOC-ICG-Der-01 mediated near infrared laser (SOC-ICG-Der-01/NIR) thermotherapy was combined with Ad-ERß gene therapy to regress colon cancer in vivo. RESULTS: Firstly, the antitumor efficacies of SOC-ICG-Der-01/NIR thermotherapy were investigated on S180 ascites tumor-bearing mice. Results indicated that, the average tumor volume of SOC-ICG-Der-01/NIR group was the smallest among the three treatment groups. Then, thermotherapy with SOC-ICG-Der-01/NIR combined with Ad-ERß gene therapy to treat HCT-116 colon cancer xenograft model was investigated. Further results demonstrated that, SOC-ICG-Der-01/NIR thermotherapy showed the significantly inhibitory efficiency compared with control group and Ad-ERß enhanced the therapeutic effect of SOC-ICG-Der-01/NIR. CONCLUSION: These findings demonstrated that combined administration of Ad-ERß with SOC-ICG-Der-01/NIR thermotherapy represents a promising colon cancer therapeutic strategy.


Assuntos
Adenoviridae/genética , Neoplasias Colorretais/terapia , Receptor beta de Estrogênio/genética , Hipertermia Induzida , Terapia a Laser , Sarcoma 180/terapia , Animais , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Terapia Combinada , Corantes Fluorescentes , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Camundongos , Camundongos Nus , Sarcoma 180/genética , Células Tumorais Cultivadas
8.
J Biomed Opt ; 18(10): 106012, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24150231

RESUMO

The era of molecular medicine has ushered in the development of microscopic methods that can report molecular processes in thick tissues with high spatial resolution. A commonality in deep-tissue microscopy is the use of near-infrared (NIR) lasers with single- or multiphoton excitations. However, the relationship between different NIR excitation microscopic techniques and the imaging depths in tissue has not been established. We compared such depth limits for three NIR excitation techniques: NIR single-photon confocal microscopy (NIR SPCM), NIR multiphoton excitation with visible detection (NIR/VIS MPM), and all-NIR multiphoton excitation with NIR detection (NIR/NIR MPM). Homologous cyanine dyes provided the fluorescence. Intact kidneys were harvested after administration of kidney-clearing cyanine dyes in mice. NIR SPCM and NIR/VIS MPM achieved similar maximum imaging depth of ∼100 µm. The NIR/NIR MPM enabled greater than fivefold imaging depth (>500 µm) using the harvested kidneys. Although the NIR/NIR MPM used 1550-nm excitation where water absorption is relatively high, cell viability and histology studies demonstrate that the laser did not induce photothermal damage at the low laser powers used for the kidney imaging. This study provides guidance on the imaging depth capabilities of NIR excitation-based microscopic techniques and reveals the potential to multiplex information using these platforms.


Assuntos
Meios de Contraste/química , Corantes Fluorescentes/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Carbocianinas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Meios de Contraste/farmacologia , Emulsões , Corantes Fluorescentes/farmacologia , Histocitoquímica , Processamento de Imagem Assistida por Computador/métodos , Rim/química , Rim/efeitos da radiação , Lasers , Masculino , Camundongos , Imagens de Fantasmas , Fosfolipídeos , Óleo de Soja
9.
Theranostics ; 3(9): 633-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019851

RESUMO

Uniform gold nanostars (Au NS) were conjugated with cyclic RGD (cRGD) and near infrared (NIR) fluorescence probe (MPA) or anti-cancer drug (DOX) to obtain multi-functional nanoconstructs, Au-cRGD-MPA and Au-cRGD-DOX respectively. The NIR contrast agent Au-cRGD-MPA was shown to have low cytotoxicity. Using tumor cells and tumor bearing mice, these imaging nanoparticles demonstrated favorable tumor-targeting capability mediated by RGD peptide binding to its over-expressed receptor on the tumor cells. The multi-therapeutic analogue, Au-cRGD-DOX, integrates targeting tumor, chemotherapy and photo-thermotherapy into a single system. The synergistic effect of photo-thermal therapy and chemotherapy was demonstrated in different tumor cell lines and in vivo using S180 tumor-bearing mouse models. The viability of MDA-MB-231 cells was only 40 % after incubation with Au-cRGD-DOX and irradiation with NIR light. Both tail vein and intratumoral injections showed Au-cRGD-DOX treated mice exhibiting the slowest tumor increase. These results indicate that the multifunctional nanoconstruct is a promising combined therapeutic agent for tumor-targeting treatment, with the potential to enhance the anti-cancer treatment outcomes.


Assuntos
Antineoplásicos/farmacocinética , Tratamento Farmacológico/métodos , Ouro/farmacocinética , Nanoestruturas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Fotoquimioterapia/métodos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Camundongos , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Fenilacetatos/química , Fenilacetatos/farmacocinética , Receptores Imunológicos/metabolismo , Receptores de Peptídeos/metabolismo
10.
Adv Exp Med Biol ; 765: 323-328, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22879051

RESUMO

Hollow gold nanospheres (HGN) may be delicately tuned to absorb near infrared light (NIR) by tailoring the diameter-to-shell ratio. This unique property can be utilized for enhancing the contrast for the NIR and X-ray/CT imaging, and also noninvasive and local, photothermal hyperthermia by conjugating cancer-targeting molecules on the particle surface. In addition, when an NIR fluorophore is placed on the surface of the NIR-tuned HGNs, the fluorescence can be significantly quenched due to the emitted light absorption by the HGNs. Combining the NIR fluorescence quenching property of HGNs and the enzyme secreting nature of cancer, we have developed a novel enzyme-triggered NIR contrast agent for cancer detection with high specificity. NIR fluorophore Cypate (Indocyanine Green based) was conjugated to HGN via a short spacer for fluorescence quenching. The spacer contains an enzyme-substrate-motif (G-G-R) that can be cleaved by urokinase-type plasminogen activator (uPA, a breast cancer enzyme). The nano-complex normally does not emit fluorescence but, in the presence of uPA, the fluorescence was restored, providing high specificity. The enzyme-specific emission allows us to characterize the nature of the cancer (e.g., invasive, metastatic, etc.). Once the cancer is detected, the same HGNs can be used to deliver heat to the cancer site for cancer-specific hyperthermia.


Assuntos
Neoplasias da Mama/diagnóstico , Ouro/química , Hipertermia Induzida , Nanopartículas Metálicas/química , Nanosferas , Espectroscopia de Luz Próxima ao Infravermelho , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Desenho de Fármacos , Feminino , Corantes Fluorescentes , Ouro/metabolismo , Humanos
11.
J Am Chem Soc ; 131(26): 9198-200, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19514722

RESUMO

We demonstrate the first evidence of radioactivity-synchronized fluorescence quenching of a near-infrared light-emitting dye by a radionuclide, (64)Cu, and subsequent fluorescence enhancement upon (64)Cu decay to the daughter isotopes (64)Ni and (64)Zn. The dynamic switch from high radioactivity and low fluorescence to low radioactivity and high fluorescence is potentially useful for developing complementary multimodal imaging and detection platforms for chemical, environmental, and biomedical applications as well as for unraveling the mechanisms of metal-induced dynamic fluorescence changes.


Assuntos
Radioisótopos de Cobre/química , Corantes Fluorescentes/química , Níquel/química , Quelantes/química , Fluorescência , Corantes Fluorescentes/síntese química , Estrutura Molecular , Radioatividade , Radioisótopos/química , Espectrometria de Fluorescência , Titulometria , Radioisótopos de Zinco/química
12.
Bioconjug Chem ; 19(1): 225-34, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18038965

RESUMO

Desferrioxamine (DFO), a siderophore initially isolated from Streptomyces pilosus, possesses extraordinary metal binding properties with wide biomedical applications that include chelation therapy, nuclear imaging, and antiproliferation. In this work, we prepared a novel multifunctional agent consisting of (i) a near-infrared (NIR) fluorescent probe-cypate; (ii) an integrin alpha vbeta3 receptor (ABIR)-avid cyclic RGD peptide, and (iii) a DFO moiety, DFO-cypate-cyclo[RGDfK(approximately)] (1, with approximately representing the cypate conjugation site at the side chain of lysine; f is d-phenylalanine). Compound 1 and two control compounds, cypate-cyclo[RGDfK(approximately)] ( 2) and cypate-DFO ( 3), were synthesized by modular assembly of the corresponding protected RGD peptide cyclo[R(Pbf)GD(OBut)fK] and DFO on the dicarboxylic acid-containing cypate scaffold in solution. The three compounds exhibited similar UV-vis and emission spectral properties. Metal binding analysis shows that DFO as well as 1 and 3 exhibited relatively high binding affinity with Fe(III), Al(III), and Ga(III). In contrast to Ga(III), the binding of Fe to 1 and 3 quenched the fluorescence emission of cypate significantly, suggesting an efficient metal-mediated approach to perturb the spectral properties of NIR fluorescent carbocyanine probes. In vitro, 1 showed a high ABIR binding affinity (10 (-7) M) comparable to that of 2 and the reference peptide cyclo(RGDfV), indicating that both DFO and cypate motifs did not interfere significantly with the molecular recognition of the cyclic RGD motif with ABIR. Fluorescence microscopy showed that internalization of 1 and 2 in ABIR-positive A549 cells at 1 h postincubation was higher than 3 and cypate alone, demonstrating that incorporating ABIR-targeting RGD motif could improve cellular internalization of DFO analogues. The ensemble of these findings demonstrate the use of multifunctional NIR fluorescent ABIR-targeting DFO analogues to modulate the spectral properties of the NIR fluorescent probe by the chelating properties of DFO and visualize intracellular delivery of DFO by receptor-specific peptides. These features provide a strategy to explore the potential of 1 in tumor imaging and treatment as well as some molecular recognition processes mediated by metal ions.


Assuntos
Desferroxamina/análogos & derivados , Desferroxamina/metabolismo , Raios Infravermelhos , Integrina alfaV/metabolismo , Linhagem Celular Tumoral , Desferroxamina/química , Corantes Fluorescentes , Humanos , Integrina alfaV/química , Integrina alfaVbeta3/metabolismo , Metais/química , Microscopia de Fluorescência , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Espectrometria de Fluorescência
13.
J Org Chem ; 73(2): 723-5, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18095702

RESUMO

Diverse meso-aminophenyl-, hydroxyphenyl-, and phenyl-substituted heptamethine cyanine dyes were prepared by a modified Suzuki--Miyaura method in good yields. In addition, direct Suzuki coupling of Vilsmeier--Haack reagent extends the procedure to the synthesis of otherwise difficult cyanine dyes containing multiple heteroatoms in the indolium ring. The new compounds possess excellent spectral properties and can be used to label bioactive molecules and nanoparticles. The one-pot synthesis procedure eliminates the cumbersome steps of protecting/deprotecting amino or hydroxy groups.


Assuntos
Carbocianinas/química , Carbocianinas/síntese química , Corantes/química , Corantes/síntese química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Selênio/química
14.
Bioconjug Chem ; 16(5): 1264-74, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16173807

RESUMO

Optical imaging has attracted a great attention for studying molecular recognitions because minute fluorescent tracers can be detected in homogeneous and heterogeneous media with existing laboratory instruments. In our preliminary study, a clinically relevant photosensitizer (HPPH, a chlorophyll-a analog) was linked with a cyanine dye (with required photophysical characteristics but limited tumor selectivity), and the resulting conjugate was found to be an efficient tumor imaging (fluorescence imaging) and photosensitizing agent. Compared to HPPH, the presence of the cyanine dye moiety in the conjugate produced a significantly higher uptake in tumor than skin. At a therapeutic/imaging dose, the conjugate did not show any significant skin phototoxicity, a major drawback associated with most of the porphyrin-based photosensitizers. These results suggest that tumor-avid porphyrin-based compounds can be used as "vehicles" to deliver the desired fluorescent agent(s) to tumor. The development of tumor imaging or improved photodynamic therapy agent(s) by itself represents an important step, but a dual function agent (fluorescence imaging and photodynamic therapy) provides the potential for tumor detection and targeted photodynamic therapy, combining two modalities into a single cost-effective "see and treat" approach.


Assuntos
Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Linhagem Celular , Cães , Camundongos , Estrutura Molecular , Neoplasias/irrigação sanguínea , Fármacos Fotossensibilizantes/farmacologia , Pele/efeitos dos fármacos , Análise Espectral , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Photochem Photobiol ; 81(6): 1499-504, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16120005

RESUMO

Monomolecular multimodal imaging agents (MOMIAs) are able to provide complementary diagnostic information of a target diseased tissue. We developed a convenient solid-phase approach to construct two pro-MOMIAs (before incorporating radiometal) derived from 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and cypate, a near-infrared (NIR) fluorescent dye analogous to indocyanine green (ICG). The possible interaction between d orbitals of transition metal DOTA complexes or free metals and the p orbitals of cypate chromophore could quench the fluorescence of pro-MOMIAs. However, we did not observe significant changes in the spectral properties of cypate upon conjugation with DOTA and subsequent chelation with metals. The fluorescence intensity of the chelated and nonmetal-chelated PRO-MOMIAs remained fairly the same in dilute 20% aqueous dimethylsulfoxide (DMSO) solution (1 x 10(-6) M). Significant reduction in the fluorescence intensity of pro-MOMIAs occurred in the presence of a large excess of metal ions (>1 molar ratio for indium and 20-fold for a copper relative to pro-MOMIA). This study suggests the feasibility of using MOMIAs for combined optical and radioisotope imaging.


Assuntos
Quelantes/química , Meios de Contraste/química , Cobre/química , Corantes Fluorescentes/química , Índio/química , Estrutura Molecular , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA