Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Science ; 382(6669): 405-412, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883555

RESUMO

Neural substrates of wakefulness, rapid eye movement sleep (REMS), and non-REMS (NREMS) in the mammalian hypothalamus overlap both anatomically and functionally with cellular networks that support physiological and behavioral homeostasis. Here, we review the roles of sleep neurons of the hypothalamus in the homeostatic control of thermoregulation or goal-oriented behaviors during wakefulness. We address how hypothalamic circuits involved in opposing behaviors such as core body temperature and sleep compute conflicting information and provide a coherent vigilance state. Finally, we highlight some of the key unresolved questions and challenges, and the promise of a more granular view of the cellular and molecular diversity underlying the integrative role of the hypothalamus in physiological and behavioral homeostasis.


Assuntos
Hipotálamo , Neurônios , Sono REM , Sono de Ondas Lentas , Vigília , Animais , Regulação da Temperatura Corporal , Eletroencefalografia , Hipotálamo/citologia , Hipotálamo/fisiologia , Sono REM/fisiologia , Vigília/fisiologia , Humanos , Neurônios/fisiologia , Sono de Ondas Lentas/fisiologia
2.
J Neurosci ; 43(20): 3696-3707, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37045604

RESUMO

During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.


Assuntos
Córtex Auditivo , Lobo Temporal , Humanos , Feminino , Lobo Temporal/fisiologia , Percepção Auditiva/fisiologia , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Eletrocorticografia , Córtex Auditivo/fisiologia , Estimulação Acústica
3.
Science ; 376(6594): 724-730, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549430

RESUMO

Rapid eye movement (REM) sleep is associated with the consolidation of emotional memories. Yet, the underlying neocortical circuits and synaptic mechanisms remain unclear. We found that REM sleep is associated with a somatodendritic decoupling in pyramidal neurons of the prefrontal cortex. This decoupling reflects a shift of inhibitory balance between parvalbumin neuron-mediated somatic inhibition and vasoactive intestinal peptide-mediated dendritic disinhibition, mostly driven by neurons from the central medial thalamus. REM-specific optogenetic suppression of dendritic activity led to a loss of danger-versus-safety discrimination during associative learning and a lack of synaptic plasticity, whereas optogenetic release of somatic inhibition resulted in enhanced discrimination and synaptic potentiation. Somatodendritic decoupling during REM sleep promotes opposite synaptic plasticity mechanisms that optimize emotional responses to future behavioral stressors.


Assuntos
Dendritos , Plasticidade Neuronal , Córtex Pré-Frontal , Sono REM , Animais , Dendritos/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Sono REM/fisiologia , Tálamo/citologia , Tálamo/fisiologia
4.
Trends Neurosci ; 44(12): 990-1003, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663506

RESUMO

The electrical activity of diverse brain cells is modulated across states of vigilance, namely wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Enhanced activity of neuronal circuits during NREM sleep impacts on subsequent awake behaviors, yet the significance of their activation, or lack thereof, during REM sleep remains unclear. This review focuses on feeding-promoting cells in the lateral hypothalamus (LH) that express the vesicular GABA and glycine transporter (vgat) as a model to further understand the impact of REM sleep on neural encoding of goal-directed behavior. It emphasizes both spatial and temporal aspects of hypothalamic cell dynamics across awake behaviors and REM sleep, and discusses a role for REM sleep in brain plasticity underlying energy homeostasis and behavioral optimization.


Assuntos
Sono REM , Sono , Comportamento Alimentar , Humanos , Hipotálamo/fisiologia , Sono/fisiologia , Sono REM/fisiologia , Vigília/fisiologia
5.
Nat Commun ; 11(1): 5247, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067436

RESUMO

Sleep spindle generation classically relies on an interplay between the thalamic reticular nucleus (TRN), thalamo-cortical (TC) relay cells and cortico-thalamic (CT) feedback during non-rapid eye movement (NREM) sleep. Spindles are hypothesized to stabilize sleep, gate sensory processing and consolidate memory. However, the contribution of non-sensory thalamic nuclei in spindle generation and the role of spindles in sleep-state regulation remain unclear. Using multisite thalamic and cortical LFP/unit recordings in freely behaving mice, we show that spike-field coupling within centromedial and anterodorsal (AD) thalamic nuclei is as strong as for TRN during detected spindles. We found that spindle rate significantly increases before the onset of rapid eye movement (REM) sleep, but not wakefulness. The latter observation is consistent with our finding that enhancing spontaneous activity of TRN cells or TRN-AD projections using optogenetics increase spindle rate and transitions to REM sleep. Together, our results extend the classical TRN-TC-CT spindle pathway to include non-sensory thalamic nuclei and implicate spindles in the onset of REM sleep.


Assuntos
Fenômenos Fisiológicos Oculares , Sono REM , Núcleos Talâmicos/fisiologia , Animais , Eletroencefalografia , Olho/química , Feminino , Masculino , Memória , Camundongos Endogâmicos C57BL , Optogenética , Núcleos Talâmicos/química , Tálamo/química , Tálamo/fisiologia , Vigília
6.
Prog Neurobiol ; 187: 101771, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32058043

RESUMO

Appropriate motor control is critical for normal life, and requires hypothalamic hypocretin/orexin neurons (HONs). HONs are slowly regulated by nutrients, but also display rapid (subsecond) activity fluctuations in vivo. The necessity of these activity bursts for sensorimotor control and their roles in specific phases of movement are unknown. Here we show that temporally-restricted optosilencing of spontaneous or sensory-evoked HON bursts disrupts locomotion initiation, but does not affect ongoing locomotion. Conversely, HON optostimulation initiates locomotion with subsecond delays in a frequency-dependent manner. Using 2-photon volumetric imaging of activity of >300 HONs during sensory stimulation and self-initiated locomotion, we identify several locomotion-related HON subtypes, which distinctly predict the probability of imminent locomotion initiation, display distinct sensory responses, and are differentially modulated by food deprivation. By causally linking HON bursts to locomotion initiation, these findings reveal the sensorimotor importance of rapid spontaneous and evoked fluctuations in HON ensemble activity.


Assuntos
Hipotálamo/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orexinas/metabolismo
7.
Nat Rev Neurol ; 15(9): 519-539, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31324898

RESUMO

Narcolepsy is a rare brain disorder that reflects a selective loss or dysfunction of orexin (also known as hypocretin) neurons of the lateral hypothalamus. Narcolepsy type 1 (NT1) is characterized by excessive daytime sleepiness and cataplexy, accompanied by sleep-wake symptoms, such as hallucinations, sleep paralysis and disturbed sleep. Diagnosis is based on these clinical features and supported by biomarkers: evidence of rapid eye movement sleep periods soon after sleep onset; cerebrospinal fluid orexin deficiency; and positivity for HLA-DQB1*06:02. Symptomatic treatment with stimulant and anticataplectic drugs is usually efficacious. This Review focuses on our current understanding of how genetic, environmental and immune-related factors contribute to a prominent (but not isolated) orexin signalling deficiency in patients with NT1. Data supporting the view of NT1 as a hypothalamic disorder affecting not only sleep-wake but also motor, psychiatric, emotional, cognitive, metabolic and autonomic functions are presented, along with uncertainties concerning the 'narcoleptic borderland', including narcolepsy type 2 (NT2). The limitations of current diagnostic criteria for narcolepsy are discussed, and a possible new classification system incorporating the borderland conditions is presented. Finally, advances and obstacles in the symptomatic and causal treatment of narcolepsy are reviewed.


Assuntos
Encéfalo/fisiopatologia , Narcolepsia , Orexinas/fisiologia , Humanos , Hipotálamo/fisiopatologia , Narcolepsia/diagnóstico , Narcolepsia/etiologia , Narcolepsia/fisiopatologia , Narcolepsia/terapia
8.
Curr Opin Neurobiol ; 52: 188-197, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144746

RESUMO

Sleep is an essential component of animal behavior, controlled by both circadian and homeostatic processes. Typical brain oscillations for sleep and wake states are distinctive and reflect recurrent activity amongst neural circuits spanning localized to global brain regions. Since the original discovery of hypothalamic centers controlling both sleep and wakefulness, current views now implicate networks of neuronal and non-neuronal cells distributed brain-wide. Yet the mechanisms of sleep-wake control remain unclear. In light of recent studies, here we review experimental evidence from lesional, correlational, pharmacological and genetics studies, which support a role for the thalamus in several aspects of sleep-wake states. How these thalamo-cortical network mechanisms contribute to other executive functions such as memory consolidation and cognition, remains an open question with direct implications for neuro-psychiatric diseases and stands as a future challenge for basic science and healthcare research.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Fases do Sono/fisiologia , Tálamo/fisiologia , Vigília/fisiologia , Animais , Humanos , Tálamo/patologia , Tálamo/fisiopatologia
9.
Nat Neurosci ; 21(7): 974-984, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29892048

RESUMO

Slow waves (0.5-4 Hz) predominate in the cortical electroencephalogram during non-rapid eye movement (NREM) sleep in mammals. They reflect the synchronization of large neuronal ensembles alternating between active (UP) and quiescent (Down) states and propagating along the neocortex. The thalamic contribution to cortical UP states and sleep modulation remains unclear. Here we show that spontaneous firing of centromedial thalamus (CMT) neurons in mice is phase-advanced to global cortical UP states and NREM-wake transitions. Tonic optogenetic activation of CMT neurons induces NREM-wake transitions, whereas burst activation mimics UP states in the cingulate cortex and enhances brain-wide synchrony of cortical slow waves during sleep, through a relay in the anterodorsal thalamus. Finally, we demonstrate that CMT and anterodorsal thalamus relay neurons promote sleep recovery. These findings suggest that the tonic and/or burst firing pattern of CMT neurons can modulate brain-wide cortical activity during sleep and provides dual control of sleep-wake states.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Tálamo/fisiologia , Vigília/fisiologia , Animais , Eletroencefalografia , Masculino , Camundongos
10.
Nat Commun ; 7: 11395, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102565

RESUMO

The lateral hypothalamus (LH) controls energy balance. LH melanin-concentrating-hormone (MCH) and orexin/hypocretin (OH) neurons mediate energy accumulation and expenditure, respectively. MCH cells promote memory and appropriate stimulus-reward associations; their inactivation disrupts energy-optimal behaviour and causes weight loss. However, MCH cell dynamics during wakefulness are unknown, leaving it unclear if they differentially participate in brain activity during sensory processing. By fiberoptic recordings from molecularly defined populations of LH neurons in awake freely moving mice, we show that MCH neurons generate conditional population bursts. This MCH cell activity correlates with novelty exploration, is inhibited by stress and is inversely predicted by OH cell activity. Furthermore, we obtain brain-wide maps of monosynaptic inputs to MCH and OH cells, and demonstrate optogenetically that VGAT neurons in the amygdala and bed nucleus of stria terminalis inhibit MCH cells. These data reveal cell-type-specific LH dynamics during sensory integration, and identify direct neural controllers of MCH neurons.


Assuntos
Redes Reguladoras de Genes , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Neurônios/metabolismo , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Hormônios Hipofisários/metabolismo , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Mapeamento Encefálico , Metabolismo Energético/genética , Comportamento Exploratório/fisiologia , Tecnologia de Fibra Óptica , Regulação da Expressão Gênica , Hormônios Hipotalâmicos/genética , Hipotálamo/citologia , Masculino , Melaninas/genética , Camundongos , Camundongos Transgênicos , Neurônios/classificação , Neurônios/citologia , Optogenética , Receptores de Orexina/genética , Orexinas/genética , Técnicas de Patch-Clamp , Hormônios Hipofisários/genética , Núcleos Septais/citologia , Núcleos Septais/metabolismo , Técnicas Estereotáxicas , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores , Vigília/genética
11.
Nat Neurosci ; 19(2): 290-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26691833

RESUMO

During non-rapid eye movement (NREM) sleep, synchronous synaptic activity in the thalamocortical network generates predominantly low-frequency oscillations (<4 Hz) that are modulated by inhibitory inputs from the thalamic reticular nucleus (TRN). Whether TRN cells integrate sleep-wake signals from subcortical circuits remains unclear. We found that GABA neurons from the lateral hypothalamus (LHGABA) exert a strong inhibitory control over TRN GABA neurons (TRNGABA). We found that optogenetic activation of this circuit recapitulated state-dependent changes of TRN neuron activity in behaving mice and induced rapid arousal during NREM, but not REM, sleep. During deep anesthesia, activation of this circuit induced sustained cortical arousal. In contrast, optogenetic silencing of LHGABA-TRNGABA transmission increased the duration of NREM sleep and amplitude of delta (1-4 Hz) oscillations. Collectively, these results demonstrate that TRN cells integrate subcortical arousal inputs selectively during NREM sleep and may participate in sleep intensity.


Assuntos
Nível de Alerta/fisiologia , Córtex Cerebral/fisiologia , Estado de Consciência/fisiologia , Hipotálamo/fisiologia , Tálamo/fisiologia , Anestesia , Animais , Comportamento Animal/fisiologia , Ritmo Delta , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiologia , Optogenética , Sono/fisiologia , Sono REM/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Ácido gama-Aminobutírico/fisiologia
12.
Nat Neurosci ; 16(11): 1637-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056699

RESUMO

Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, but their effects on REM sleep remain unclear. Using optogenetic tools in newly generated Tg(Pmch-cre) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM, sleep episodes. In contrast, their acute silencing (eNpHR3.0, archaerhodopsin) reduced the frequency and amplitude of hippocampal theta rhythm without affecting REM sleep duration. In vitro activation of MCH neuron terminals induced GABAA-mediated inhibitory postsynaptic currents in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), and in vivo activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain.


Assuntos
Hipotálamo/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Optogenética , Sono REM/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Channelrhodopsins , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Regulação da Expressão Gênica , Hormônios Hipotalâmicos/genética , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Melaninas/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Hormônios Hipofisários/genética , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/genética , Transdução Genética , Valina/análogos & derivados , Valina/farmacologia
13.
Biol Psychiatry ; 71(12): 1046-52, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22440618

RESUMO

Alterations in arousal states are associated with multiple neuropsychiatric disorders, including generalized anxiety disorders, addiction, schizophrenia, and depression. Therefore, elucidating the neurobiological mechanisms controlling the boundaries between arousal, hyperarousal, and hypoarousal is a crucial endeavor in biological psychiatry. Substantial research over several decades has identified distinct arousal-promoting neural populations in the brain; however, how these nuclei act individually and collectively to promote and maintain wakefulness and various arousal states is unknown. We have recently applied optogenetic technology to the repertoire of techniques used to study arousal. Here, we discuss the recent results of these experiments and propose future use of this approach as a way to understand the complex dynamics of neural circuits controlling arousal and arousal-related behaviors.


Assuntos
Nível de Alerta/fisiologia , Marcação de Genes/métodos , Hipotálamo/metabolismo , Locus Cerúleo/metabolismo , Estimulação Luminosa/métodos , Sono/fisiologia , Vigília/fisiologia , Animais , Humanos , Neuropeptídeos , Norepinefrina
14.
Neuron ; 72(4): 616-29, 2011 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-22099463

RESUMO

Hypothalamic orexin/hypocretin (orx/hcrt) neurons regulate energy balance, wakefulness, and reward; their loss produces narcolepsy and weight gain. Glucose can lower the activity of orx/hcrt cells, but whether other dietary macronutrients have similar effects is unclear. We show that orx/hcrt cells are stimulated by nutritionally relevant mixtures of amino acids (AAs), both in brain slice patch-clamp experiments, and in c-Fos expression assays following central or peripheral administration of AAs to mice in vivo. Physiological mixtures of AAs electrically excited orx/hcrt cells through a dual mechanism involving inhibition of K(ATP) channels and activation of system-A amino acid transporters. Nonessential AAs were more potent in activating orx/hcrt cells than essential AAs. Moreover, the presence of physiological concentrations of AAs suppressed the glucose responses of orx/hcrt cells. These results suggest a new mechanism of hypothalamic integration of macronutrient signals and imply that orx/hcrt cells sense macronutrient balance, rather than net energy value, in extracellular fluid.


Assuntos
Proteínas Alimentares/farmacologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeos/biossíntese , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/farmacologia , Aminoácidos/metabolismo , Aminoácidos/fisiologia , Animais , Proteínas Alimentares/metabolismo , Hipotálamo/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Orexinas , Técnicas de Patch-Clamp
15.
Peptides ; 30(11): 2066-70, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19576257

RESUMO

The neurobiological substrate of learning process and persistent memory storage involves multiple brain areas. The neocortex and hippocampal formation are known as processing and storage sites for explicit memory, whereas the striatum, amygdala, neocortex and cerebellum support implicit memory. Synaptic plasticity, long-term changes in synaptic transmission efficacy and transient recruitment of intracellular signaling pathways in these brain areas have been proposed as possible mechanisms underlying short- and long-term memory retention. In addition to the classical neurotransmitters (glutamate, GABA), experimental evidence supports a role for neuropeptides in modulating memory processes. This review focuses on the role of the Melanin-Concentrating Hormone (MCH) and receptors on memory formation in animal studies. Possible mechanisms may involve direct MCH modulation of neural circuit activity that support memory storage and cognitive functions, as well as indirect effect on arousal.


Assuntos
Hormônios Hipotalâmicos/fisiologia , Aprendizagem/fisiologia , Melaninas/fisiologia , Memória/fisiologia , Hormônios Hipofisários/fisiologia , Animais , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Melaninas/metabolismo , Modelos Biológicos , Hormônios Hipofisários/metabolismo
16.
J Physiol ; 587(1): 33-40, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19047201

RESUMO

Sleep disturbances are associated with hormonal imbalances and may result in metabolic disorders including obesity and diabetes. Therefore, circuits controlling both sleep and metabolism are likely to play a role in these physiopathological conditions. The hypocretin (Hcrt) system is a strong candidate for mediating both sleep and metabolic imbalances because Hcrt neurons are sensitive to metabolic hormones, including leptin and ghrelin, and modulate arousal and goal-orientated behaviours. This review discusses the role of Hcrt neurons as a sensors of energy balance and arousal and proposes new ways of probing local hypothalamic circuits regulating sleep and metabolism with unprecedented cellular specificity and temporal resolution.


Assuntos
Nível de Alerta/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neuropeptídeos/fisiologia , Animais , Grelina/fisiologia , Humanos , Hipotálamo/fisiologia , Leptina/fisiologia , Metabolismo , Modelos Neurológicos , Neurônios/fisiologia , Orexinas , Sono/fisiologia
17.
Trends Endocrinol Metab ; 19(10): 362-70, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18938086

RESUMO

Association between sleep disturbances and hormonal imbalances can result in metabolic disorders, including obesity and diabetes. The hypothalamus is likely to play a part in these pathophysiological conditions because it contains sleep-wake circuits that are sensitive to metabolic hormones, including leptin and ghrelin. Thus, shared hypothalamic circuits such as the hypocretin and melanin-concentrating hormone systems are strong candidates for mediating both sleep and metabolic imbalances. This review reveals new roles for these systems as sensors and effectors of sleep and wakefulness, and discusses their plasticity in regulating sleep and energy balance. New optical tools that remotely control neuronal circuit activity provide an effective means to understand the cooperativity of shared circuits in regulating hypothalamic functions such as sleep and metabolism.


Assuntos
Metabolismo/fisiologia , Vias Neurais/fisiologia , Sono/fisiologia , Animais , Nível de Alerta/fisiologia , Humanos , Hormônios Hipotalâmicos/fisiologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Melaninas/fisiologia , Modelos Biológicos , Neuropeptídeos/fisiologia , Orexinas , Hormônios Hipofisários/fisiologia , Transtornos do Sono do Ritmo Circadiano/metabolismo
18.
Nature ; 450(7168): 420-4, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17943086

RESUMO

The neural underpinnings of sleep involve interactions between sleep-promoting areas such as the anterior hypothalamus, and arousal systems located in the posterior hypothalamus, the basal forebrain and the brainstem. Hypocretin (Hcrt, also known as orexin)-producing neurons in the lateral hypothalamus are important for arousal stability, and loss of Hcrt function has been linked to narcolepsy. However, it is unknown whether electrical activity arising from Hcrt neurons is sufficient to drive awakening from sleep states or is simply correlated with it. Here we directly probed the impact of Hcrt neuron activity on sleep state transitions with in vivo neural photostimulation, genetically targeting channelrhodopsin-2 to Hcrt cells and using an optical fibre to deliver light deep in the brain, directly into the lateral hypothalamus, of freely moving mice. We found that direct, selective, optogenetic photostimulation of Hcrt neurons increased the probability of transition to wakefulness from either slow wave sleep or rapid eye movement sleep. Notably, photostimulation using 5-30 Hz light pulse trains reduced latency to wakefulness, whereas 1 Hz trains did not. This study establishes a causal relationship between frequency-dependent activity of a genetically defined neural cell type and a specific mammalian behaviour central to clinical conditions and neurobehavioural physiology.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Neurônios/efeitos da radiação , Neuropeptídeos/metabolismo , Sono/fisiologia , Vigília/fisiologia , Animais , Ritmo Circadiano/efeitos da radiação , Hipotálamo/citologia , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Receptores de Orexina , Orexinas , Técnicas de Patch-Clamp , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Sono/genética , Sono/efeitos da radiação , Sono REM/fisiologia , Sono REM/efeitos da radiação , Vigília/genética , Vigília/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA